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Figure 1: (Left) Our framework, WyPR, jointly learns semantic segmentation and object detection for point cloud data from only scene-

level class tags. We find that encouraging consistency between the two tasks is key. (Right) Sample segmentation results from ScanNet val

set, without seeing any point-level labels during training. Please refer to § 4.4 and Appendix F for more analysis and visualizations.

Abstract

We introduce WyPR, a Weakly-supervised framework for

Point cloud Recognition, requiring only scene-level class

tags as supervision. WyPR jointly addresses three core

3D recognition tasks: point-level semantic segmentation,

3D proposal generation, and 3D object detection, coupling

their predictions through self and cross-task consistency

losses. We show that in conjunction with standard multiple-

instance learning objectives, WyPR can detect and segment

objects in point cloud data without access to any spatial

labels at training time. We demonstrate its efficacy us-

ing the ScanNet and S3DIS datasets, outperforming prior

state of the art on weakly-supervised segmentation by more

than 6% mIoU. In addition, we set up the first benchmark

for weakly-supervised 3D object detection on both datasets,

where WyPR outperforms standard approaches and estab-

lishes strong baselines for future work.

1. Introduction

Recognition (i.e., segmentation and detection) of 3D ob-

jects is a key step towards scene understanding. With the

recent development of consumer-level depth sensors (e.g.,

LiDAR [13, 43]) and the advances of computer vision al-

gorithms, 3D data collection has become more convenient

and inexpensive. However, existing 3D recognition sys-

tems often fail to scale as they rely on strong supervi-

sion, such as point level semantic labels or 3D bounding

⇤Work partly done during an internship at Facebook AI Research.

boxes [9, 29, 32], which are time consuming to obtain. For

example, while the popular large-scale indoor 3D dataset

ScanNet [10] was collected by only 20 people, the anno-

tation effort involved more than 500 annotators spending

nearly 22.3 minutes per scan. Furthermore, due to the high

annotation cost, existing 3D object detection datasets have

limited themselves to a small number of object classes. This

time consuming labeling process is a major bottleneck pre-

venting the community from scaling 3D recognition.

Motivated by this observation, we study 3D weakly-

supervised learning with only scene-level class tags avail-

able as supervision to train semantic segmentation and ob-

ject detection models. Scene-level tags are very efficient to

annotate, taking only a second or less for each object in the

scene [36]. Hence, methods that rely on such supervision

can be scaled more easily than those that rely on box-level

supervision.

For this we develop the novel weakly-supervised frame-

work called WyPR, shown in Fig. 1. Using just scene level

tags, it jointly learns both segmentation of point cloud and

detection of 3D boxes. Why should joint learning of seg-

mentation and detection perform better than independently

learning the two tasks? First, since these two tasks are re-

lated, joint training is mutually beneficial for representation

learning. Second, these tasks naturally constrain each other,

leading to effective self-supervised objectives that further

improve performance. For example, the semantic labels

of points within a bounding box should be consistent, and

vice versa. Lastly, directly learning to regress to dimen-

sions of 3D bounding boxes, as common in supervised ap-
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Methods [46] [56] [59] [51] [53] [33] WyPR

Weak labels 2D boxes 2D inst seg sparse label 2D sem seg region & scene tags scene tags scene tags

Tasks det det seg seg seg det det + seg

Dataset indoor outdoor indoor & objects indoor indoor outdoor indoor

Table 1: Summary of closely related work in weakly-supervised 3D recognition. Compared to prior work, our proposed method

(WyPR) uses the readily available scene tags, and jointly learns detection and segmentation in the more challenging indoor room setting.

proaches [28, 29, 39], is extremely challenging using weak

labels. Learning weakly-supervised segmentation first per-

mits a two-stage detection framework, where object propos-

als are generated bottom-up conditioned on segmentation

prediction and further classified using a weakly-supervised

detection algorithm.

To achieve this, WyPR operates on point cloud data of

complex indoor scenes and combines a weakly-supervised

semantic segmentation stage (§ 3.1) with a weakly-

supervised object detection stage (§ 3.2). The latter takes

as input the geometric representation of the input scene

and a set of computed 3D proposals from GSS, our novel

Geometric Selective Search algorithm (§ 3.3). GSS uses

local geometric structures (e.g., planes) and the previously

computed segmentation, for bottom-up proposal genera-

tion. Due to the uninformative nature of weak labels,

weakly-supervised frameworks often suffer from noisy pre-

diction and high variance. We address this by encourag-

ing both cross-task and cross-transformation consistency

through self-supervised objectives. We evaluate WyPR on

standard 3D datasets, i.e., ScanNet and S3DIS (§ 4), im-

proving over prior work on weakly-supervised 3D segmen-

tation by more than 6% mIoU, and establishing new bench-

marks and strong baselines for weakly-supervised 3D de-

tection.

