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Abstract

Lip reading aims to predict the spoken sentences from

silent lip videos. Due to the fact that such a vision task

usually performs worse than its counterpart speech recog-

nition, one potential scheme is to distill knowledge from a

teacher pretrained by audio signals. However, the latent

domain gap between the cross-modal data could lead to

a learning ambiguity and thus limits the performance of

lip reading. In this paper, we propose a novel collabora-

tive framework for lip reading, and two aspects of issues

are considered: 1) the teacher should understand bi-modal

knowledge to possibly bridge the inherent cross-modal gap;

2) the teacher should adjust teaching contents adaptively

with the evolution of the student. To these ends, we in-

troduce a trainable “master” network which ingests both

audio signals and silent lip videos instead of a pretrained

teacher. The master produces logits from three modalities

of features: audio modality, video modality, and their com-

bination. To further provide an interactive strategy to fuse

these knowledge organically, we regularize the master with

the task-specific feedback from the student, in which the

requirement of the student is implicitly embedded. Mean-

while, we involve a couple of “tutor” networks into our

system as guidance for emphasizing the fruitful knowledge

flexibly. In addition, we incorporate a curriculum learning

design to ensure a better convergence. Extensive experi-

ments demonstrate that the proposed network outperforms

the state-of-the-art methods on several benchmarks, includ-

ing in both word-level and sentence-level scenarios.

1. Introduction

Lip reading, which is also referred to as visual speech

recognition, aims at predicting words or sentences being

spoken from muted lip videos. This vision task enables to

switch speech to text without relying on hearing, and there-

fore, it could apply to many practical scenarios, such as dub-

bling for silent films, creating a voice for aphonia patients,

and serving for security systems. To tackle this problem,

early researches usually adopt HMM with designed hand-
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Figure 1: (a) Traditional knowledge distillation from pre-

trained audio teacher to a video student. (b) Our method

distills advanced knowledge from the master that trained not

only with both audio and video data, but also the feedback

from the student, leading to a more compatible knowledge

transfer. Furthermore, the introduced audio and video tutors

provide additional cues to the student for further bringing

the cross-modal gap.

crafted features [6, 10, 19], whereas recent works exploit

deep neural networks [18, 29, 23] for lip reading.

Notwithstanding the tremendous success of deep learn-

ing and large benchmark construction [8, 1, 2], the admitted

most critical challenge is the inherent limitation of visual in-

formation, which severely impedes a good performance of

lip reading models. For example, different characters “p”

and “b” share a similar lip shape so that they are hard to be

distinguished in video clips. In contrast, such an uncertainty

can be uniquely identified by audio information, and audio

based speech recognition would not be affected by ambigu-

ities caused by the intrinsic limitation of visual information.

Specifically, the counterpart of lip reading task, i.e., speech

recognition, could achieve a much more accurate transla-

tion of speech to text. The performance gap can even reach

40% [1] on the metric of word error rate (WER).

Based on this fact, one potential solution is to trans-

fer knowledge from audio data to video data via knowl-

edge distillation (KD) [15] (Fig. 1a). Several previous ap-

proaches [29, 31] attempt to build KD-based models, which

consist of a teacher network pretrained by audio signals

and a student network utilized for lip reading. The audio

information is introduced in this way and supposed to be
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Table 1: The WER (%) of applying knowledge distillation

between audio and video model on LRS2-BBC dataset.

Task Distilled? Teacher WER

Lip reading % - 57.5

Speech recognition % - 15.7

Lip reading (KD) ! Video 53.4

Lip reading (KD) ! Audio 54.2

a complementary clue for facilitating the performance of

the student. Due to the existed heterogeneity between two

modalities, however, such a general audio teacher may only

provide limited hidden knowledge to the student for pro-

motion. This observation is examined in Tab. 1, in which

we conduct an experiment on LRS2-BBC [1] dataset to test

the impact of the teachers which share a same structure but

pretrained on different modalities. Note that except for the

teachers, the structures of both student networks are also

the same. Several interesting facts can be observed: (i) The

performance gap (about 40% in WER) between lip reading

and speech recognition tasks is similar as reported in pre-

vious research [1]. (ii) When distilling knowledge from an

audio teacher, the performance of the student is even worse

than that of the student with distilled knowledge from the

video teacher. Combining (i) and (ii), we can conclude

that: a “master” that merely has an advanced accuracy (au-

dio teacher in this case) does not act as a good teacher to

the video student; while the video teacher which shares the

same data domain with the student, can supervise the stu-

dent for learning more distilled knowledge representations.

