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Abstract

Objects moving at high speed appear significantly

blurred when captured with cameras. The blurry appear-

ance is especially ambiguous when the object has complex

shape or texture. In such cases, classical methods, or even

humans, are unable to recover the object’s appearance and

motion. We propose a method that, given a single image

with its estimated background, outputs the object’s appear-

ance and position in a series of sub-frames as if captured by

a high-speed camera (i.e. temporal super-resolution). The

proposed generative model embeds an image of the blurred

object into a latent space representation, disentangles the

background, and renders the sharp appearance. Inspired by

the image formation model, we design novel self-supervised

loss function terms that boost performance and show good

generalization capabilities. The proposed DeFMO method

is trained on a complex synthetic dataset, yet it performs

well on real-world data from several datasets. DeFMO out-

performs the state of the art and generates high-quality tem-

poral super-resolution frames.

1. Introduction

Object blurring is a challenging problem in many image

processing and computer vision tasks. The primary sources

of image blur are rapid camera motion and object motion

combined with long exposure time. Many methods were

proposed to address the deblurring task, ranging from image

deblurring [14, 35] to video temporal super-resolution [19,

31, 34]. However, they consider only low to medium blur,

emerging from global camera blur due to camera motion,

defocused camera, or objects moving at moderate speed.

Only recently, specialized algorithms for the deblurring

of fast moving objects (FMOs) have been introduced [10,

11, 27]. FMOs are defined as objects that move over a

distance larger than their size within the camera exposure

time (or within a single time frame in video). FMO detec-

tion is important in tracking sports with fast object motion

like soccer, tennis, or badminton. It is also beneficial in au-
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Figure 1. Temporal super-resolution. Given an input image I

depicting a blurred fast moving object and an estimated back-

ground B, DeFMO decomposes the image into a series of de-

blurred sub-frames with sharp object contours. Examples are from

test datasets [10, 11, 27], mobile device footage (lighter), and

YouTube videos (mic, cap). Ground truth (GT) corresponds ei-

ther to the high-speed camera frame or a static image. Deblurred

images It are sharper than the ’GT’, e.g.’pen’ or ’key’.

tonomous driving to detect impacts with stones, birds, or

other wildlife. FMOs are frequently found when capturing

falling or thrown objects like pieces of fruit, leaves, flying

insects, hailstorm, or rain. Any moving object becomes an

FMO in low-light conditions or for long exposure. In other

words, one needs to increase the exposure time or the speed

of the object to observe an FMO.

We consider a setting where the input is an image with an

object moving fast and thus appearing blurred. The task is

to reconstruct the hypothetical sub-frames that would have

been there if this was a short video captured by a high-speed
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camera for the same time interval. The physical generative

model that leads to the input blurred frame is assumed to be

a temporal integration of underlying sharp sub-frames, each

of which has a much shorter exposure time. To simplify the

problem complexity, we assume that background without

the object is given, e.g. from previous frames in the video

or as a static image captured when there is no object. In

practice, a median of several previous frames works well.

Prior work on FMO deblurring considers only relatively

simple, mostly spherical objects [11, 26, 27]. This prior

work typically assumes that the object in motion has a con-

stant appearance in all sub-frames.

We propose DeFMO – the first to go beyond these as-

sumptions by handling the time-varying complex appear-

ance of fast moving objects that move over 3D trajectories

with 3D rotation. DeFMO is a generative model that recon-

structs sharp contours and appearance of FMOs. First, we

disentangle the blurred fast moving object from the back-

ground into a latent space. Then, a rendering network has

the objective to render the sharp object in a series of sub-

frames, capturing the motion in time. The network is trained

end-to-end on a synthetic dataset with complex, highly tex-

tured objects. Thanks to self-supervised loss function terms

inspired by the image formation model with FMOs, our

method easily generalizes to real-world data, as shown in

Fig. 1. DeFMO can be applied to many fields, such as video

temporal super-resolution, data compression, surveillance,

astronomy, and microscopy. Overall, the paper makes the

following contributions:

• We present the first fully neural network model for FMO

deblurring that bridges the gap between deblurring, 3D

modeling, and sub-frame tracking of FMOs.

• Training only on synthetic data with novel self-

supervised losses sets a new state of the art in terms of

trajectory and sharp appearance reconstruction of FMOs.

• We introduce a new synthetic dataset with complex ob-

jects, textures, and backgrounds. The dataset and model

implementation are made publicly available1.

2. Related work

Fast moving objects were defined in [26], and a proof-

of-concept method was designed. The blurring and matting

(blatting) equation was later introduced in [11, 12] as

I = H ∗ F + (1−H ∗M)B , (1)

where the sharp object given by foreground appearance F
and segmentation mask M is blurred and combined with

the background B. The blur kernel H identifies the object’s

trajectory such that ‖H‖ = 1. An additional constraint is

F ≤ M , i.e. 0s in M (background) imply 0s in F .