Our contributions are as follows: 1) a novel point cloud

framework to jointly learn weakly-supervised semantic seg-

mentation and object detection, which significantly out-

performs single task baselines; 2) an unsupervised 3D

proposal generation algorithm, geometric selective search

(GSS), for point cloud data; and 3) state-of-the-art results

on weakly-supervised semantic segmentation, and bench-

marks on weakly-supervised proposal generation and object

detection.

2. Related work

3D datasets. Semantically labeled 3D data can be broadly

classified into indoor [2, 5, 10, 41] and outdoor [7, 8, 14, 44]

settings. ScanNet [10], a popular 3D detection and segmen-

tation dataset, contains 20 classes labeled in 1500 scenes.

While this dataset is large, it is small in comparison to

2D datasets, which reach tens of millions of images [21]

and thousands of instance labels [17]. While the popular-

ity of advanced 3D sensors [13, 43] could lead to a simi-

lar growth in 3D data, annotating that data would still be

extremely time consuming. This underscores the need to

develop weakly-supervised techniques for 3D recognition.

3D representations. 3D data is often represented via a

point cloud, and processed using one of two main backbone

architectures. The first [9, 15, 16, 37] projects points to in-

termediate volumetric grids, and then processes them using

convolutional nets. These methods are efficient but suffer

from information loss due to the discretization into voxels.

The second operates directly on points [31, 32, 47, 52], pro-

cessing them in parallel either using a pointwise MLP [31,

32], graph convolution [52], or point convolution [47]. Our

method is compatible with either backbone architecture. We

adopt PointNet++ [32] for experimentation.

3D tasks. Semantic segmentation [2, 6, 10], object detec-

tion [29, 30, 39, 42], and classification [57] are the standard

recognition tasks defined on 3D data. For segmentation,

the two most common tasks are point-level object parts seg-

mentation [6] and scene object segmentation [2, 10], the

latter of which we address in this work using weak su-

pervision. For 3D object detection, standard techniques

leverage either only a point cloud [29, 39, 61], or a point

cloud together with the corresponding multi-view RGB im-

ages [18, 28, 30]. Unlike 2D where offline proposal genera-

tion methods [48, 64] are widely studied and generalize well

to unseen datasets, 3D proposals generated from a point

cloud are often trained in a supervised manner [20, 29, 39]

and overfit to the training set. We propose an unsupervised

3D proposal generation algorithm GSS, which we further

improve using weak supervision.

Weakly-supervised learning. Weak labels in the form

of image-level class tags are widely studied in 2D tasks

such as image localization [58, 63], semantic segmenta-

tion [27, 55], and object detection [3, 35, 45]. Prior

work mostly formulates weakly-supervised learning as a

multiple instance learning problem, where the target tasks

are learned implicitly in a multi-label classification frame-

work. Pipelined [40, 54] or end-to-end self-training mod-

ules [35, 45] have also been demonstrated to be beneficial.

Weakly-supervised learning in 3D. Compared to its 2D

counterpart, weakly-supervised learning for 3D tasks is rel-

atively unexplored. We summarize all relevant prior work

in Tab. 1. For semantic segmentation, Wang et al. [51]

leverage 2D segmentation as weak labels, Xu et al. [59] use

a sparsely labeled point cloud, and Wei et al. [53] utilize

both area and scene-level class tags during training. For

object detection, recent work uses small sets of labeled 3D
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Figure 2: Approach Overview. A backbone network extracts geometric features which are used by the segmentation head to compute a

point-level segmentation map. The segmentation map is passed into the 3D proposal generation module GSS, and the resulting proposals

along with original features are used to detect 3D object instances. Through a series of self and cross-task consistency losses along with

multiple-instance learning objectives, WyPR is trained end-to-end using only scene-level tags as supervision.

data [24, 46, 62], 2D instance segmentation [56], and click

annotation [24] as supervision. However, obtaining these

labels is still time consuming. A closely related concurrent

work [33] focuses on autonomous driving, building upon

a small number of relatively easy objects (e.g., car, pedes-

trian) while still using image data. In contrast, we focus on

complex indoor scenes, exclusively relying on the 3D point

cloud, i.e., no images are required.