Obviously, cross-modal gap is the reason of why this phe-

nomenon occurs. Then we spontaneously raise a question:

In lip reading, how can the visual student learn more com-

prehensible knowledge from the audio “master”?

We consider the above problem from two aspects. First,

the teacher should understand bi-modal knowledge to pos-

sibly bridge the inherent cross-modal gap. Second, the

teacher should dynamically adjust teaching contents in con-

sistent with the evolution of the -student. In this way, the

changing requirement of the student would help the teacher

to regulate and emphasize the important knowledge from

different modalities. Therefore, the cross-modal gap could

be fused with a clear aim. In this paper, we propose an inno-

vative deep lip reading model (see in Fig. 1b). Instead of us-

ing a pretrained teacher network, we design a trainable and

much more powerful network named “master”. To produce

a more compatible knowledge with regard to visual student,

the master takes not only speech audio data but also lip

video data as inputs, and produces three types of probabil-

ities respectively based on audio modality, video modality,

and their combination. Then to fuse these knowledge adap-

tively, we incorporate a couple of “tutor” networks into our

framework as knowledge fusion guidance, which are pre-

trained from audio and video data respectively. Based on

the interactions among the “master”, the “tutors”, and the

requirement (feedback) of the student, we design a dynamic

fusion loss to balance yet fuse different types of knowl-

edge. We also propose a curriculum learning strategy to

mitigate the learning ambiguity during training, ensuring a

better convergence.

In summary, our key contributions are as follows:

• We propose a collaborative learning based framework

for lip-reading. Unlike most other existing methods

directly using a pretrained teacher to distill knowledge,

we embed an advanced trainable master network into

our system. The master could be adjusted according

to the feedback of the student, and thus provides bi-

modal knowledge dynamically for the student to learn

in a better way.

• We incorporate a couple of tutor networks into our sys-

tem, which are respectively pretrained by audio and

video data. To get the master, the tutors, and the stu-

dent to cooperate, we particularly tailor a dynamic fu-

sion loss to guide the student to learn audio-visual

probabilities, which alleviates ambiguities caused by

the cross-domain gap.

• We present a curriculum learning strategy for lip-

reading. By measuring and sorting the difficulty of

samples, it could enhance the effectiveness of model

training as well as ensuring a better convergence.

• We outperform state-of-the-art lip-reading methods on

three benchmarks, indicating the effectiveness of the

proposed method.

2. Related work

Lip reading. Lip reading have drawn increasing atten-

tion in recent years. Most deep learning based lip reading

methods include a pair of frontend and backend, and focus

on the corresponding architecture design. The frontend is

used to extract visual features, and usually is ResNet [14] or

VGG [21] with some modifications. In particular, Chung et

al. [8] evaluate the performance of different frontends with

multiple transform. While the backend is used to map vi-

sual features to natural language, mainly including temporal

convolution [23], recurrent neural network (RNN) [23], and

transformer [1]. Specifically, Stafylakis et al. [23] propose

to combine residual network as frontend with long short

term memory network (LSTM) [16] as backend. Afouras

et al. [1] introduce transformer to replace RNN as backend.

Zhang et al. [27] focus on short-range temporal information

with temporal focal block and local self-attention.

To deal with the problem that one output word is corre-

sponded to several frames in the lip-reading task, two archi-

tectures are designed for the alignment purpose. The first

13326



one is sequence to sequence (Seq2Seq) [24] model, which

reads all visual features before prediction. The other one is

connectionist temporal classification (CTC) [11], which is

an emission model that predicts the results for each frame

and searches the optimal alignment for final prediction. Lip-

Net [3] is based on this architecture.

As multi-modal learning develops, lip reading methods

attempt to extract information from audio data as a comple-

ment for a better performance. Afouras et al. [31] propose

to distill knowledge from a pretrained audio teacher to guide

lip reading. Zhao et al. [29] propose frame-, sequence- and

context-level distillation methods into the prediction. How-

ever, the cross-modal gap between the two modalities is

completely ignored, which seriously limits the lip reading

performance.

