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Abstract

Monocular 3D object detection is a key problem for

autonomous vehicles, as it provides a solution with sim-

ple configuration compared to typical multi-sensor systems.

The main challenge in monocular 3D detection lies in accu-

rately predicting object depth, which must be inferred from

object and scene cues due to the lack of direct range mea-

surement. Many methods attempt to directly estimate depth

to assist in 3D detection, but show limited performance as a

result of depth inaccuracy. Our proposed solution, Categor-

ical Depth Distribution Network (CaDDN), uses a predicted

categorical depth distribution for each pixel to project rich

contextual feature information to the appropriate depth in-

terval in 3D space. We then use the computationally effi-

cient bird’s-eye-view projection and single-stage detector to

produce the final output detections. We design CaDDN as a

fully differentiable end-to-end approach for joint depth es-

timation and object detection. We validate our approach on

the KITTI 3D object detection benchmark, where we rank

1st among published monocular methods. We also provide

the first monocular 3D detection results on the newly re-

leased Waymo Open Dataset. We provide a code release for

CaDDN which is made available.

1. Introduction

Perception in 3D space is a key component in fields such

as autonomous vehicles and robotics, enabling systems to

understand their environment and react accordingly. Li-

DAR [21, 50, 51] and stereo [46, 45, 28, 11] sensors have

a long history of use for 3D perception tasks, showing ex-

cellent results on 3D object detection benchmarks such as

the KITTI 3D object detection benchmark [16] due to their

ability to generate precise 3D measurements.

Monocular based 3D perception has been pursued simul-

taneously, motivated by the potential for a low-cost, easy-

to-deploy solution with a single camera [9, 40, 5, 22]. Per-

formance on the same 3D object detection benchmarks lags

significantly relative to LiDAR and stereo methods, due to

the loss of depth information when scene information is pro-

jected onto the image plane.

Figure 1. (a) Input image. (b) Without depth distribution super-

vision, BEV features from CaDDN suffer from smearing effects.

(c) Depth distribution supervision encourages BEV features from

CaDDN to encode meaningful depth confidence, in which objects

can be accurately detected.

To combat this effect, monocular object detection meth-

ods [13, 36, 37, 59] often learn depth explicitly, by train-

ing a monocular depth estimation network in a separate

stage. However, depth estimates are consumed directly in

the 3D object detection stage without an understanding of

depth confidence, leading to networks that tend to be over-

confident in depth predictions. Over-confidence in depth is

particularly an issue at long range [59], leading to poor lo-

calization. Further, depth estimation is separated from 3D

detection during the training phase, preventing depth map

estimates from being optimized for the detection task.

Depth information in image data can also be learned im-

plicitly, by directly transforming features from images to

3D space and finally to bird’s-eye-view (BEV) grids [48,

44]. Implicit methods, however, tend to suffer from fea-

ture smearing, wherein similar image features can exist at

multiple locations in the projected space. Feature smearing

increases the difficulty of localizing objects in the scene.

To resolve the identified issues, we propose a monocular

3D object detection method, CaDDN, that enables accurate

3D detection by learning categorical depth distributions. By
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leveraging probabilistic depth estimation, CaDDN is able

to generate high quality bird’s-eye-view feature representa-

tions from images in an end-to-end fashion. We summarize

our approach with three contributions.

(1) Categorical Depth Distributions. In order to perform

3D detection, we predict pixel-wise categorical depth distri-

butions to accurately locate image information in 3D space.

Each predicted distribution describes the probabilities that

a pixel belongs to a set of predefined depth bins. We en-

courage our distributions to be as sharp as possible around

the correct depth bins, in order to encourage our network

to focus more on image information where depth estima-

tion is both accurate and confident [23]. By doing so, our

network is able to produce sharper and more accurate fea-

tures that are useful for 3D detection (see Figure 1). On

the other hand, our network retains the ability to produce

less sharp distributions when depth estimation confidence is

low. Using categorical distributions allows our feature en-

coding to capture the inherent depth estimation uncertainty

to reduce the impact of erroneous depth estimates, a prop-

erty shown to be key to CaDDN’s improved performance in

Section 4.3. Sharpness in our predicted depth distributions

is encouraged through supervision with one-hot encodings

of the correct depth bin, which can be generated by project-

ing LiDAR depth data into the camera frame.