Multi-task learning. Multi-task learning [4] has been

widely studied for various vision tasks [12, 19, 25, 34]. It

is of particular importance for weakly-supervised [23, 36]

or self-supervised 2D object detection [11, 34] as multi-

tasking provides mutual regularization and hence better rep-

resentation learning. For detection and segmentation, prior

work has studied joint training with 2D data [23] or super-

vised 3D data [49]. In this paper, we develop a novel frame-

work for learning both tasks under weak supervision.

3. WyPR

Our goal is to use weak supervision in the form of scene-

level tags and learn a joint 3D segmentation and detection

model, which we refer to as WyPR. Specifically, we assume

availability of data D = {(P,y)} of point cloud P and

corresponding scene-level tags y 2 {0, 1}C , which indicate

absence or presence of the C object classes. P is a set of six-

dimensional points p 2 P , represented by their 3D location

and RGB-color. Note, y only indicates existence of objects

in the scene and does not contain any information about per-

point semantic labels or object locations.

Approach overview. Fig. 2 provides an overview of our

model which consists of three parametric modules: a back-

bone network, followed by a segmentation and a detection

head. We first extract geometric features from the input

point cloud using the backbone network. Specifically, we

use the variant of PointNet++ [32] following VoteNet [29],

which is an encoder-decoder network with skip connec-

tions. The features are then fed into the segmentation and

detection modules. The segmentation module assigns each

point from the input point cloud P to one of C classes. We

use this segmentation output to generate 3D region propos-

als R that are likely to contain objects in the scene. Finally,

the detection module classifies each proposal into either one

of C classes or background (not an object) class, using the

backbone features corresponding to that proposal.

Notation. We denote the output of the segmentation mod-

ule as Sseg 2 R
|P|×C , where the rows represent the score

logits over the C classes for all points P . The detection

module produces a score matrix Sdet 2 R
|R|×(C+1) over

the C classes and background for all 3D proposals R. For

readability, we also use p, r as indices into Sseg,Sdet in the

following sections.

3.1. Weakly-supervised 3D semantic segmentation

The segmentation module consists of two identical heads

that independently process the backbone features using a se-

ries of unit PointNet [31] and nearest neighbor upsampling

layers (Fig. 2 green region). The output from these heads

are two score matrices Useg,Sseg 2 R
|P|×C respectively,

containing logits over C object classes for all points p 2 P .

The parameters of the backbone and the segmentation mod-

ule are optimized to minimize a composed loss

Lseg = LMIL
seg + LSELF

seg + LCST
seg + Ld→s + Lsmooth, (1)

where LMIL
seg denotes a multiple-instance learning (MIL)

loss, LSELF
seg denotes a self-training loss, LCST

seg and Ld→s

represent consistency loss across geometric transformations

and tasks respectively, and Lsmooth is a smoothness regular-

ization loss. We describe the individual loss terms next.

MIL loss. The multiple-instance learning loss [54, 55] en-

courages to learn the per-point semantic segmentation logits

without access to point-level supervision. We first convert

the per-point logits Useg into a scene-level prediction φ via

average pooling and a sigmoid normalization

φ[c] = sigmoid

0

@

1

|P|

X

p∈P

Useg[p, c]

1

A . (2)

The scene-level prediction φ is then supervised using the

scene-level tags y using the binary cross-entropy loss

LMIL
seg =�

C
X

c=1

y[c] logφ[c]�(1�y[c]) log(1�φ[c]). (3)
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Algorithm 1 Segmentation pseudo label generation

Input: class label y, segmentation logits Useg, threshold p1

Output: pseudo label Ŷseg

1: Ŷseg = 0 . initialize to zero matrix

2: for each point p 2 P do

3: c = argmax(y �Useg[p, :]) . element-wise product

4: Ŷseg [p, c] = 1

5: for ground-truth class c where y[c] = 1 do

6: P 0[c] lowest p1-th percentile of Ŷseg[:, c]

7: Ŷseg [p, c] = 0 8p 2 P 0[c] . ignore points with low score

Self-training loss. Inspired by the success of self-training

in weakly-supervised detection [35, 45, 50], we further in-

corporate a self-training loss. The previously computed seg-

mentation logits Useg are used to supervise the final seg-

mentation logits Sseg via a cross-entropy loss

LSELF
seg = �

1

|P|

X

p∈P

C
X

c=1

Ŷseg[p, c] logψ[p, c], (4)

where ψ[p, c] = softmax(Sseg[p, c]) denotes the probabil-

ity of point p belonging to class c, and Ŷseg[p, c] 2 {0, 1}
is the point-level pseudo class label inferred from score ma-

trix Useg. We detail the process of computing the pseudo

label in Alg. 1. Intuitively, the algorithm ignores noisy pre-

dictions in Useg, leading to robust self-supervision for Sseg.

