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Abstract

Anomaly detection methods require high-quality fea-

tures. In recent years, the anomaly detection community

has attempted to obtain better features using advances in

deep self-supervised feature learning. Surprisingly, a very

promising direction, using pre-trained deep features, has

been mostly overlooked. In this paper, we first empirically

establish the perhaps expected, but unreported result, that

combining pre-trained features with simple anomaly detec-

tion and segmentation methods convincingly outperforms,

much more complex, state-of-the-art methods.

In order to obtain further performance gains in anomaly

detection, we adapt pre-trained features to the target distri-

bution. Although transfer learning methods are well estab-

lished in multi-class classification problems, the one-class

classification (OCC) setting is not as well explored. It turns

out that naive adaptation methods, which typically work

well in supervised learning, often result in catastrophic col-

lapse (feature deterioration) and reduce performance in

OCC settings. A popular OCC method, DeepSVDD, ad-

vocates using specialized architectures, but this limits the

adaptation performance gain. We propose two methods

for combating collapse: i) a variant of early stopping that

dynamically learns the stopping iteration ii) elastic reg-

ularization inspired by continual learning. Our method,

PANDA, outperforms the state-of-the-art in the OCC, out-

lier exposure and anomaly segmentation settings by large

margins1.

1. Introduction

Detecting anomalous patterns in data is of key impor-

tance in science and industry. In the computational anomaly

detection task, the learner observes a set of training exam-

ples. The learner is then tasked to classify novel test sam-

ples as normal or anomalous. There are multiple anomaly

detection settings investigated in the literature, correspond-

ing to different training conditions. In this work, we deal

*Equal contribution
1The code is available at github.com/talreiss/PANDA

with three settings: i) anomaly detection - when only nor-

mal images are used for training ii) anomaly segmentation

- detecting all the pixels that contain anomalies, given nor-

mal images as input. iii) Outlier Exposure (OE) - where an

external dataset simulating the anomalies is available.

In recent years, deep learning methods have been intro-

duced for anomaly detection, typically extending classical

methods with deep neural networks. Different auxiliary

tasks (e.g. autoencoders or rotation classification) are used

to learn representations of the data, while a great variety of

anomaly criteria are then used to determine if a given sam-

ple is normal or anomalous. An important issue for current

methods is the reliance on limited normal training data for

representation learning, which limits the quality of learned

representations. Nearly all state-of-the-art anomaly detec-

tion methods rely on self-supervised feature learning - i.e.

using the limited normal training data for learning strong

features. The motivation for this is twofold: i) the fear that

features trained on auxiliary domains will not generalize

well to the target domain. ii) the curiosity to investigate

the top performance achievable without ever looking at any

external dataset (we do not address this question here).

In other parts of computer vision, features pre-trained on

external datasets are often used to improve performance on

tasks trained on new domains - and our reasonable hypoth-

esis is that this should also be the case for image anomaly

detection and segmentation. We present very simple base-

lines that use pretrained features trained on a large external

data and K-nearest neighbor (kNN) retrieval to significantly

outperform all previous methods on anomaly detection and

segmentation, even on images of distant target domains.

We then tackle the technical challenge of obtaining

stronger performance by further adaptation to the normal

training data. Although feature adaptation has been ex-

tensively researched in the multi-class classification setting,

limited work was done in the OCC setting. Unfortunately, it

turns out that feature adaptation for anomaly detection often

suffers from catastrophic collapse - a form of deterioration

of the pre-trained features, where all (including anomalous)

samples, are mapped to the same point. DeepSVDD [23]

proposed to overcome collapse by removing biases from the
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model architecture, but this restricts network expressively

and limits the pre-trained models that can be borrowed off-

the-shelf. Perera and Patel [21] proposed to jointly train

OCC with the original task which has several limitations

and achieves only limited adaptation success.