(2) End-To-End Depth Reasoning. We learn depth dis-

tributions in an end-to-end fashion, jointly optimizing for

accurate depth prediction as well as accurate 3D object de-

tection. We argue that joint depth estimation and 3D detec-

tion reasoning encourages depth estimates to be optimized

for the 3D detection task, leading to increased performance

as shown in Section 4.3.

(3) BEV Scene Representation. We introduce a novel

method to generate high quality bird’s-eye-view scene rep-

resentations from single images using categorical depth dis-

tributions and projective geometry. We select the bird’s-

eye-view representation due to its ability to produce excel-

lent 3D detection performance with high computational ef-

ficiency [26]. The generated bird’s-eye-view representation

is used as input to a bird’s-eye-view based detector to pro-

duce the final output.

CaDDN is shown to rank first among all previously pub-

lished monocular methods on the Car and Pedestrian cate-

gories of the KITTI 3D object detection test benchmark [1],

with margins of 1.69% and 1.46% AP|R40
respectively. We

are the first to report monocular 3D object detection results

on the Waymo Open Dataset [56].

2. Related Work

Monocular Depth Estimation. Monocular depth esti-

mation is performed by generating a single depth value

for every pixel in an image. As such, many monocular

depth estimation methods are based on architectures used

in well-studied pixel-to-pixel mapping problems such as se-

mantic segmentation. As an example, fully convolutional

networks (FCNs) [34] were introduced for semantic seg-

mentation, and were subsequently adopted for monocular

depth estimation [25]. The atrous spatial pyramid pooling

(ASPP) module was also first proposed for semantic seg-

mentation in DeepLab [8, 7, 6] and subsequently used for

depth estimation in DORN [15] and BTS [27]. Further,

many methods jointly perform depth estimation and seg-

mentation [63, 66, 58, 14] in an end-to-end manner. We

follow the design of the semantic segmentation network

DeepLabV3 [6] for estimating categorical depth distribu-

tions for each pixel in the image.

BEV Semantic Segmentation. BEV segmentation meth-

ods [42, 49] attempt to predict BEV semantic maps of 3D

scenes from images. Images can be used to either directly

estimate BEV semantic maps [39, 35, 60] or to estimate a

BEV feature representation [44, 47, 41] as an intermediate

step for the segmentation task. In particular, Lift, Splat,

Shoot [44] predicts categorical depth distributions in an un-

supervised manner, in order to generate intermediate BEV

representations. In this work, we predict categorical depth

distributions via supervision with ground truth one-hot en-

codings to generate more accurate depth distributions for

object detection.

Monocular 3D Detection. Monocular 3D object detection

methods often generate intermediate representations to as-

sist in the 3D detection task. Based on these representations,

monocular detection can be divided into three categories:

direct, depth-based, and grid-based methods.

Direct Methods. Direct methods [9, 52, 4, 32] estimate 3D

detections directly from images without predicting an in-

termediate 3D scene representation. Rather, direct meth-

ods [53, 12, 40, 3] can incorporate the geometric relation-

ship between the 2D image plane and 3D space to assist

with detections. For example, object keypoints can be esti-

mated on the image plane, in order to assist in 3D box con-

struction using known geometry [33, 29]. M3D-RPN [3]

introduces depth-aware convolutions that divides the input

row-wise and learns non-shared kernels for each region, to

learn location specific features that correlate to regions in

3D space. Shape estimation can be performed for objects

in the scene to create an understanding of 3D object geom-

etry. Shape estimates can be supervised from labeled ver-

tices of 3D CAD models [5, 24], from LiDAR scans [22], or

directly from input data in a self-supervised manner [2]. A

drawback for direct methods is that detections are generated

directly from 2D images, without access to explicit depth

information, usually resulting in reduced performance in lo-

calization relative to other methods.

Depth-Based Methods. Depth-based methods perform the
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Figure 2. CaDDN Architecture. The network is composed of three modules to generate 3D feature representations and one to perform 3D

detection. Frustum features G are generated from an image I using estimated depth distributions D, which are transformed into voxel

features V. The voxel features are collapsed to bird’s-eye-view features B to be used for 3D object detection.