Cross-transformation consistency loss. In addition, we

use LCST
seg to encourage that the segmentation predictions

are consistent across data augmentations T . We obtain an

augmented point cloud P̃ = T (P) by changing the orig-

inal scene P via standard augmentations (see § 4 and Ap-

pendix C.1 for details). We predict the semantic segmenta-

tion S̃seg on this transformed point cloud. The consistency

loss is then formulated as

LCST
seg =

1

|P \ P̃|

X

p∈P∩P̃

DKL

⇣

ψ[p, ·] || ψ̃[p, ·]
⌘

, (5)

where ψ[p, c] = softmax(Sseg[p, c]) and ψ̃[p, c] =

softmax(S̃seg[p, c]) are the probabilities of the point p be-

longing to class c, and DKL is the KL divergence over C
classes for points that are common across the transforma-

tion. This loss encourages the probability distributions for

semantic segmentation of corresponding points within the

point cloud P and P̃ to match.

Cross-task consistency loss. We further employ a cross-

task regularization term Ld→s. It uses the detection results

to refine the segmentation prediction. Intuitively, all points

within a confident bounding box prediction should have the

same semantic label. Assume we have access to a set of

confident bounding boxes r 2 R∗ and their correspond-

ing predicted score matrix Sdet 2 R
|R∗|×(C+1). Using this

information, we encourage consistency via a cross entropy

Algorithm 2 Detection pseudo label generation

Input: class label y, detection logits Udet, proposals R, threshold ⌧, p2
Output: pseudo label Ŷdet

1: for ground-truth class c where y[c] = 1 do

2: Ŷdet = 0 . initialize to zero matrix

3: R0[c] top p2-th percentile of Udet[:, c] . R0[c] is descending

4: R⇤[c] r0
1

. save 1st RoI (top-scoring) r0
1
2 R0[c]

5: for i 2 {2, · · · , |R0[c]|} do . start from the 2nd highest

6: R⇤[c] r0
i

if IoU(r0
i
, r̂) < ⌧ 8r̂ 2 R⇤[c]

7: Ŷdet[r, c] = 1 8r 2 R⇤[c]

loss on the point-level predictions, with the box-level pre-

diction as a soft target

Ld→s=�
1

|R∗|

X

r∈R∗

1

|Pr|

X

p∈Pr

C
X

c=1

ξ[r, c] logψ[p, c], (6)

where ψ[p, c] is the point probability from Eq. (4), ξ[r, c] =
softmax(Sdet[r, c]) denotes the probability of proposal r be-

longing to object class c, and Pr denotes the set of points

within proposal r. In practice, the confident bounding boxes

R∗ are obtained from Alg. 2, discussed later in § 3.2.

Smoothness regularization. Finally, we compute Lsmooth

to encourage local smoothness. We first detect a set of

planes G from input point cloud P using an unsupervised

off-the-shelf shape detection algorithm [22] detailed in Ap-

pendix B. We then compute

Lsmooth = �

|G|
X

i=1

1

|G[i]|

X

p∈G[i]

C
X

c=1

ψ̄[c] logψ[p, c], (7)

where ψ̄[c] =
P

p∈G[i] ψ[p,c]

|G[i]| is the mean probability of all

the points which lie inside plane G[i] for class c.

3.2. Weakly-supervised 3D object detection

Our object detection module assumes access to a set

of 3D region proposals R (discussed in § 3.3) and uses

the backbone features to classify the proposals into one of

the C object classes or background (Fig. 2 blue region).

Each region of interest (RoI) r 2 R
6 is represented by a

six-dimensional vector denoting its center location and its

width, height and length. We extract RoI features by av-

eraging the backbone features of all the points within each

proposal. Inspired by prior 2D literature [3], we use three

separate linear layers to extract classification logits Scls 2

R
|R|×(C+1), objectness logits Sobj 2 R

|R|×(C+1), and final

detection logits Sdet 2 R
|R|×(C+1) from the RoI features.

As in [3], we normalize Scls using a softmax function over

rows to obtain the probability over object classes for each

proposal. Similarly, we normalize Sobj over columns to ob-

tain a probability over proposals for each class. Intuitively,

Scls[r, c] represents the probability of region r being clas-

sified as class c, and Sobj[r, c] is the probability of detect-

ing region r for class c. We aggregate the evidence from
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Point cloud Detected shapes GSS proposalsHAC iter 20 HAC iter 40 HAC iter 60

Figure 3: Geometric Selective Search (GSS). Our algorithm takes as input the point cloud and detected planes (left column). It then

hierarchically groups the neighboring planes into sub-regions and generates 3D proposals for the combined regions (middle column). We

run the algorithm multiple times with different grouping criteria to encourage high recall of final output proposals (right column).

both matrices via element-wise multiplication to obtain the

score matrix Udet = Scls � Sobj. Similar to the self-training

discussed earlier for segmentation, we infer pseudo-labels

from Udet to supervise the final detection logits Sdet. We

learn the backbone and the detection module using the loss

Ldet = LMIL
det + LSELF

det + LCST
det , (8)

where LMIL
det is a MIL objective for detection, LSELF

det is a

self-training loss, and LCST
det is the cross-transformation con-

sistency loss. All the terms are described next.