Our first finding is that simple training with constant-

duration early stopping (with no bells-and-whistles) already

achieves top performance. To remove the dependence on

the number of epochs for early stopping, we propose two

techniques to overcome catastrophic collapse: i) an adap-

tive early stopping method that selects the stopping iter-

ation per-sample, using a novel generalization criterion -

this technique is designed to overcome a special problem of

OCC, namely that there are no anomalies in the validation

set ii) elastic regularization, motivated by continual learn-

ing, that postpones the collapse. Thorough experiments

demonstrate that we outperform the state-of-the-art by a

wide margin (ROCAUC): e.g. CIFAR10 results: 96.2%

vs. 90.1% without outlier exposure and 98.9% vs. 95.6%

with outlier exposure. We also achieve 96.0% vs. 89.0% on

anomaly segmentation on MVTec.

We present insightful critical analyses: i) We show

that pre-trained features strictly dominate current self-

supervised RotNet-based feature learning methods. We

discuss the relative merits of each paradigm and conclude

that for most practical purposes, using pre-trained features

is preferable. ii) We analyse the results of the popular

DeepSVDD method and discover that its feature adapta-

tion, which is designed to prevent collapse, does not im-

prove over simple data whitening.

Contributions: To summarize our main ocntributions in

this paper:

• Demonstrating that a simple baseline outperforms all

current methods in image anomaly detection and seg-

mentation - extensive analysis shows the generality of

the result.

• Identifying that popular SOTA methods do not outper-

form linear whitening in OCC feature adaptation.

• Proposing several effective solutions for feature adap-

tation for OCC.

• Extensive evaluation, obtaining results that signifi-

cantly improve over the current state-of-the-art.

1.1. Related Work

Classical anomaly detection: The main categories of

classical anomaly detection methods are: i) reconstruction-

based: compressing the training data using a bottleneck,

and using a reconstruction loss as an anomaly criterion

(e.g. [4, 17], K nearest neighbors [7] and K-means [12]),

ii) probabilistic: modeling the probability density function

and labeling unlikely sampled as anomalous (e.g. Ensem-

bles of Gaussian Mixture Models [9], kernel density esti-

mate [19]) iii) one-class classification (OCC): finding a sep-

arating manifold between normal data and the rest of input

space (e.g. One-class SVM [25]).

Deep learning methods: The introduction of deep learn-

ing has affected image anomaly detection in two ways: ex-

tension of classical methods with deep representations and

novel self-supervised deep methods. Reconstruction-based

methods have been enhanced by learning deep autoencoder-

based bottlenecks [6] which can provide better models of

image data. Deep methods extended classical methods by

creating a better representations of the data for paramet-

ric assumptions about probabilities, a combination of re-

construction and probabilistic methods (such as DAGMM

[28]), or in a combination with OCC methods [23]. Novel

deep methods have also been proposed for anomaly detec-

tion including GAN-based methods [28]. Another set of

novel deep methods use auxiliary self-supervised learning

for anomaly detection. The seminal work by [10] was later

extended by [15] and [1].

Transferring pretrained representations: Learning deep

features requires extensive datasets, preferably with labels.

An attractive property of deep neural networks, is that repre-

sentations learned on very extensive datasets, can be trans-

ferred to data-poor tasks. Specifically deep neural represen-

tations trained on the ImageNet dataset have been shown

by [16] to significantly boost performance on other datasets

that are only vaguely related to some of the ImageNet

classes. This can be performed with and without finetun-

ing. Although much recent progress has been performed

on self-supervised feature learning [8, 5], such methods

are typically outperformed by transferred pretrained fea-

tures. Transferring ImageNet pre-trained features for out-

of-distribution detection has been proposed by [13]. Similar

pre-training has been proposed for one-class classification

has been proposed by [21], however they require joint opti-

mization with the original task. Rippel et. al. [22] follow

an early version of this paper and report results with pre-

trained features on MVTec using the Mahalanobis distance.