3D detection task using pixel-wise depth maps as an ad-

ditional input, where the depth maps are precomputed us-

ing monocular depth estimation architectures [15]. Esti-

mated depth maps can be used in combination with images

to perform the 3D detection task [38, 64, 36, 13]. Alter-

natively, depth maps can be converted to 3D point clouds,

commonly known as Pseudo-LiDAR [59], which are either

used directly [61, 65] or combined with image informa-

tion [62, 37] to generate 3D object detection results. Depth-

based methods separate depth estimation from 3D object

detection during the training stage, leading to the learning

of sub-optimal depth maps used for the 3D detection task.

Accurate depth should be prioritized for pixels belonging to

objects of interest, and is less important for background pix-

els, a property that is not captured if depth estimation and

object detection are trained independently.

Grid-Based Methods. Grid-based methods avoid estimating

raw depth values by predicting a BEV grid [48, 55] repre-

sentation, to be used as input for 3D detection architectures.

Specifically, OFT [48] populates a voxel grid by projecting

voxels into the image plane and sampling image features,

to be transformed into a BEV representation. Multiple vox-

els can be projected to the same image feature, leading to

repeated features along the projection ray and reduced de-

tection accuracy.

CaDDN addresses all identified issues by jointly per-

forming depth estimation and 3D object detection in an end-

to-end manner, and leverages the depth estimates to gener-

ate meaningful bird’s-eye-view representations with accu-

rate and localized features.

3. Methodology

CaDDN learns to generate BEV representations from

images by projecting image features into 3D space. 3D

object detection is then performed with the rich BEV rep-

resentation using an efficient BEV detection network. An

overview of CaDDN’s architecture is shown in Figure 2.

3.1. 3D Representation Learning

Our network learns to produce BEV representations that

are well-suited for the task of 3D object detection. Tak-

ing an image as input, we construct a frustum feature grid

using the estimated categorical depth distributions. The

frustum feature grid is transformed into a voxel grid using

known camera calibration parameters, and then collapsed to

a bird’s-eye-view feature grid.

Frustum Feature Network. The purpose of the frustum

feature network is to project image information into 3D

space, by associating image features to estimated depths.

Specifically, the input to the frustum feature network is an

image I ∈ R
WI×HI×3, where WI , HI are the width and

height of the image. The output is a frustum feature grid

G ∈ R
WF×HF×D×C , where WF , HF , are the width and

height of the image feature representation, D is the number

of discretized depth bins, and C is the number of feature

channels. We note that the structure of the frustum grid is

similar to the plane-sweep volume used in the stereo 3D de-
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Figure 3. Each feature pixel F(u, v) is weighted by its depth dis-

tribution probabilities D(u, v) of belonging to D discrete depth

bins to generate frustum features G(u, v).

tection method DSGN [11].

A ResNet-101 [17] backbone is used to extract image

features F̃ ∈ R
WF×HF×C (see Image Backbone in Fig-

ure 2). In our implementation, we extract the image fea-

tures from Block1 of the ResNet-101 backbone in order to

maintain a high spatial resolution. A high spatial resolution

is necessary for an effective frustum to voxel grid transfor-

mation, such that the frustum grid can be finely sampled

without repeated features.

The image features F̃ are used to estimate pixel-wise cat-

egorical depth distributions D ∈ R
WF×HF×D, where the

categories are the D discretized depth bins. Specifically, we

predict D probabilities for each pixel in the image features

F̃, where each probability indicates the network’s confi-

dence that depth value belongs to a specified depth bin. The

definition of the depth bins relies on the depth discretization

method as discussed in Section 3.3.

We follow the design of the semantic segmentation net-

work DeepLabV3 [6] to estimate the categorical depth dis-

tributions from image features F̃ (Depth Distribution Net-

work in Figure 2), where we modify the network to produce

pixel-wise probability scores of belonging to depth bins

rather than semantic classes with a downsample-upsample

architecture. Image features F̃ are downsampled with the

remaining components of the ResNet-101 [17] backbone

(Block2, Block3, and Block4). An atrous spatial pyramid

pooling [6] (ASPP) module is applied to capture multi-scale

information, where the number of output channels is set as

D. The output of the ASPP module is upsampled to the

original feature size with bilinear interpolation to produce

the categorical depth distributions D ∈ R
WF×HF×D. A

softmax function is applied for each pixel to normalize the

D logits into probabilities between 0 and 1.