Knowledge distillation. Knowledge Distillation [15]

(KD) aims at transferring knowledge from teachers to stu-

dents. There are two main factors that may affect the per-

formance of KD. The first is the type of knowledge, and lots

of previous works propose to discover more useful knowl-

edge as guidance. For example, FitNets [20] utilizes hidden

layer features rather the logits for distillation. Zagoruyko

et al. [26] introduce an attention mechanism to selectively

transfer knowledge. Yang et al. [25] propose a more toler-

ant teacher with softer logits, which is easy for the student

to mimic. Furlanello et al. [9] integrate multiple teachers to

boost the utility of knowledge. However, these methods are

designed from a perspective of model capacity rather than

data capacity, and thus limited in distilling knowledge from

a different data modality due to the cross-modal gap.

The other factor is the strategies of distillation. On-

line distillation, also known as collaborative distillation, is

of great interest recently. It aims to alleviate the model

capacity gap between the student and the teacher. By

treating all the students as teacher, Zhang et al. [28] pro-

pose DML to make the students learn from each other.

ONE [30] constructs the teacher using a multiple branch de-

sign. CLNN [22] establishes multiple head branches in the

teacher with a corresponding scaling gate for the branch di-

versity. KDCL [12] ensembles the predictions of students,

generating soft targets as supervision. Note that collabo-

rative distillation methods transfer knowledge between stu-

dents without considering the feedback of each student. It

means that when different students learn for different tasks,

the potential task gap may distract the learning objective.

3. Approach

3.1. Overview

Given a sequence of lip frames {Xn
V ∈ RH×W×3|n =

1, 2, ..., NV }, our system aims at predicting the spoken

word U ∈ RK or sentence {Zq ∈ RK |q = 1, 2, ..., Q}
from lip movements, where Q indicates the length of the

sentence in the sentence-level scenarios and K represents

the size of vocabulary. It means that a sentence is predicted

character by character, while a word is directly recognized

in the word-level scenarios.

Fig.2 illustrates the pipeline of the proposed method.

Our network includes four modules: master, tutorA,

tutorV and student, here the subscripts A and V respec-

tively denotes the audio modality and the video modal-

ity. The master fm(·) takes audio signals XA and video

clips XV as inputs, and provides three types of knowledge:

fm(XA; θA) generated from audio stream, fm(XV ; θV )
generated from visual stream, and fm(XA, XV ; θA, θV )
generated from audio-visual combination. The student

takes XV as input, and outputs probabilites fs(XV ; θs).
The pretrained tutorA outputs logits ftA(XA) in regard

to speech recognition, whereas the pretrained tutorV pro-

duces logits ftV (XV ) for lip reading. Note that the pre-

trained tutors in our model are to provide the information

for balancing knowledges from different modalities as well

as evaluating the training data by difficulty, not for directly

transferring knowledge to the student like pretrained teach-

ers in most existing approaches.

We alternatively train the master and the student, and

thus the whole training procedure includes two stages. (i)

In the student training stage, the student is optimized by

both the distilled cross-modal knowledge from the master

and the supervision with lip-reading labels. (ii) In the mas-

ter training stage, the master is optimized not only by the

supervision of labels, but more importantly, the feedback

from the temporarily updated student.

3.2. Network Architecture

Let us start with the definitions of audio stream, visual

stream, and audio-visual combination. As the names sug-

gest, (i) audio stream is a stream that produces the logits

based on audio data, (ii) visual stream is a stream that pro-

duces the logits based on video data, and (iii) audio-visual

combination aims to combine audio and video features for

the logits prediction. Each stream is comprised of a feature

extraction frontend, a feature mapping backend and a final

classifier. The tutorA is an audio stream based model, the

tutorV and the student are visual stream based models, and

the master consists of both audio stream and visual stream.

Next, we will introduce the architectures of these modules

in detail.

Audio stream. Audio stream adopts a ResNet-18 [14]

as a frontend. Regarding the deployed backend, we have

two model variants: (a) Temporal convolution (TC) back-

end [23] is utilized in word-level lip reading, and (b) trans-

former sequence to sequence (TM-Seq2Seq) backend [1] is

used in both word-level and sentence-level scenarios.