MIL loss. Similar to the segmentation head, the multiple

instance learning (MIL) loss for detection is

LMIL
det =�

C+1
X

c=1

y[c] logµ[c]�(1�y[c]) log(1�µ[c]), (9)

where µ[c] =
P

r∈R Udet[r, c] is the row-sum of the score

matrix Udet for class c. This sum-pooling operation aggre-

gates RoI scores into a scene-level score vector µ, which is

used for multi-label scene classification.

Self-training loss. As done before for segmentation, we

incorporate a self-training loss for detection as well. The

final detection logits Sdet are supervised by Udet via

LSELF
det = �

1

|R|

X

r∈R

C+1
X

c=1

Ŷdet[r, c] log ξ[r, c], (10)

where ξ[r, c] = softmax(Sdet[r, c]) denotes the probability

of proposal r belonging to object class c, and Ŷdet[r, c] 2
{0, 1} is the RoI pseudo class label inferred from score ma-

trix Udet. The pseudo label Ŷdet is computed using Alg. 2.

Conceptually, this algorithm selects a set of confident yet

diverse predictions as the pseudo labels for self-training.

Cross-transformation consistency loss. Following the

consistency loss for semantic segmentation (Eq. (5)), we en-

courage detection predictions to be consistent under trans-

formation T via

LCST
det =

1

|R|

X

r∈R

DKL

⇣

ξ
⇥

r, ·] || ξ̃[T (r), ·
⇤

⌘

, (11)

where ξ[r, c] refers to the RoI probability introduced

in Eq. (10), ξ̃[T (r), c] denotes the RoI probability obtained

from the transformed input P̃ = T (P) and proposal T (r)
via the same backbone and detection module.

3.3. Geometric Selective Search (GSS)

The detection module uses a proposal set R as input.

In weakly-supervised learning, proposals are necessary be-

cause it is not possible to mimic supervised methods that

directly predict 3D bounding box parameters (e.g., size and

location). The key observation which inspires our novel 3D

proposal generation algorithm is that most indoor objects

are rigid and mainly consist of basic geometric structures

(e.g., planes, cylinders, spheres). We thus devise a bottom-

up solution termed Geometric Selective Search (GSS), first

detecting basic geometric shapes which are then grouped

hierarchically to form 3D proposals (Fig. 2 brown region).

Given an input point cloud with unoriented normals, we

adopt a region-growing-based method [22, 26] for detecting

primitive shapes (e.g., planes) as shown in Fig. 3 left. We

choose region-growing over the popular RANSAC-based

methods [38] because 1) it is deterministic; 2) it performs

better in the presence of large scenes with fine-grained de-

tails. We then apply hierarchical agglomerative clustering

(HAC) to iteratively group the detected shapes into sub-

regions. In each HAC iteration, we compute the similarity

score s between all spatially overlapping sub-regions and

group the two most similar regions. We iterate until no

neighbors can be found or only one region is left. Every

time we generate a new region, we also compute the axis-

aligned bounding boxes of the new region and add it into

the proposal pool. We illustrate the process of growing the

proposal pool during HAC in Fig. 3 (middle columns).

In order to pick which two regions ni,nj to group, HAC

uses a similarity score

s(ni,nj) = w1ssize+w2svolume+w3sfill+w4sseg, (12)

where wi 2 {0, 1} 8i 2 {1, · · · , 4} are binary indica-

tors. ssize and svolume 2 [0, 1] measure size and volume

compatibility and encourage small regions to merge early;

sfill 2 [0, 1] measures how well two regions are aligned. Be-

sides similarities of low-level cues, we also measure high-

level semantic similarities by incorporating segmentation

similarity sseg 2 [0, 1]. This score is the histogram inter-

section of the normalized C-dimensional class histogram

of two regions’ points. The class labels of these points

are computed from Sseg using the inference procedure de-
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scribed in § 4. Please see Appendix A for the exact formu-

lation of the above metrics. During training, as the segmen-

tation module improves, sseg increasingly prefers grouping

regions which correspond to the same object. A similar idea

to compute proposals from segmentations has also been

widely adopted in the 2D case [1, 48]. In practice, we find

that multiple runs of HAC with different wi values, results

in a more diverse set of proposals as each run uses a differ-

ent weighted similarity measure. We provide the values of

wi for different runs in Appendix A.