In parallel to estimating depth distributions, we perform

channel reduction (Image Channel Reduce in Figure 2) on

image features F̃ to generate the final image features F, us-

ing a 1x1 convolution + BatchNorm + ReLU layer to reduce

the number of channels from C = 256 to C = 64. Channel

Figure 4. Sampling points in each voxel are projected into the frus-

tum grid. Frustum features are sampled using trilinear interpola-

tion (shown as blue in G) to populate voxels in V.

reduction is required to reduce the high memory footprint of

ResNet-101 features that will be populated in the 3D frus-

tum grid.

Let (u, v, c) represent a coordinate in image features F

and (u, v, di) represent a coordinate in categorical depth

distributions D, where (u, v) are the feature pixel loca-

tion, c is the channel index, and di is the depth bin index.

To generate a frustum feature grid G, each feature pixel

F(u, v) is weighted by its associated depth bin probabilities

in D(u, v) to populate the depth axis di, visualized in Fig-

ure 3. Feature pixels can be weighted by depth probability

using the outer product, defined as:

G(u, v) = D(u, v)⊗ F(u, v) (1)

where D(u, v) is the predicted depth distribution and

G(u, v) is an output matrix of size D×C. The outer prod-

uct in Equation 1 is computed for each pixel to form frustum

features G ∈ R
WF×HF×D×C .

Frustum to Voxel Transformation. The frustum features

G ∈ R
WF×HF×D×C are transformed to a voxel represen-

tation V ∈ R
X×Y×Z×C leveraging known camera calibra-

tion and differentiable sampling, shown in Figure 4. Voxel

sampling points svk = [x, y, z]Tk are generated at the center

of each voxel and transformed to the frustum grid to form

frustum sampling points s̃fk = [u, v, dc]
T
k , where dc is the

continuous depth value along the frustum depth axis di. The

transformation is performed using the camera calibration

matrix P ∈ R
3×4. Each continuous depth value dc is con-

verted to a discrete depth bin index di using the depth dis-

cretization method outlined in Section 3.3. Frustum features

in G are sampled using sampling points sfk = [u, v, di]
T
k

with trilinear interpolation (shown in blue in Figure 4) to

populate voxel features in V.

The spatial resolution of the frustum grid G and the

voxel grid V should be similar for an effective transforma-

tion. A high resolution voxel grid V leads to a high density

of sampling points that will oversample a low resolution

frustum grid, resulting in a large amount of similar voxel
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features. Therefore, we extract the features F̃ from Block1

of the ResNet-101 backbone to ensure our frustum grid G

is of high spatial resolution.

Voxel Collapse to BEV. The voxel features V ∈
R

X×Y×Z×C are collapsed to a single height plane to gen-

erate bird’s-eye-view features B ∈ R
X×Y×C . BEV grids

greatly reduce the computational overhead while offering

similar detection performance to 3D voxel grids [26], moti-

vating their use in our network. We concatenate the vertical

axis z of the voxel grid V along the channel dimension c to

form a BEV grid B̃ ∈ R
X×Y×Z∗C . The number of chan-

nels are reduced using a 1x1 convolution + BatchNorm +

ReLU layer (see BEV Channel Reduce in Figure 2), which

retrieves the original number of channels C while learning

the relative importance of each height slice, resulting in a

BEV grid B ∈ R
X×Y×C .

3.2. BEV 3D Object Detection

To perform 3D object detection on the BEV feature grid,

we adopt the backbone and detection head of the well-

established BEV 3D object detector PointPillars [26], as

it has been shown to provide accurate 3D detection results

with a low computational overhead. For the BEV backbone,

we increase the number of 3x3 convolution + BatchNorm +

ReLU layers in the downsample blocks from (4, 6, 6) used

in the original PointPillars [26] to (10, 10, 10) for Block1,

Block2, and Block3 respectively. Increasing the number of

convolutional layers expands the learning capacity in our

BEV network, important for learning from lower quality

features produced by images compared to higher quality

features originally produced by LiDAR point clouds. We

use the same detection head as PointPillars [26] to generate

our final detections.

3.3. Depth Discretization

The continuous depth space is discretized in order to de-

fine the set of D bins used in the depth distributions D.