Different from original ResNet, we replace all 2D con-

volution kernels in the frontend of audio stream with 1D
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Figure 2: Illustration of our method. The whole training process is split into the student training stage and the master training

stage. During the student training stage, the student absorbs task-specific (lip reading) supervision and knowledge distilled

from the master with cross-modal guidance provided by video and audio tutors. During the master training stage, a temporary

student is introduced as an auxiliary network, feeding task-specific supervision into the master for its update.

filters since a waveform lies in 1D space, and the filter size

of the first convolution layer is changed to 5ms with a stride

of 0.25ms. As for the TM-Seq2Seq backend, we follow

the same setting as that of Afouras et al. [1], to include the

multi-head attention and the feedforward block.

Visual stream. The structure of visual stream is almost

the same as audio stream. The only difference is that, we

replace the first 2D convolution layer in the frontend with

kernel size of 7 × 7 by a 3D convolution layer with kernel

size of 5× 7× 7 , because of an extra time dimension.

Audio-visual combination. Audio-visual combination

is only set up in the master for generating logits of merged

features, which are derived from both audio stream and vi-

sual stream. Specifically, in the case of model (a), we di-

rectly concatenate the output feature vectors, which are re-

spectively produced by the backends of audio and visual

streams, into a new vector. In the case of model (b), the

audio and video feature vectors are separately attended by

the context vectors and then concatenated into a new vector

before feeding in the classifier.

3.3. Learning From the Master

Existing teacher networks are usually pretrained, or lack-

ing of considering to be trained based on that how well the

students perform on their tasks. The teachers thus tend to

be inflexible in adjusting their teaching contents due to the

neglect of the needs of the students. On the other hand,

the students require more comprehensive knowledge dis-

tilled from the teachers to achieve a better performance. Our

method is implemented to address these problems, of which

the training procedure is divided into two stages: the student

training stage and the master training stage. Next, we will

take word-level recognition as an example to explain the

proposed method.

Student Training Stage. During the student training

stage, we only update the student parameters θs. The train-

ing objective contains two terms: cross entropy loss LCE

and dynamic fusion loss LDF . LCE controls the classifica-

tion accuracy, and LDF is used to match the logits between

the teacher and the student.

Given a one-hot label y = [y1, y2, ..., yK ], here K

indicates the size of vocabulary as defined in Sec 3.1,

the cross-entropy loss LCE between the prediction ŷ =
[ŷ1, ŷ2, ..., ŷK ] and label y is defined as follows:

LCE(y, ŷ) = −

K
∑

k=1

yk log ŷk. (1)

Note that in sentence-level prediction, Eq. (1) is correspond-

ing to the loss generated by a character, and the same is true

for subsequent other losses.

Regarding the dynamic fusion loss LDF which is differ-

ent from traditional distillation loss [15], extra cross-modal

guidance is affiliated within its design. We will concretely

discuss it soon.

Therefore, the overall objective function Ls is formu-

lated as follows:

Ls = LCE

(

y, fs(XV ; θs)
)

+ λsLDF , (2)

where λs indicates a balance factor for regularization, and

the optimized parameters θ∗s is then calculated by

θ∗s = argmin
θs

Ls. (3)
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Cross-Modal Gap Fusion. Distilling knowledge from

audio modality to video modality for lip reading is ar-

guably necessary, since the ambiguities caused by different

phonemes with almost identical visemes could be avoided.

However, a derived trouble is the existed cross-modal gap,

which is verified in Table 1. On the other hand, we observe

from Table 1 that a video teacher can also promote the per-

formance of the video student. This phenomenon may be

attributed to a transferring of more distilled knowledge.

Based on these facts, we drive the teacher outputs differ-

ent types of knowledge, i.e., audio knowledge, video knowl-

edge, and audio-visual knowledge, for further distillation.

This design makes it possible for the student to make its

own trade-offs on which modality to learn more from. Then

the problem turns into that, how to fuse the cross-modal

knowledge.

We tackle this issue by introducing two pretrained audio

and video tutors, i.e., tutorA and tutorV . We exploit the

fixed features generated by the tutors as guidance, and en-

code them into weighting factors wA and wV for measuring

the preference of different types of knowledge from audio

or video modality. Note that we use the output feature vec-

tors {HA, HV } of the backends of the tutors here for richer

representations, instead of the logits produced by the clas-

sifiers. We further present a dynamic fusion loss LDF as a

regularizer during the student training stage, that is

LDF = LF

(

fs(XV ; θs), fm(XA, XV ; θA, θV )
)

+ wALF

(

fs(XV ; θs), fm(XA; θA)
)

+ wV LF

(

fs(XV ; θs), fm(XV ; θV )
)

.