Anomaly segmentation methods: Segmenting the im-

age pixels that contain anomalies has attracted far less re-

search attention than image-level anomaly detection. Sev-

eral previous anomaly segmentation works used pre-trained

features, but they have not convincingly outperformed top

self-supervised methods. Napoletano et al. [20] extracted

deep features from small overlapping patches, and used a

K-means based classifier over dimensionality reduced fea-

tures. Bergmann et al. [2] evaluated both a ADGAN and

autoencoder approaches on MVTec dataset [2] finding com-

plementary strengths. More recently, Venkataramanan et

al. [27] used an attention-guided VAE approach combin-

ing multiple methods (GAN loss [11], GRADCAM [26]).
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Bergmann et al. [3] used a student-teacher based autoen-

coder approach employing pre-trained ImageNet deep fea-

tures. Our simple baseline, SPADE, significantly outper-

forms the previously mentioned approaches.

2. A General Framework and Simple Baselines

for Anomaly Detection and Segmentation

2.1. A Three­stage Framework

We present our general framework in which we exam-

ine several adaptation-based anomaly detection methods,

including our method. Let us assume that we are given a set

Dtrain of normal training samples: x1, x2..xN . The frame-

work consists of three steps:

Initial feature extractor: An initial feature extractor ψ0

can be obtained by pre-training on an auxiliary task with

loss function Lpretrain. The auxiliary task can be either

pre-training on an external dataset (e.g. ImageNet) or by

self-supervised learning (auto-encoding, rotation or jigsaw

prediction). In the former case, the pretrained extractor can

be obtained off-the-shelf. The choice of auxiliary tasks is

analyzed in Sec. 4.3.

Feature adaptation: Features trained on auxiliary tasks

or datasets may require adaptation before being used for

anomaly scoring on the target data. This is seen as a fine-

tuning stage of the features on the target training data. We

denote the feature extractor after adaptation ψ.

Anomaly scoring: Having adapted the fea-

tures for anomaly detection, we extract the features

ψ(x1), ψ(x2)..ψ(xN ) of the training set samples. We then

proceed to learn a scoring function, which describes how

anomalous a sample is. Typically, the scoring function

seeks to measure the density of normal data around the

test sample ψ(x) (either by direct estimation or via some

auxiliary task) and assign a high anomaly score to low

density regions.

2.2. Simple Baselines for Anomaly Detection and
Segmentation

We report very simple-to-implement but highly effective

baselines for anomaly detection and segmentation, based on

our framework. In the anomaly detection baseline ”Deep

Nearest Neighbours” (DN2), the feature extractor is a large

ResNet pretrained the ImageNet dataset. We use the dis-

tance from the features of the kNN normal images as the

anomaly score. In the anomaly segmentation baseline, ”Se-

mantic Pyramid Anomaly Detection” (SPADE), we use an

ImageNet-pretrained ResNet to extract per-pixel features

for all images. As both the low-level high-resolution fea-

tures, and semantic low-resolution context are important for

determining if a pixel is anomalous, we join the feature rep-

resentations of the pixel extracted from multiple layers of

the deep neural network. We score the pixel by its kNN dis-

Figure 1: (left) An anomalous image (right) The predicted

anomalous image pixels.

tance from the feature descriptors of the pixels of all train-

ing images. In both baselines we skip the adaptation stage.

Implementation details of both methods, including the K-

Means-based speedup, can be found in the Supplementary

Material (SM).

3. Feature Adaptation for Anomaly Detection

Although our two simple-to-implement baselines, DN2

and SPADE, achieve very strong results, we ask if feature

adaptation can improve them further. We first review two

existing methods for feature adaption for anomaly detec-

tion, and proceed to propose our method, PANDA, which

significantly improves over them.

3.1. Background: Existing Feature­Adaptation
Methods

DeepSVDD: Ruff et al. [23] suggest to first train an au-

toencoder on the normal-only train images. The encoder

is then used as the initial feature extractor ψ0. As the fea-

tures of the encoder are not specifically adapted to anomaly

detection, DeepSVDD adapts ψ on the training data. The

adaptation takes place by minimizing the compactness loss:

Lcompact =
∑

x∈Dtrain

‖ψ(x)− c‖2 (1)

Where c is a constant vector, typically the average of ψ0(x)
on the training set. However, the authors were concerned

of the trivial solution ψ = c, and suggested architectural

restrictions to mitigate it, most importantly removing the

biases from all layers. We empirically show that the effect

of adaptation of the features in DeepSVDD does not outper-

form simple feature whitening (see Sec. 4.3.2).