Depth discretization can be performed with uniform dis-

cretization (UD) with a fixed bin size, spacing-increasing

discretization (SID) [15] with increasing bin sizes in log
space, or linear-increasing discretization (LID) [57] with

linearly increasing bin sizes. Depth discretization tech-

niques are visualized in Figure 5. We adopt LID as our

depth discretization as it provides balanced depth estima-

tion for all depths [57]. LID is defined as:

dc = dmin +
dmax − dmin

D(D + 1)
· di(di + 1) (2)

where dc is the continuous depth value, [dmin, dmax] is the

full depth range to be discretized, D is the number of depth

bins, and di is the depth bin index.

Figure 5. Depth Discretization Methods. Depth dc is discretized

over a depth range [dmin, dmax] into D discrete bins. Commonly

used methods include uniform (UD), spacing-increasing (SID),

and linear-increasing (LID) discretization.

3.4. Depth Distribution Label Generation

We require depth distribution labels D̂ in order to super-

vise our predicted depth distributions. Depth distribution

labels are generated by projecting LiDAR point clouds into

the image frame to create sparse dense maps. Depth com-

pletion [20] is performed to generate depth values at each

pixel in the image. We require depth information at each

image feature pixel, so we downsample the depth maps of

size WI × HI to the image feature size WF × HF . The

depth maps are converted to bin indices using the LID dis-

cretization method described in Section 3.3, followed by a

conversion into a one-hot encoding to generate the depth

distribution labels. A one-hot encoding ensures the depth

distribution labels are sharp, essential to encourage sharp-

ness in our depth distribution predictions via supervision.

3.5. Training Losses

Generally, classification is performed by predicting cate-

gorical distributions, and encouraging sharpness in the dis-

tribution in order to select the correct class [19]. We lever-

age classification to encourage a single correct depth bin

when supervising the depth distribution network, using the

focal loss [30]:

Ldepth =
1

WF ·HF

WF∑

u=1

HF∑

v=1

FL(D(u, v), D̂(u, v)) (3)

where D is the depth distribution predictions and D̂ is the

depth distribution labels. We found that autonomous driv-

ing datasets contain images with fewer object pixels than

background pixels, leading to loss functions that priori-

tize background pixels when all pixel losses are weighted

evenly. We set the focal loss [30] weighting factor α as

αfg = 3.25 for foreground object pixels and αbg = 0.25
for background pixels. Foreground object pixels are deter-
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Car (IOU = 0.7) Pedestrian (IOU = 0.5) Cyclist (IOU = 0.5)
Method Frames

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Kinematic3D [4] 4 19.07 12.72 9.17 – – – – – –

OFT [48] 1 1.61 1.32 1.00 0.63 0.36 0.35 0.14 0.06 0.07

ROI-10D [38] 1 4.32 2.02 1.46 – – – – – –

MonoPSR [22] 1 10.76 7.25 5.85 6.12 4.00 3.30 8.37 4.74 3.68

Mono3D-PLiDAR [61] 1 10.76 7.50 6.10 – – – – – –

MonoDIS [52] 1 10.37 7.94 6.40 – – – – – –

UR3D [64] 1 15.58 8.61 6.00 – – – – – –

M3D-RPN [3] 1 14.76 9.71 7.42 4.92 3.48 2.94 0.94 0.65 0.47

SMOKE [33] 1 14.03 9.76 7.84 – – – – – –

MonoPair [12] 1 13.04 9.99 8.65 10.02 6.68 5.53 3.79 2.12 1.83

RTM3D [29] 1 14.41 10.34 8.77 – – – – – –

AM3D [37] 1 16.50 10.74 9.52 – – – – – –

MoVi-3D [53] 1 15.19 10.90 9.26 8.99 5.44 4.57 1.08 0.63 0.70

RAR-Net [32] 1 16.37 11.01 9.52 – – – – – –

PatchNet [36] 1 15.68 11.12 10.17 – – – – – –

DA-3Ddet [65] 1 16.77 11.50 8.93 – – – – – –

D4LCN [13] 1 16.65 11.72 9.51 4.55 3.42 2.83 2.45 1.67 1.36

CaDDN (ours) 1 19.17 13.41 11.46 12.87 8.14 6.76 7.00 3.41 3.30

Improvement – +2.40 +1.69 +1.29 +2.85 +1.46 +1.23 -1.37 -1.33 -0.38

Table 1. 3D detection results on the KITTI [16] test set. Results are shown using the AP|R40
metric only for results that are readily

available. We indicate the highest result with red and the second highest with blue.

mined as all pixels that lie within 2D object bounding box

labels, and background pixels are all remaining pixels. We

set the focal loss [30] focusing parameter γ = 2.0.