(4)

Here we use the focal loss LF (·) [17] to ease the difficulty-

imbalance and class-imbalance (in the sentence-level sce-

nario) problems. We calculate two weighting factors

{wA, wV } by

H ′
A = FC(HA; θFA), H

′
V = FC(HV ; θFV ),

w = φ
(

FC(H ′
A ⊕H ′

V ; θFAV )
)

,

wA = w, wV = 1− w,

(5)

where FC(·; θ∗) denotes a fully connected layer with param-

eters θ∗, ⊕ denotes the concatenation operation, and φ(·)
indicates the sigmoid function. All the parameters of the

FCs are trained as part of the master.

Master Training Stage. During the master training

stage, the values of the parameters θs are fixed. Neverthe-

less, we introduce a temporarily updated student network

fts(·; θts) as an auxiliary module. The rationale behind this

setting is that, the master needs to receive a task-specific

(i.e., lip reading task) feedback for adaptively adjusting its

teaching contents, meanwhile the feedback from the student

should be renewed with the update of the master. In other

words, fts(·; θts) and fm(·; θm) are alternatively updated

during this stage, where θm = {θA, θV , θFA, θFV , θFAV }.

Algorithm 1 Learning from the master

Input: Training audio, video, label pairs {Xn
A, X

n
V , y

n};

The initialization of parameters θm, θs, α, λs, λm, G0,

P , ξ; The pretained tutorA and tutorV .

Output: The master f(·; θ∗m); The student f(·; θ∗s).
1: repeat

2: while training the student do

3: Sample training audio, video, label pairs

{XA, XV , y};

4: Calculate the logits of the student fs(XV ; θs);
5: Calculate the logits of the master fm(XA; θA),

fm(XV ; θV ), fm(XA, XV ; θA, θV );
6: Update the parameters θs by Eq. (3).

7: end while

8: while training the master do

9: Sample training audio, video, label pairs

{X
′

A, X
′

V , y
′

};

10: Update the parameters θts by Eq. (6);

11: Resample training audio, video, label pairs

{X
′′

A, X
′′

V , y
′′

};

12: Update the parameters θm by Eq. (7).

13: end while

14: until converged

Specifically, the temporary student first learns from the

master, and is governed by the same loss Ls. The updated

parameters θts is given by

θts = θs − α
dLs

dθs
, (6)

where α represents the learning rate.

Then the master is trained according to both data labels

and the requirement of the updated student. We define the

optimization of the master as follows:

min
θm

LCE

(

y, fts(XV ; θts)
)

+ λm

(

LCE

(

y, fm(XA, XV ; θA, θV )
)

+ LCE

(

y, fm(XA; θA)
)

+ LCE

(

y, fm(XV ; θV )
)

)

,

(7)

where λm denotes a balancing factor. Note that the param-

eters of the FCs are updated by the first term, and here we

omit the derivation based on the chain rule.

In practice, the updates of the temporary student and the

master adopt different training samples. Because when up-

dating the master, the student should utilize a validation set

instead of a training set. Finally, the algorithm of “Learning

from the Master” is summarized in Algorithm 1.

3.4. Curriculum Learning

Previous lip reading methods [1, 7, 27] are proposed to

randomly sample training data first and then feed them into
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the network. However, the order of training samples is ig-

nored, which may influence the effectiveness of training

process. A more desired scheme is to make the framework

learn from an easy start and gradually increase the difficulty

to facilitate a better convergence. Therefore, we incorporate

a curriculum learning [4, 13] based strategy into the training

stage of our approach. It is implemented by two steps.

First, we build a rating function R(·) to evaluate the dif-

ficulty of each sample pair Xn
A, X

n
V (with the same label),

that is

R(Xn
A, X

n
V ) = sort

(

C
(

ftA(X
n
A)

)

+ C
(

ftV (X
n
V )

)

)

, (8)

where C(·) denotes the confidence, sort(·) indicates a sort-

ing operation. It is easy to understand that the higher the

function value, the easier the sample pair. Note that when

several sample pairs have the same rating value, we re-

sort them according to the video modality based confidence

C
(

ftV (X
n
V )

)

.

Given a series of training data sorted by their difficul-

ties, we secondly introduce a fixed exponential pacing func-

tion [13] to establish the increment of samples during train-

ing, which is given by

Gi = min(G0 × P ⌊ i
ξ
⌋, 1), i > 0, (9)

where Gi indicates the input percentage of training data in

the ith iteration (G0 is the percentage at the start), P is an

exponential factor, and ξ is the number of iterations in each

step.