GSS can be made completely unsupervised by remov-

ing the segmentation term sseg from Eq. (13). This variant is

also valuable as the proposals can be pre-computed offline

and are of decent quality (verified in § 4). These proposals

are independent of any specific supervision and can bene-

fit various downstream unsupervised or weakly-supervised

3D recognition tasks, akin to Selective Search [48] or Edge

Boxes [64] in 2D. This is distinct from existing 3D proposal

techniques that either use 2D image cues [33] or full bound-

ing box supervision [28, 29].

4. Experiments

We empirically evaluate WyPR on two standard 3D

benchmarks. We first provide the key implementation de-

tails (more details in Appendix C) and describe the baseline

methods we compare to (§ 4.1). We then present the quanti-

tative results (§ 4.2 and 4.3), ablate our design choices and

present qualitative results (§ 4.4).

Input. Our network takes as input a fixed-size point cloud,

where 40K points are randomly sub-sampled from the orig-

inal scan. In addition to using color (RGB) and coordinates

(XYZ) as input features, following [29], we include surface

normal and a height feature of each point.

Augmentation. We augment the input point cloud at two

places in our framework: (1) data augmentation at the in-

put, and (2) to compute the consistency loss in Eq. (5)

and Eq. (11). In practice, we find it beneficial to apply

different geometric transformations for the above two pur-

poses. To augment the input, we follow [29] and use ran-

dom sub-sampling of 40K points, random flipping in both

horizontal and vertical directions, and random rotation of

[�5, 5] degrees around the upright-axis. To compute the

consistency loss, we use random flipping, point jittering,

random rotation with an angle uniform in [0, 30] degrees

around the upright-axis, random scaling by a factor from

[0.8, 1.2], and point dropout (p = 0.1). Finally, we also

find that jittering the point cloud is crucial to obtain good

proposals for noisy point clouds (analyzed in § 4.4).

Network architecture. (1) Backbone. We use Point-

Net++ [32] as the backbone model to compute the point

cloud features. The model has 4 set abstraction (SA) lay-

ers and 2 feature propagation (FP) layers. The four SA

layers sub-sample the point cloud to 2048, 1024, 512 and

Method Split mIoU

Weakly-supervised methods

PCAM [53] train 22.1

MPRM [53] train 24.4

WyPR train 30.7

MIL-seg val 20.7

WyPR val 29.6

WyPR+prior val 31.1

WyPR test 24.0

Supervised methods

VoteNet [29] test 55.7

SparseConvNet [9] test 73.6

Table 2: 3D semantic segmentation on ScanNet. WyPR out-

performs standard baselines and existing state-of-the-art [53]. We

also report fully supervised methods for reference. Note that

models on train and val sets leverage axis alignment information

from [29], which is not present and hence not used for experiments

on the test set. See Appendix E for per-class performance.

256 points using a receptive radius of 0.2, 0.4, 0.8 and 1.2

meters respectively. The two FP layers up-sample the last

SA layer’s output back from 256 to 1024 points. The final

output has (256+3) dimensions (feature + 3D coordinates).

(2) Segmentation module. This module is implemented as

two FP layers which upsample the backbone features (1024

points) to the input size (40K points), and a two layer MLP

(implemented as two 1⇥1 convolutional layers) which con-

vert the features into per-point classification logits. (3) De-

tection module. This module has 3 fully-connected layers,

computing the classification Scls, objectness Sobj, and final

classification logits Sdet respectively, as described in § 3.2.

Training. We train the entire network end-to-end from

scratch with an Adam optimizer for 200 epochs. We use

8 GPUs with a batch size of 32. The initial leaning rate is

0.003 and is decayed by 10⇥ at epoch {120, 160, 180}.

Inference. (1) Segmentation. We generate the segmentation

mask from the predicted logits (Sseg) by taking the class

with highest score for each point. We then post-process

the output for smoothness by using the detected planes (as

in Eq. (7)), and assign each point in the plane to the most

frequently occurring class. (2) Detection. Following [29],

we post-process the final output probability, softmax(Sdet),
by thresholding to drop predictions with score < 0.01,

and class-wise non-maximum suppression (NMS) with IoU

threshold 0.25.