We use the classification loss Lcls, regression loss Lreg,

and direction classification loss Ldir from PointPillars [26]

for 3D object detection. The total loss of our network is the

combination of the depth and 3D detection losses:

L = λdepthLdepth + λclsLcls + λregLreg + λdirLdir (4)

where λdepth, λcls, λreg, λdir are fixed loss weighting fac-

tors.

4. Experimental Results

To demonstrate the effectiveness of CaDDN we present

results on both the KITTI 3D object detection bench-

mark [16] and the Waymo Open Dataset [56].

The KITTI 3D object detection benchmark [16] is di-

vided into 7,481 training samples and 7,518 testing sam-

ples. The training samples are commonly divided into a

train set (3,712 samples) and a val set (3,769 samples)

following [10], which is also adopted here. We compare

CaDDN with existing methods on the test set by training

our model on both the train and val sets. We evaluate on the

val set for ablation by training our model on only the train

set.

The Waymo Open Dataset [56] is a more recently re-

leased autonomous driving dataset, which consists of 798

training sequences and 202 validation sequences. The

dataset also includes 150 test sequences without ground

truth data. The dataset provides object labels in the full

360◦ field of view with a multi-camera rig. We only use the

front camera and only consider object labels in the front-

camera’s field of view (50.4◦) for the task of monocular

object detection, and provide results on the validation se-

quences. We sample every 3rd frame from the training se-

quences to form our training set (51,564 samples) due to the

large dataset size and high frame rate.

Input Parameters. The voxel grid is defined by a

range and voxel size in 3D space. On KITTI [16],

we use [2, 46.8] × [−30.08, 30.08] × [−3, 1] (m) for the

range and [0.16, 0.16, 0.16] (m) for the voxel size for

the x, y, and z axes respectively. On Waymo, we use

[2, 55.76] × [−25.6, 25.6] × [−4, 4] (m) for the range and

[0.16, 0.16, 0.16] (m) for the voxel size. Additionally, we

downsample Waymo images to 1248 × 832.

Training and Inference Details. Our method is imple-

mented in PyTorch [43]. The network is trained on a

NVIDIA Tesla V100 (32G) GPU. The Adam [18] optimizer

is used with an initial learning rate of 0.001 and is modi-

fied using the one-cycle learning rate policy [54]. We train

the model for 80 epochs on the KITTI dataset [16] and 10

epochs on the Waymo Open Dataset [56]. We use a batch

size of 4 for KITTI [16] and a batch size of 2 for Waymo.

The values λdepth = 3.0, λcls = 1.0, λreg = 2.0, λdir =
0.2 are used for the loss weighting factors in Equation 4. We

employ horizontal flip as our data augmentation and train

one model for all classes. During inference, we filter boxes
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3D mAP 3D mAPH
Difficulty Method

Overall 0 - 30m 30 - 50m 50m - ∞ Overall 0 - 30m 30 - 50m 50m - ∞
M3D-RPN [3] 0.35 1.12 0.18 0.02 0.34 1.10 0.18 0.02

CaDNN (Ours) 5.03 14.54 1.47 0.10 4.99 14.43 1.45 0.10
LEVEL 1

(IOU = 0.7)
Improvement +4.69 +13.43 +1.28 +0.08 +4.65 +13.33 +1.28 +0.08

M3D-RPN [3] 0.33 1.12 0.18 0.02 0.33 1.10 0.17 0.02

CaDNN (Ours) 4.49 14.50 1.42 0.09 4.45 14.38 1.41 0.09
LEVEL 2

(IOU = 0.7)
Improvement +4.15 +13.38 +1.24 +0.07 +4.12 +13.28 +1.24 +0.07

M3D-RPN [3] 3.79 11.14 2.16 0.26 3.63 10.70 2.09 0.21

CaDNN (Ours) 17.54 45.00 9.24 0.64 17.31 44.46 9.11 0.62
LEVEL 1

(IOU = 0.5)
Improvement +13.76 +33.86 +7.08 +0.39 +13.69 +33.77 +7.02 +0.41

M3D-RPN [3] 3.61 11.12 2.12 0.24 3.46 10.67 2.04 0.20

CaDNN (Ours) 16.51 44.87 8.99 0.58 16.28 44.33 8.86 0.55
LEVEL 2

(IOU = 0.5)
Improvement +12.89 +33.75 +6.87 +0.34 +12.82 +33.66 +6.81 +0.36

Table 2. Results on the Waymo Open Dataset Validation Set on the Vehicle class. We evaluate M3D-RPN [3] as a baseline for comparison.

with a score threshold of 0.1 and apply non-maximum sup-

pression (NMS) with an IoU threshold of 0.01.