Based on the rating function and the pacing function,

the order and the increment of the training samples are de-

termined more sensibly. Such a strategy could reduce the

learning ambiguities at the beginning of training and also

enable a better convergence. More discussions will be pre-

sented in Sec. 4.4.

4. Experiment

4.1. Experimental Datasets and Preprocessing

To evaluate the proposed method, we utilize three bench-

mark datasets, i.e., one word-level dataset LRW [8] and two

sentence-level datasets LRS2-BBC [1], LRS3-TED [2].

LRW. Lip Reading in the Wild dataset is a large word-

level dataset with 500 words and 450000 utterances. Each

video is 1.16 second long with 29 frames.

LRS2-BBC. The Lip Reading Sentence dataset comes

from BBC talks including 143 kilo utterances and 2.3 mil-

lion words. The dataset is split into pretrain/train-val/test

data, while train-val and pretrain data comes from the same

date and pretrain data contain a word-level boundary align-

ment.

LRS3-TED. LRS3-TED dataset comes from TED talks

with 150 kilo utterances and over 4.2 million words. This

is the most difficult audio-video lip reading dataset. The

dataset construction is also divided into the same setting as

LRS2-BBC.

Preprocessing. To crop aligned center mouth areas of

the video data, we first use dlib [5] to detect the facial land-

marks. Then we randomly crop and interpolate the results to

obtain 112×112 lip-centered images. Lastly, we transform

all faces for removing rotations and different scalings.

4.2. Implementation Details and Metric

Vocabulary size. In the word-level prediction, the size

of the vocabulary is set to 500, which is in line with the

number of words in LRW. Regarding the sentence-level sce-

narios, i.e., LRS2-BBC and LRS3-TED, we set the size

of vocabulary as 40, including 26 letters, 10 digits, and 4

special tokens ([SPACE], [PAD], [EOS] and punctuation

mark).

Training protocol. The student and the master are

trained alternatively using SGD optimizer with a momen-

tum of 0.9 and a weight decay of 1e-4. In audio stream, we

take the raw wave as input. While in visual stream, the input

videos are sampled at 25fps. We follow the same data aug-

mentation and audio-subtitle forced alignment strategies as

in Afouras et al. [1], and training together with the proposed

curriculum learning described in Sec.3.4.

The whole training process includes both pretraining and

fine-tuning steps. Specifically, we first pretrain our model

with a backend of TC at word level, using LRW and the

pretrain sets of LRS2-BBS and LRS3-TED. In regard to

the word-level prediction, we then fine-tune the pretrained

model with LRW. While for the sentence-level prediction,

we replace TC with TM-Seq2Seq as the backend in the pre-

trained model, and continue training with the pretrain set

of LRS2-BBS or LRS3-TED. The new pretrained model is

then fine-tuned with the related train-val set.

The learning rate α is set to 10−3 during pretraining.

During fine-tuning, α is initialized to 10−4 and decreased

by half every time the validation error flats, down to a fi-

nal learning rate 10−6. The other hyperparameters in Al-

gorithm 1 are set as follows: λs = 10, λm = 10, G0 =
0.25, P = 1.75, ξ = 107.

Evaluation metric. For all the experiments, we adopt

the word error rate (WER) as the measurement, which is

defined as WER = S+D+I
NUM

, where S,D, I is the number of

substituted, deleted, and inserted words respectively to get

from the reference to the inference, and NUM is the total

number of words in the reference.

4.3. Comparisons with state­of­the­arts

We compare our method with several state-of-the-art

methods, including MT [8], Temporal Convolution [23],

WAS [7], Bi-LSTM [23], TM-CTC [1], TM-Seq2Seq [1],

Conv-Seq2Seq [27], LIBS [29], and TM-CTC-KD [31].
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Table 2: Quantitative evaluation (WER) with the state-

of-the-art methods on LRW, LRS2-BBC, and LRS3-TED.

Note that Ours-TC and Ours-TM respectively indicate

model (a) and model (b) described in Sec 3.2.