Dataset. We use the ScanNet [10] and S3DIS [2] datasets

to evaluate our method. ScanNet contains 1.2K training and

300 validation examples of hundreds of different rooms, an-

notated with 20 semantic categories. We extract ground

truth bounding boxes from instance segmentation masks

following [29]. To demonstrate the generalizability of our

method, we futher evaluate on S3DIS, which contains 6
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Methods
Proposal Detection

#boxes MABO AR mAP

Unsupervised methods

Qin et al. [33] 1k 0.092 23.6 -

GSS ≤256 0.321 73.4 -

GSS ≤1k 0.378 86.2 -

Weakly-supervised methods

MIL-det (unsup. GSS) ≤1k 0.378 86.2 9.6

WyPR ≤1k 0.409 89.3 18.3

WyPR+prior ≤1k 0.427 90.5 19.7

Supervised methods

F-PointNet [30] - - - 10.8

GSPN [60] - - - 17.7

3DSIS [18] - - - 40.2

VoteNet [29] 256 0.436 84.7 58.6

VoteNet [29] 1k 0.450 88.1 55.3

Table 3: 3D object detection on ScanNet. Unsupervised GSS

outperforms concurrent work [33] by a large margin. In the

weakly-supervised setting, WyPR outperforms standard baselines

and even some fully supervised approaches [30, 60].

floors of 3 different buildings and 13 objects classes. We

use the fold #1 split following prior work [2, 9], where area

5 is used for testing and the rest for training.

Evaluation. We report mean intersection over union

(mIoU) across all classes for semantic segmentation, mean

average precision (mAP) across all classes at IoU 0.25 for

object detection, and average recall (AR) and mean average

best overlap (MABO) across all classes for proposal gener-

ation. Please see [10, 29, 48] for more on these metrics.

4.1. Baselines

Besides comparing to the few existing 3D weakly-

supervised learning methods, we build the following base-

lines, using standard weakly-supervised learning tech-

niques:

MIL-seg: Single task segmentation trained with Eq. (3).

MIL-det: Single task object detection, which uses the un-

supervised GSS proposals and is trained with Eq. (9).

WyPR: Our full model trained with Eq. (1) and Eq. (8).

WyPR+prior: We compute per-class mean shapes using

external synthetic datasets [6, 57], and use those to reject

proposals and pseudo labels in the WyPR detection module

that do not satisfy the prior. We also use a floor height prior

for segmentation. Please see Appendix D for details.

4.2. Quantitative results on ScanNet

Semantic Segmentation. Apart from the above baselines

we compare WyPR to recent approaches, PCAM [53] and

MPRM [53]. PCAM can be interpreted as MIL-seg with

a KPConv [47] backbone, and MPRM adds multiple addi-

tional self-attention modules to PCAM. Since prior work

Methods
Segmentation Proposal Detection

mIoU MABO AR mAP

Weakly-supervised methods

MIL-seg 17.6 - - -

MIL-det (unsup. GSS) - 0.412 84.9 15.1

WyPR 22.3 0.441 88.3 19.3

Supervised methods

PointNet++ [31] 41.1 - - -

SparseConvNet [9] 62.4 - - -

Armeni et al. [2] - - - 49.9

Table 4: Generalizing to S3DIS. WyPR seamlessly generalizes

to S3DIS, and outperforms standard baselines for both weakly-

supervised segmentation and detection.

Removed
Seg. losses Det. losses Seg. Det.

LSELF
seg LCST

seg Ld!s Lsmooth LSELF
det LCST

det mIoU mAP

Self-training X X X X 22.1 13.2

Cross-transformation cst. X X X X 28.2 16.9

Cross-task consistency X X X X X 26.7 17.4

Local smoothness X X X X X 27.3 17.8

WyPR X X X X X X 29.6 18.3

Table 5: Ablation study of losses. We remove one set of losses

at a time. All models are trained with LMIL
seg and LMIL

det .

reports results on the training set only, we compare against

their results on the training set in Tab. 2 (top 3 rows).

WyPR outperforms both methods (PCAM and MPRM) by

a significant margin (+8.6% / +6.3%). Since the main dif-

ference between prior work and our method is our joint

detection-segmentation framework, these results show the

effectiveness of joint-training. When comparing against our

baselines on the validation set (Tab. 2 middle) our joint

model outperforms the single-task baseline (MIL-seg) by

8.9%. We observe a large performance gap when compar-

ing against state-of-the-art fully supervised models (bottom

two rows). One possible solution to minimize the gap is to

utilize an external object prior (e.g., shape) from readily-

available synthetic data, which improves results by +1.5%.