4.1. KITTI Dataset Results

Results on the KITTI dataset [16] are evaluated using

average precision (AP|R40
). The evaluation is separated by

difficulty settings (Easy, Moderate, and Hard) and by object

class (Car, Pedestrian, and Cyclist). The Car class has an

IoU criteria of 0.7 while the Pedestrian and Cyclist classes

have an IoU criteria of 0.5, where IoU criteria is a threshold

to be considered a true positive detection.

Table 1 shows the results of CaDDN on the KITTI [16]

test set compared to state-of-the-art published monocu-

lar methods, listed in rank order of performance on the

Car class at the Moderate difficulty setting. We note that

our method outperforms previous single frame methods by

large margins on AP|R40
of +2.40%, +1.69%, and +1.29%

on the Car class on the Easy, Moderate, and Hard dif-

ficulties respectively. Additionally, CaDDN ranks higher

than the multi-frame method Kinematic3D [4]. Our method

also outperforms the previous state-of-the art method on the

Pedestrian class MonoPair [12] with margins on AP|R40
of

+2.85%, +1.46%, and +1.23%. Our method achieves sec-

ond place on the Cyclist class with margins on AP|R40
of

-1.37%, -1.33%, and -0.38% relative to MonoPSR [22].

4.2. Waymo Dataset Results

We adopt the officially released evaluation to calculate

the mean average precision (mAP) and the mean average

precision weighted by heading (mAPH) on the Waymo

Open Dataset [56]. The evaluation is separated by difficulty

setting (LEVEL 1, LEVEL 2) and distance to the sensor (0

- 30m, 30 - 50m, and 50m - ∞). We evaluate on the Vehicle

class with an IoU criteria of 0.7 and 0.5.

To the best of our knowledge, no monocular methods

have reported results on Waymo. In order to provide a

baseline, we extend the official implementation of M3D-

Exp. D Ldepth αfg LID
Car (IOU = 0.7)

Easy Mod. Hard

1 7.83 5.66 4.84

2 X 9.33 6.43 5.30

3 X X 19.73 14.03 11.84

4 X X X 20.40 15.10 12.75

5 X X X X 23.57 16.31 13.84

Table 3. CaDDN Ablation Experiments on the KITTI val set using

AP|
R40

. D indicates depth distribution prediction, Ldepth indi-

cates depth distribution supervision. αfg indicates separate setting

of loss weighting factor for foreground object pixels in the depth

loss function Ldepth. LID indicates the LID discretization method.

Exp. D Ldepth ⊗
Car (IOU = 0.7)

Easy Mod. Hard

1 BTS [27] Sep. 16.69 10.18 8.63

2 DORN [15] Sep. 16.43 11.04 9.65

3 CaDDN Sep. 17.64 12.26 10.10

4 CaDDN Joint 20.61 13.71 11.96

5 CaDDN Joint X 23.57 16.31 13.84

Table 4. CaDDN Depth Estimation Ablation on the KITTI val set

using AP|
R40

. D indicates the source of the depth estimates used

to generate depth distributions. Ldepth indicates if depth estima-

tion and object detection are seperately or jointly optimized. ⊗
indicates if full distributions are used to generate frustum features

G.

RPN [3] to support the Waymo Open Dataset [56]. Ta-

ble 2 shows the results of both the M3D-RPN [3] base-

line and CaDDN on the Waymo validation set. Our method

significantly outperforms M3D-RPN [3] with margins on

AP/APH of +4.69%/+4.65% and +4.15%/+4.12% on the

LEVEL 1 and LEVEL 2 difficulties respectively for an IoU

criteria of 0.7.

4.3. Ablation Studies

We provide ablation studies on our network to validate

our design choices. The results are shown in Tables 3 and 4.