Method
WER(%)

LRW LRS2 LRS3

MT [8] 38.9 - -

Tem. Conv. [23] 25.4 - -

WAS [7] 23.8 70.4

Bi-LSTM [23] 17.0 - -

TM-CTC [1] - 65.0 74.7

TM-Seq2Seq [1] - 49.8 59.9

Conv-Seq2. [27] 16.3 51.7 60.1

LIBS [29] - 65.3 -

TM-CTC-KD[31] - 51.3 59.8

(a) Ours-TC 18.7 - -

(b) Ours-TM 14.3 49.2 59.0

Unless stated otherwise, all the reported results are directly

copied from the original papers.

Word-Level Lip Reading. Table 2 reports the quan-

titative comparisons with existing approaches from LRW

dataset, regarding word-level lip reading. It can be seen

that, Ours-TC significantly outperforms its baseline Tempo-

ral Convolution which is without the master module, with a

WER improvement of 6.7%. Besides, Ours-TM achieves

the best performance compared to all the other methods. In

particular, it acquires an increase of 2% in WER compared

to that of the second best method Conv-Seq2Seq.

Sentence-Level Lip Reading. We also performed ex-

periments on sentence-level lip reading, and the results are

listed in the last two columns of Table 2. It can be observed

that Our-TM performs the best on both LRS2-BBC and

LRS3-TED in comparison with the other methods. More

importantly, compared to TM-Seq2Seq, which incorporates

a same backend as Ours-TM and is trained on an extra non-

public dataset MV-LRS, our method achieves a better per-

formance with WER improvements 0.6% on LRS2-BBC

and 0.9% on LRS3-TED in the case of using much less

training data. Furthermore, compared to Conv-Seq2Seq,

which uses a more advanced structure than that of our task-

specific network (the student), Ours-TM still achieves bet-

ter performance, with WER improvements 2.5% on LRS2-

BBC, 1.1% on LRS3-TED.

Tendency of misrecognition. We further investigate the

top-4 cases on LRW with the highest error rate and list the

comparison results of Ours-TC w/o KD and Ours-TC in

Table 3. It can be observed that when multiple phonemes

are mapped to one viseme, e.g., phonemes TH and DH vs.

viseme /t/, our method can reach an average improvement

of nearly 6% in accuracy with the comparison.

Combining all the above observations, it implies that: (i)

Table 3: The error rate (%) of misrecognition on LRW.

Method
Top-4 cases

‘THESE’ ‘THERE’ ‘THING’ ‘UNDER’

Ours-TC w/o KD 74% 70% 70% 66%

Ours-TC 70% 59% 68% 60%

Table 4: WER(%) results for the teachers, the masters and

the students learned from different pretrained teachers or

co-evolved masters.

Method Distilled from LRS2-BBC

Audio Teacher % 17.2

Student1 Audio Teacher 54.2

Video Teacher % 57.5

Student2 Video Teacher 53.4

Audio-Visual Teacher % 15.6

Student3 Audio-Visual Teacher 54.1

Audio Master % 19.1

Student4 Audio Master 52.1

Video Master % 59.1

Student5 Video Master 53.0

Audio-Visual Master % 16.9

Student6 Audio-Visual Master 51.5

Introducing the proposed master can effectively promote the

performance of our task-specific network. (ii) Though our

model mainly focuses on the benefits over standard distil-

lation methods, it has the potential to achieve better perfor-

mance when replacing the architecture of the task-specific

network with a more advanced one.

4.4. Ablation Study

In this section, we investigate the effectiveness of our

proposed modules, including the master network, the cross-

modal gap fusion, and the curriculum learning strategy. We

use a single-modal lip-reading network as baseline, i.e.,

Video Teacher in Table 4.

Effectiveness of the Master. To explore the efficacy of

the master, we examined 6 different pairs of teacher-student

or master-student designs based on different modalities, and

tested their performances on LRS2-BBC. The results are

summarized in Table 4. Note that the reported performance

of the Audio-Visual Master comes from its AV branch, and

the architectures of the pretrained teachers are totally the

same as those of their counterpart trainable masters. Be-

sides, the curriculum learning strategy is not used here.

Then we have the following observations and analyses. (i)

In the case of single models without KD, no matter whether

the models are trainable (i.e., the masters) or not (i.e., the

teachers), the descending order of their performance in dif-

ferent modalities is always {audio-visual modality (AV),

audio modality (A) and video modality (V)}. This verifies

the importance of learning from cross-modal data instead of
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Table 5: WER (%) results with different weight settings.