Joint optimization (JO): Perera et al. [21] proposed to

use a deep feature extractor trained for object classification

on the ImageNet dataset. Due to fear of ”learning a trivial

solution in the absence of a penalty for miss-classification”,

the method does not adapt by finetuning on the compactness

loss only. Instead, they relaxed the task setting, by assuming

that a number (∼ 50k) of labelled original ImageNet im-

ages, Dpretrain, are still available at adaptation time. They
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Figure 2: An illustration of our feature adaptation proce-

dure, the pre-trained feature extractor ψ0 is adapted to make

the normal features (blue) more compact resulting in feature

extractor ψ. After adaptation, anomalous test features (red)

lie in a less dense region of the feature space.

proposed to train the features ψ under the compactness loss

jointly with the original ImageNet classification linear layer

W and its classification loss, here the CE loss with the true

label ℓpretrain(p, y) = − log(py), and SMax indicates Soft-

max:

LJoint =
∑

(x,y)∈Dpretrain

ℓpretrain(SMax(Wψ(x)), y)

+ α ·
∑

x∈Dtrain

‖ψ(x)− c‖2 (2)

WhereW is the final linear classification layer and α is a

hyper-parameter weighting the two losses. We note that the

method has two main weaknesses: i) it requires retaining

a significant number of the original training images which

can be storage intensive ii) jointly training the two tasks

may reduce the anomaly detection task accuracy, which is

the only task of interest in this context.

3.2. PANDA: Pre­trained Anomaly Detection Adap­
tation

We present PANDA, a new method for anomaly detec-

tion in images. Similarly to SVDD and Joint Optimization,

we also use the compactness loss (Eq. 1) to adapt the gen-

eral pre-trained features to the task of anomaly detection

on the target distribution. Instead of constraining the archi-

tecture or introducing external data into the adaptation pro-

cedure we tackle catastrophic collapse directly. The main

challenge is that the optimal solution of the compactness

loss can result in ”collapse”, where all possible input values

are mapped to the same point (ψ(x) = c, ∀x). Learning

such features will not be useful for anomaly detection, as

both normal and anomalous images will be mapped to the

same output, preventing separability. The issue is broader

than the trivial ”collapsed” solution after full convergence,

but rather the more general issue of feature deterioration,

where the original good properties of the pretrained features

are lost. Even a non-trivial solution might lose some of the

discrimnative properties of the original features which are

none-the-less important for anomaly detection.

To avoid this collapse, we suggest three options: (i) fine-

tuning the pretrained extractor with compactness loss (Eq.1)

and stopping after a constrant number of iterations (ii) a

novel method for determining early stopping per-sample

(iii) when collapse happens prematurely, before any signif-

icant adaptation happens, we suggest mitigating it using a

Continual Learning-inspired adaptive regularization.

Simple early stopping (PANDA-Early): An embarrass-

ingly simple but effective solution for controlling the col-

lapse of the original features is to stop training after a con-

stant number of iterations (e.g. 15 epochs on CIFAR10). In-

versely scaling the number of epochs by dataset size works

for most examined datasets (Sec. 4.3).

Sample-wise early stopping (PANDA-SES): A weakness

of the simple early-stopping approach, is the reliance on a

hyper-parameter that may not generalize to new datasets.

Although the optimal stopping epoch can be determined

with a validation set containing anomalies, it is not avail-

able in our setting. We thus propose ”samplewise early

stopping” (SES) as an unsupervised way of determining

the stopping epoch from a single sample. The intuition

for the method can be obtained from Fig. 3. We can see

that anomaly detection accuracy is correlated to having a

large ratio between the distance of the anomalous samples

to the center, and the distance between the normal samples

and the center. We thus propose to save checkpoints of

our network at fixed intervals (every 5 epochs) during the

training process - corresponding to different early stopping

iterations (ψ1, ψ2..ψT ), for each network ψt we compute

the average distance on the training set images st. Dur-

ing inference, we score a target image x using each model

s
target
t = ‖ψt(x) − c‖2, and normalize the score by the

training average score by st. We set the maximal ratio, as

the anomaly score of this sample, as this roughly estimates

the model that achieves the best separation between normal

and such anomalous samples.