Sharpness in Depth Distributions. Experiment 1 in Ta-
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ble 3 shows the detection performance when frustum fea-

tures G are populated by repeating image features F along

depth axis di. Experiment 2 adds depth distribution predic-

tions D to separately weigh image features F, which im-

proves performance on AP|R40
by +1.50%, +0.77%, and

+0.46% on the Car class on the Easy, Moderate, and Hard

difficulties respectively. Performance is greatly increased

(+10.40%, +7.60%, +6.54%) once depth distribution super-

vision is added in Experiment 3 validating its inclusion. The

addition of depth distribution supervision encourages sharp

and accurate categorical depth distributions, that encour-

ages image information to be located in 3D space where

depth estimation is both accurate and confident. Encour-

aging sharpness around correct depth bins results in object

features that are uniquely located and easily distinguished

(see Figure 1) in the BEV projection.

Object Weighting for Depth Distribution Estimation.

Experiments 1, 2, and 3 in Table 3 use a fixed loss weight-

ing factor α = 0.25 for all pixels in the depth loss

function Ldepth. Experiment 4 shows an improvement

(+0.67%, +1.07%, +0.91%) after depth loss weights αfg =
3.25/αbg = 0.25 are set seperately for foreground object

and background pixels (see Section 3.5). Setting a larger

foreground object weighting factor αfg encourages depth

estimation to be prioritized for object pixels, leading to

more accurate depth estimation and localization for objects.

Linear Increasing Discretization. Experiment 5 in Table 3

shows the detection performance improvement (+3.17%,

+1.21%, +1.09%) when LID (see Section 3.3) is used rather

than uniform discretization. We attribute the performance

increase to the accurate depth estimation LID provides

across all depths [57].

Joint Depth Understanding. Experiments 1, 2 and 3 in Ta-

ble 4 show the detection performance with separate depth

estimation from BTS [27], DORN [15], and CaDDN re-

spectively. The depth maps from BTS [27] and DORN [15]

are converted to depth bin indices using LID discretization

as outlined in Section 3.3, and converted to a one-hot en-

coding to generate the depth distributions D. The one-hot

encoding places the image feature at a single depth bin indi-

cated by the input depth map when generating frustum fea-

tures G. We constuct an equivalent version of CaDDN that

selects a single depth bin for each pixel, by selecting the

bin with highest probability for each distribution in D. Ex-

periment 4 shows improved performance (+2.97%, +1.45%,

+1.86%) when depth estimation and object detection are

performed jointly, which we attribute to the well-known

benefits of end-to-end learning for 3D detection.

Categorical Depth Distributions. Experiment 5 in Table 4

uses the full depth distribution D in the frustum features

computation G = D⊗F, leading to a clear increase in per-

formance (+2.96%, 2.60%, 1.88%). We attribute the perfor-

Figure 6. We plot the entropy of the estimated depth distributions

D against depth. We show both the mean (solid line) and 95%

confidence interval (shaded region) at each ground truth depth bin.

mance increase to the additional depth uncertainty informa-

tion embedded in the feature representations.

4.4. Depth Distribution Uncertainty

To validate that our depth distributions contain meaning-

ful uncertainty information, we compute the Shanon en-

tropy for each estimated categorical depth distribution in

D. We label each distribution with its associated ground

truth depth bin and foreground/background classification.

For each group, we compute the entropy statistics which

are shown in Figure 6. We observe that entropy generally

increases as a function of depth, where depth estimates are

challenging, indicating our distributions describe meaning-

ful uncertainty information. Our network produces the low-

est distribution entropy at pixels with ground truth depth of

around 6 meters. We attribute the high entropy at depths

closer than 6 meters to the small number of pixels at shorter

ranges in the training set. Finally, we note that the fore-

ground depth distribution estimates have slightly higher en-

tropy than background pixels, a phenomenon that can also

be attributed to training set imbalance.

5. Conclusion

We have presented CaDDN, a novel monocular 3D
object detection method that estimates accurate cate-
gorical depth distributions for each pixel. The depth
distributions are combined with the image features
to generate bird’s-eye-view representations that retain
depth confidence, to be exploited for 3D object detec-
tion. We have shown that estimating sharp categorical
distributions centered around the correct depth value,
and jointly performing depth estimation and object de-
tection is vital for 3D object detection performance,
leading to a 1st place ranking on the KITTI dataset [1]
among all published methods at the time of submission.
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