Method Weight w.r.t. modality LRS2-BBC

AV : A : V

Baseline 0 : 0 : 0 57.5

T1 1 : 0 : 0 54.1

T2 0 : 1 : 1 53.1

T3 1 : 1 : 1 53.2

M1 1 : 0 : 0 51.5

M2 0 : 1 : 1 51.9

M3 1 : 1 : 1 50.4

M4 1 : wa: wv 49.6

single-modal data. (ii) In the cases of distilling knowledge

from the teachers and the masters, the descending orders

of the performance of the students in different modalities

are always {V, AV, A} and {AV, A, V}, respectively. The

first sorting order implies that, compared to audio modal-

ity, audio-visual modality could provide additional informa-

tion and thus help to alleviate the ambiguities caused by the

cross-modal gap, but using a simple fusion strategy (con-

catenation) is limited. Whereas the other sorting order re-

veals the effectiveness of the master that could reduce the

cross-modal gap to some extent, due to its dynamic regula-

tion based on the task-specific feedback of the student. (iii)

No matter which modality is used, the teachers always per-

form better than their counterpart masters. While no matter

which modality is used, the students learned from the mas-

ters perform better than those learned from the teachers all

the time. These facts demonstrate that the proposed mas-

ter is more effective than a pretrained teacher because of its

adaptability to the student, although a sacrifice in its own

performance is obtained.

Effectiveness of Cross-Modal Gap Fusion. A simple

fusion strategy by concatenating the features from cross

modalities shows a limitted improvement, which is verified

in Table 4. This motivates us to come up with the design

of cross-modal gap fusion. Further, to evaluate the effec-

tiveness of this module, we examined 7 different and repre-

sentative weight settings and reported the results in Table 5.

Note that “T” and “M” respectively indicate that the student

is distilled from a teacher or a master, and the curriculum

learning strategy is also not used here. We have the fol-

lowing observations and analyses: (i) T1 performs worse

than T2, and T2 performs similarly to T3. It seems that in-

troducing AV modality is not a better choice compared to

incorporate {A,V}; (ii) However, both M1 and M3 perform

better than M2. This reveals the importance of the interac-

tion between audio stream and visual stream in the master,

which confirms the necessity of AV. Furthermore, A and

V are also useful but should be treated dynamically rather

than equally. As a result, M4 achieves the best performance

Table 6: Quantitative evaluation (WER) with more ad-

vanced backends on LRW. B.-2 and B.-8 are respectively

short for baselines with 2 and 8 TC layers. Training time is

reported in parentheses.

Method B.-2 Ours-TC B.-8 Ours-TC [18] Ours-TC

Distilled? % " % " % "

w/o CL - 19.8(70h) - 14.0(77h) - 11.9(81h)

w/ CL 24.3 18.7(64h) 17.0 13.5(71h) 14.7 11.8(75h)

compared to other methods, proving the effectiveness of the

proposed cross-modal gap fusion module. Note that we fix

the weight of AV to avoid increasing the system complexity.

Effectiveness of Curriculum Learning on various

backends. The proposed method has a specific focus on

distillation performance and thus a lightweight structure (2

TC layers in the backend) is used. However, our work

can be used as a plug-in for any state-of-the-art method,

like [18] which uses a more advanced backend. To demon-

strate the effectiveness of our curriculum learning (CL)

strategy, as well as the superiority of our framework, Ta-

ble 6 reports the corresponding comparisons that replacing

our backend from 2 TC layers to 8 TC layers and the one

used in [18]. Note that here we only use LRW as training

data, which is the same training setting as in [18]. It can

be seen that, when using a lightweight model, CL would be

helpful to improve the performance of our method as well

as acceralating convergence. Nonetheless, when replacing

with an advanced model, the improvement of CL degrades,

and it mainly helps to accelerate the training. Specifically,

our method can achieve better performance against the com-

parisons, and still outperforms [18] when without CL. This

reveals the power of our CL strategy and tailored distillation

approach.

5. Conclusion

In this paper, we propose a novel framework for lip read-

ing based on knowledge distillation. Instead of distilling

knowledge from a pretrained audio teacher, we particularly

introduce a trainable master into our model. With the aid of

the task-specific feedback from the student, the cross-modal

gap fusion module, and the curriculum learning strategy,

the master could adjust its teaching contents to the student

adaptively. Extensive experiments demonstrate the validity

of the proposed method.
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