Continual Learning (PANDA-EWC): We propose a new

solution for overcoming premature feature collapse that

draws inspiration from the field of continual learning. The

task of continual learning tackles learning new tasks with-

out forgetting the previously learned ones. We note however

that our task is not identical to standard continual learn-

ing as: i) we deal with the one-class classification setting

whereas continual-learning typically deals with multi-class

classification ii) we aim to avoid forgetting the expressivity

of the features but do not particularly care if the actual clas-

sification performance on the old task is degraded. A simple

solution for preventing feature collapse is regularization of

the change in value of the weights of the feature extractor.

2809



Figure 3: CIFAR100 Class 17 (right to left): (1) - During training all samples approach the center of train set features (2) -

When normalized by the train average distance st, the normal samples stay dense, while the anomalous ones initially move

further away and then ”collapse”. The ROC AUC performance behaves similarly to the anomalous samples’ normalized

distance. (3),(4) - when training with EWC the collapse is mitigated.

However, this solution is lacking as some weights influence

the features more than others.

Following ideas from continual learning, we use elastic

weight consolidation (EWC) [18]. Using a number of mini-

batches (we use 100) to pretrain on the auxiliary task. We

compute the diagonal of the Fisher information matrix F for

all weight parameters of the network. Note that this only

needs to happen once at the end of the pretraining stage.

The value of the Fisher matrix for diagonal element θ is

given by:

Fθ = E(x,y)∈Dpretrain

[

(

∂

∂θ
Lpretrain(x, y)

)2
]

(3)

We follow [18] in using the diagonal of the Fisher infor-

mation matrix Fθi , to weight the squared distance of the

change of each network pretrained weight θi ∈ ψ0 and fine-

tuned weight θ∗i ∈ ψ. This can be seen as a measure of the

loss landscape curvature as function of the weights - larger

values imply high curvature, inelastic weights.

We use this regularization in combination with the com-

pactness loss weighted by the factor λ, which is a hyperpa-

rameter of the method (we use λ = 104):

Lθ = Lcompact(θ
∗) +

λ

2
·
∑

i

Fθi(θi − θ∗i )
2 (4)

The network ψ is initialized with the parameters of the pre-

trained extractor ψ0 and trained with SGD.

Anomaly scoring: As in classical anomaly detection,

scoring can be done by density estimation. Unless men-

tioned otherwise, we use kNN for scoring. We also evaluate

faster methods and get similar results (see Sec. 4.3.3).

Outlier Exposure: An extension of the typical image

anomaly detection task [14], assumes the existence of an

auxiliary dataset of images DOE , which are more similar

to the anomalies than normal data. In case such informa-

tion is available, we simply train a linear classification layer

w together with the features ψ under a logistic regression

loss (Eq. 5). As before, ψ is initialized with the weights

from ψ0. After training ψ and w, we use w · ψ(x) as the

anomaly score. Results and critical analysis of this setting

are presented in Sec. 4.3.

LOE =
∑

x∈Dtrain

log(1−σ(w·ψ(x)))+
∑

x∈DOE

log(σ(w·ψ(x)))

(5)

4. Image Anomaly Detection

4.1. Experiments

In this section, we present high-level results of the

our simple baselines, and our full method PANDA-EWC,

(PANDA-SES can be found in Sec.4.3) compared to the

state-of-the-art: One-class SVM [25], DeepSVDD [23],

Multi-Head RotNet [15]. All the results of others that were

available in the original papers were copied exactly. In cases

that the result was not available, we run the experiments

ourselves (where possible). As Joint Optimization requires

extra data, we did not add it to this table, but compare and

outperform it in Tab. 6. We compare our PANDA-OE to the

OE baseline in [15] on CIFAR10, as the code or results for

other classes were unavailable. Note that unless specifically

mentioned otherwise, PANDA results were run with kNN.

PANDA-OE used the original classifier - which performs

a little better than kNN. We compare SPADE and relevant

state-of-the-art baselines on anomaly segmentation.