Object Detection. To the best of our knowledge, no prior

work has explored weakly-supervised 3D object detection

using scene-level tags. We compare against our base-

line methods in Tab. 3 (middle rows). Our model signif-

icantly outperforms the single-task baseline (MIL-det) by

8.7% mAP, and achieves competitive results compared to

even some fully supervised methods (F-PointNet [30] and

GSPN [60], numbers borrowed from [29]). However, the

performance gap is large when compared to the state-of-

the-art fully supervised methods. Similar to segmentation,

the performance of our model can be further improved by

incorporating an external object prior (+1.4%).

Proposal Generation. GSS can be made unsupervised by

relying only on low-level shape and color cues, i.e., remov-
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Figure 4: Effect of jittering and #proposals. Jittering the point

cloud before proposal generation results in a>2% gain in AP. The

performance varies gracefully with #proposals, and we find 1000

proposals to have the right balance for high precision and recall.

ing sseg from Eq. (13) (§ 3.3). We compare the unsupervised

GSS to a concurrent unsupervised 3D proposal approach by

Qin et al. [33]. We adapt their method, originally designed

for outdoor environments, to indoor scenes by replacing

their front-view projection to a Y-Z plane projection. For

a fair comparison we use 1000 proposals and report results

in Tab. 3 (top rows). Unsupervised GSS outperforms [33]

by a large margin, and obtains recall values comparable to

even supervised approaches. The complete GSS, including

the weakly-supervised similarity sseg, further improves over

the unsupervised baseline (+3.1% AR/+0.031 MABO), and

outperforms supervised methods on recall (+1.2%), indicat-

ing the importance of joint training.

4.3. Generalizing to S3DIS

We train WyPR on S3DIS following the settings of § 4.2.

Since there is no prior weakly-supervised work on this

dataset, we compare against our baselines from § 4.1. The

results are summarized in Tab. 4, where WyPR outperforms

both single-task baselines with gains of 4.7% mIoU for

segmentation, 3.4% AR for proposal generation, and 4.2%

mAP for detection. These results demonstrate that our de-

sign choices are not specific to ScanNet and generalize to

other 3D datasets.

4.4. Analysis

Which loss terms matter? In Tab. 5 we analyze the rel-

ative contribution of the loss terms in Eq. (1) and (8). We

find self-training to be the most critical. Removing LSELF
seg

and LSELF
det leads to a significant drop in both metrics: -7.5%

mIoU and -5.1% mAP. This is consistent with observations

in prior work on weak-supervision [34, 54]. Next, we find

enforcing consistency between detection and segmentation

tasks to add large gains, especially for segmentation: 2.9%

mIoU. Enforcing consistency across transformations is par-

ticularly important for detection, leading to a 1.4% mAP

gain. Finally, encouraging smoothness over primitive struc-

tures improves both metrics by 1.7% mIOU and 0.5% mAP.

Jittering for proposal generation. We observe that

scanned point clouds are often imperfect, with large holes

Figure 5: Qualitative results on ScanNet. WyPR+prior is able

to segment, generate proposals and detect objects without having

ever seen any spatial annotations.

in objects due to occlusions, clutter or sensor artifacts. This

makes it challenging for GSS to correctly group parts. To

overcome this, we jitter the points in 3D space using a ran-

dom multiplier within range [1 � δ/2, 1 + δ/2] and decide

the neighboring regions based on the jittered points. This

simple technique counts spatially close but non-overlapping

regions as neighbors, and greatly improves GSS results. We

show the impact of δ in Fig. 4 (left).

Number of proposals. We randomly sample at most 250,

500, 1000, 1500, 2000 regions from the same set of com-

puted proposals and report the recall and detection mAP

in Fig. 4 (right). Using fewer proposals hurts both the recall

and precision since the model misses many relevant objects.

In contrast, a large number of proposals increases recall but

hurts precision, presumably because too many proposals in-

crease the false positive rate of the detection module. We

find 1000 proposals to be a good balance between precision

and recall, and use this number for all our experiments.

Qualitative results. Fig. 5 shows a few representative

examples of our model’s predictions on ScanNet. As can

be seen, input point clouds are quite challenging, with large

amounts of clutter and sensor imperfections. Nevertheless,

our model is able to recognize objects such as chairs, tables,

and sofa with good accuracy. Please see Appendix F for

more results, analysis and failure modes.

5. Conclusion

We propose WyPR, a novel framework for joint 3D se-

mantic segmentation and object detection, trained using

only scene-level class tags as supervision. It leverages a

novel unsupervised 3D proposal generation approach (GSS)

along with natural constraints between the segmentation

and detection tasks. Through extensive experimentation on

standard datasets we show WyPR outperforms single task

baselines and prior state-of-the-art methods on both tasks.
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