We evaluated our method on a wide range of datasets

(Tab. 1 Fig. 4) demonstrating different challenges in image

anomaly detection. They are described in the SM.

4.2. High­Level Results

The main results are i) Pre-trained features achieve sig-

nificantly better results than self-supervised features on all

datasets, both in anomaly detection and segmentation. ii)

Feature adaptation significantly improves the performance

on larger datasets iii) Outlier exposure can further improve
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Figure 4: Representative images of the different datasets, from the left clockwise: CIFAR10, CIFAR100, Fashion MNIST,

DogsVsCats, WBC, DIOR, Oxford Flowers and MVTec. Following standard propotocol, in all datasets (except MVTec),

normal data are one class (e.g. cat in CIFAR10) while anomalies are all other test data from the same dataset (e.g. dog, car

in CIFAR10). MVTec contains class-specific anomlies (e.g. for normsl class - Wire, anomalies include bent wires)

Table 1: Details of datasets used for evaluation - number

of classes, and average number of normal train and (normal

and anomalous) test images per-class

Dataset Nclasses Ntrain Ntest

CIFAR10 10 5,000 10,000

Fashion MNIST 10 6,000 10,000

CIFAR100 20 2,500 10,000

Flowers 102 10 7,169

Birds 200 30 5,794

CatsVsDogs 2 10,000 5,000

MVTec 15 242 1,725

WBC 4 59 62

DIOR 19 649 9,243

performance in the case where the given outliers are more

similar to the anomalies than the normal data.

OE achieves near perfect performance on CIFAR10/100

but hurts performance for Fashion MNIST/CatsVsDogs

which are less similar to the 80M Tiny images dataset. A

detailed analysis of the reason for better performance for

each of these methods and an examination of its appropri-

ateness will be presented in Sec. 4.3.

4.3. Analysis and Further Evaluation

4.3.1 An analysis of feature representations

A comparison of self-supervised and pre-trained fea-

tures: In Tab. 2 and Tab. 3, we present a comparison be-

tween methods that use self-supervised and pre-trained fea-

ture representations. We see that the autoencoder used by

DeepSVDD is particularly poor. The results of the MHRot-

Net as a feature extractor are better, but still underperform

PANDA methods (see SM for more details). The perfor-

mance of the raw deep ResNet features without adapta-

tion significantly outperforms all methods, including Fash-

ion MNIST and DIOR which have significant differences

from the ImageNet dataset. We can therefore conclude

that ImageNet-pretrained features typically have significant

advantages over self-supervised features. Tab. 3 shows

that self-supervised methods do not perform well on small

datasets as such methods require large numbers of normal

samples in order to learn strong features. On the other hand

ImageNet-pretrained features obtain very strong results.

Does the supriority of pretrained features extend to

very different domains? The results in Tab. 3 on FM-

NIST, DIOR, WBC, MVTec suggest that out-of-domain

pretrained features are better at anomaly detection than in-

domain self-supervised features. We tested on datasets

of various sizes, domains, resolutions and symmetries.

On all those datasets pretrained features outperformed the

SOTA. These datasets include significantly different objects

from those of ImageNet, but also fine-grained intra-object

anomalies, and represent a spectrum of data types: aerial

images, microscopy, industrial images. This shows that one

of the main arguments against using pre-trained features,

generalizing to distant domains, is not an issue in practice.

Our simple pretrained feature baseline (SPADE) is

extremely effective for anomaly segmentation: In Tab.4

we can see that our simple no-training baseline, SPADE,

outperforms previous methods for anomaly segmentation,

including those that use trained and pretrained features (see

SM for metrics, specifications and detailed results). While

we suspect feature adaptation can be used for further per-

formance gain even for anomaly segmentation, we find that

the MVTec dataset is too small for significant feature adap-
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Table 2: Anomaly detection performance (Average ROC AUC %)

Dataset Self-Supervised Pretrained OE

OC-SVM DeepSVDD MHRot DN2 PANDA MHRot PANDA-OE

CIFAR10 64.7 64.8 90.1 92.5 96.2 95.6 98.9

CIFAR100 62.6 67.0 80.1 94.1 94.1 - 97.3

FMNIST 92.8 84.8 93.2 94.5 95.6 - 91.8

CatsVsDogs 51.7 50.5 86.0 96.0 97.3 - 94.5

DIOR 70.7 70.0 73.3 93.0 94.3 - 95.9

Table 3: Pretrained feature performance on various small

datasets (Average ROC AUC %)

Dataset Self-Supervised Pretrained

OCSVM DeepSVDD MHRot DN2

Birds 62.0 60.8 64.4 95.3

Flowers 74.5 78.1 65.9 94.1

MvTec 70.8 77.9 65.5 86.5

WBC 75.4 71.2 57.7 87.4

tation using the compactness loss. We believe that feature

adaptation for segmentation calls for new adaptation meth-

ods, this is left for future work.

On the different supervision settings for one-class

anomaly detection: Anomaly detection methods employ

different levels of supervision. Within the one-class clas-

sification task, one may use outlier exposure (OE) - an ex-

ternal dataset (e.g. ImageNet), pretrained features, or no

external supervision at all. The most extensive supervision

is used by OE, which requires a large external dataset at

training time, and performs well only when such a dataset

is from a similar domain to the anomalies (see Tab. 2). In

cases where the dataset used for OE has significantly dif-

ferent properties, the network may not learn to distinguish

between normal and anomalous data, as the normal and

anomalous data may have more in common than the OE

dataset. E.g. both normal and anomalous classes of Fash-

ion MNIST are grayscale, OE using 80M Tiny Images will

not be helpful, as the network may learn to classify only ac-

cording to color. Pretrained features further improve OE, in

cases where is suitable e.g. CIFAR10.

Pretraining, like Outlier Exposure, is also achieved

through an external labelled dataset, but differently from

OE, the external dataset is only required once - at the pre-

training stage and is not used again. Additionally, the same

features are applicable for very different image domains

from that of the pretraining dataset (e.g. Fashion MNIST -

grayscale images, DIOR - aerial images, WBC- medical im-

ages, MVTec - industrial images). Self supervised feature

learning requires no external dataset at all, which can poten-

tially be an advantage. While there might be image anomaly

detection tasks where ImageNet-pretrained weights are not

applicable, we saw no evidence for such cases after exam-

ining a broad spectrum of domains and datasets (Tab. 1).

This indicates that the extra supervision of the ImageNet-

pretrained weights comes at virtually no cost.

Can pretrained features boost the performance of

RotNet-based methods? We did not find evidence that pre-

trained features improve the performance of RotNet-based

AD methods such as [15] (CIFAR10: 90.1% vs. 86.6%

without and with pretraining). As can be seen in Tab. 5,

pretrained features improve the auxiliary task performance

on the normal data, but also on the anomalous samples. As

such methods rely on a generalization gap between normal

and anomalous samples, deep features actually reduce this

gap, as a solution to the auxiliary task becomes feasible for

both types of images. For a more detailed analysis see SM.

4.3.2 Feature adaptation methods

Benefits of feature adaptation: Feature adaptation aims to

make the distribution of the normal samples more compact,

w.r.t. the anomalous samples. Our approach of finetuning

pretrained features for compactness under EWC regular-

ization, significantly improves the performance over ”raw”

pretrained features (see Tab.2). While the distance from the

normal train samples center, of both normal and anoma-

lous test samples is reduced (see Fig.3), the average dis-

tance from the center of anomalous test samples is typically

higher than that of normal samples, in relative terms, which

makes anomalies easier to detect.

While PANDA-EWC may train more than 7.8k mini-

batches without catastrophic collapse on CIFAR10, per-

formance of training without regularization usually peaks

higher but collapse earlier. We therefore set our constant

early stopping epoch such that the net trains with to 2.3k
minibatches on all datasets for comparison. Our PANDA-

SES method usually achieves an anomaly score not far from

the unregularized early stopping peak performance, but is

most important in cases where unregularized training fails.

A comparison of features adaptation methods: In

Tab. 6 we compare PANDA against (i) JO [21] - co-training

compactness with ImageNet classification which requires
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Table 4: Comparison of anomaly segmentation methods (pixel-level ROCAUC and PRO %)

AESSIM [2] AEL2 [2] AnoGAN [24] CNN Dict [20] CAVGA-Ru [27] Student [3] SPADE

ROCAUC 87 82 74 78 89 - 96.2

PRO 69.4 79 - 51.5 - 85.7 92.1

Table 5: Comparison of average transformation prediction

accuracy (%), horiz. = horizontal, rot. = rotation.

Method Normal Anomalous

Horiz. Rot. Horiz. Rot.

Self-supervised 94.0 94.0 67.9 51.6

Pretrained 94.4 92.3 71.4 61.3

Table 6: A comparison of different feature adaptation meth-

ods (Avg. ROC AUC %)

Dataset Baseline PANDA

JO Early SES EWC

CIFAR10 93.2 96.2 95.9 96.2

CIFAR100 91.1 94.8 94.6 94.1

FMNIST 94.9 95.4 95.5 95.6

CatsVsDogs 96.1 91.9 95.7 97.3

DIOR 93.1 95.4 95.6 94.3

ImageNet data at training time. We can see that PANDA

- EWC always outperforms JO feature adaptation. (ii)

PANDA early stopping, generally has higher performance

than PANDA-EWC, but has severe collapse issues on some

classes. (iii) PANDA-SES is similar to early stopping, but

PANDA-SES does not collapse as badly on CatsVsDogs

dataset. We note that replacing the Fisher matrix by equally

weighting the changes in all parameters (
∑

i(θi − θ∗i )
2 )

achieves similar results to early stopping.

Which are the best layers to finetune? Fine-tuning

all layers is prone to feature collapse, even with continual

learning. We therefore recommend finetuining only layers

3 & 4 (see ablation in SM).

DeepSVDD architectural changes: DeepSVDD [23]

proposes various architectural changes, such as removing

the bias parameters from the network, to prevent collapse

to trivial features. To understand whether DeepSVDD

gains its significant performance from its pretrained fea-

tures or from its feature adaptation, we tried to replace

its feature adaptation by closed-form linear data whitening.

For both pretrained features and anomaly scoring, we used

the DeepSVDD original code [23]. We found empirically

that the results obtained by the constrained architecture

were about the same as those achieved with simple whiten-

ing of the data (64.8% vs. 64.6%, see SM). We ablated

DeepSVDD by running it with the original LeNet (includ-

ing biases) and found this did not deteriorate its anomaly

detection performance. As architectural modifications are

not the focus of this work, further investigation into archi-

tectures less prone to feature collapse is left for future work.

4.3.3 Anomaly scoring functions

Does kNN improve over distance to the center? kNN

achieves an improvement of around 2% on average w.r.t. to

distance to the center (CIFAR10: 94.2% vs 96.2%).

Can we improve over the linear complexity of kNN?

A naive implementation of kNN has linear runtime com-

plexity in the number of training samples. For anomaly

segmentation, 50 means give a speedup from 2.7 frames-

per-second to 41 frames-per-second (faster than real-time),

with ∼0.5% ROCAUC decrease. For anomaly detection,

even for very large datasets, or many thousands of means,

both kNN and K-means can run faster than real-time.

5. Conclusion and Outlook

We first proposed simple baseline methods for anomaly

detection and segmentation, that outperform the state-of-

the-art. We further improved over the strong baselines by

proposing a method that adapts pretrained features and mit-

igates catastrophic collapse. We showed that our results

significantly outperform current methods while addressing

their limitations. We analysed the reasons for the strong

performance of our method We note that the question of

the optimal performance on image anomaly detection with-

out ever having access to auxiliary data is unaddressed here,

however we believe it is of mostly pure academic interest.

The main limitation of this work is the requirement for

strong pretrained feature extractors. Much work was done

on transferable image and text features and it is likely that

current extractors can be effective to obtain features for time

series and audio as well. Generic feature extractors are not

currently available for tabular data, their development is an

exciting direction for future work.
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