1https://github.com/rozumden/DeFMO

The blatting equation (1) assumes that the object appear-

ance F is static within one video frame I . In contrast to our

approach, the object must also travel in a 2D plane parallel

to the camera plane. Kotera et al. [10] study the special case

that a planar FMO only rotates within a 2D plane parallel to

the camera plane. An improved motion blur prior for FMOs

was proposed in [33]. Learned FMO detection is studied in

[28]. Some of the limiting assumptions of TbD were lifted

by the TbD-3D [27] method that assumed a piece-wise con-

stant appearance as

I =
∑

i

Hi ∗ Fi +
(

1−
∑

i

Hi ∗Mi

)

B , (2)

where index i corresponds to one part of the full trajectory

H =
∑

i Hi traveled within one frame I . Sub-frame ap-

pearances Fi and masks Mi account for a potentially ro-

tating or deforming object. Solving (2) simultaneously for

Hi, Fi,Mi is in practice computationally infeasible. To ad-

dress this problem, TbD-3D solves (2) for Fi, Mi by ini-

tially assuming a simpler static appearance model (1) to es-

timate the trajectory H , then splitting the trajectory into the

desired number of pieces, and finally estimating the sub-

frame appearances in a second pass while keeping the tra-

jectory fixed. We claim that solving (2) in such a fash-

ion is sub-optimal and similar to a chicken-and-egg prob-

lem since robust trajectory estimation requires to model the

time-varying appearance and vice versa. Hence, TbD-3D

strongly depends on the initial trajectory estimation from

an external module, such as TbD [11] or TbD-NC [25]. In

practice, TbD-3D only works when the object has a trivial

shape (e.g. a sphere) or appearance (e.g. uniform color).

Methods, such as [22] or [7], have been proposed to gen-

erate a video from a single image, but fast motion is not con-

sidered. Blurry video frame interpolation [6, 31], softmax

splatting [19], or zooming slow-motion [34] are designed

for video frame interpolation to increase the frame rate from

several blurred inputs. Still, the considered motion blurs are

small compared to what is caused by FMOs.

Classical deblurring methods have shown success,

such as DeblurGAN-v2 [14], deblurring by realistic blur-

ring [35], deblurring using deep priors [24], and oth-

ers [17, 20]. These methods assume that anything in the

scene can be blurred. In our task, we assume a single ob-

ject blurred due to its fast motion. Moreover, these methods

generate only one deblurred frame, which is not sufficient

for FMOs, where the desired result is a set of deblurred

high-speed sub-frames. In the experiments, we compare to

DeblurGAN-v2 [14] and Jin et al. [7]. As these methods are

more general, they perform worse than ours on the specific

case of blur caused by FMOs, on which we specialize.

In sum, all existing deblurring methods either lack

proper modeling of FMOs or strongly rely on handcrafted

priors and impose strong assumptions on the object’s shape

and appearance. Furthermore, current FMO deblurring
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Figure 2. Architecture of DeFMO. The input image and the estimated background are encoded into latent space X . Then, X is augmented

with time index channel t and is rendered into the deblurred object with appearance F and mask M . The renderings are generated for

many time indices simultaneously with the same rendering network and are averaged in time. We only use the blue part during testing.

methods are slow and take seconds per frame. They also

rely on other external modules. To address these prob-

lems, our method estimates complex shape and appearance

of FMOs, all in one network, and runs in real-time.

3. Deblurring model

The input to the method is an RGB image I : D ⊂ R
2 →

R
3 containing a blurred FMO and an estimate of the back-

ground B : D → R
3, which does not include the object of

interest. In most scenarios, a video stream is available, and

B can be estimated as a median of several previous frames,

as such an operation will remove all FMOs [11].

The desired output is a sharp rendering of the FMO for

all sub-frames at predefined sub-frame time indices t ∈
[0, 1] for which we estimate 4-channel RGBA renderings

Rt : D → R
4. These renderings are composed of an RGB

part Ft : D → R
3 (sharp appearance of the FMO) and an

alpha matting mask Mt : D → R (segmentation into fore-

ground FMO and background, Fig. 2).

We encode the input image I and background B into a

latent space X ∈ R
K . Then, we render a set of sub-frame

appearances, which are pushed to be sharp, time-consistent,

independent of the background, and which reconstruct the

input image with the following image formation model

It0:t1 =

∫ t1

t0

FtMt dt+
(

1−

∫ t1

t0

Mt dt
)

B , (3)

which is a generalization of the piecewise-constant FMO

formation model (2). Instead of (1) and (2), we render

the object directly at the desired location. We do not

disentangle the trajectory blur kernels Ht, which are just

Dirac deltas in our generalization (3). The multiplica-

tion of appearance Ft by mask Mt replaces the constraint

Ft ≤ Mt, e.g. predicting low values in the mask will im-

ply low values in FtMt. We assume that the input image

I = I0:1. For training, we partition the time duration of the

input frame into N equidistant parts to generate the sub-

frames, and evaluate t on the set { i−1
N−1}

N
i=1. For testing,

any t ∈ [0, 1] produces consistent renderings.

As a technicality, we render images as they were cap-

tured with nearly zero exposure time. Such an image at sub-

frame time index t is captured as It = limδ→0 It−δ:t+δ =
FtMt + (1 − Mt)B. In practice, we deliberately add

time blur for quantitative evaluation to match the high-

speed camera frames (see evaluation Sec. 5). Such

time blur is generated as temporal super-resolution by l,
{Ik/l:(k+ǫ)/l}

l−1
k=0, where ǫ is the exposure fraction. The

ability to generate zero-exposure-time images enables the

creation of any frame rates with any exposure time.

3.1. Training loss

The loss function is inspired by the nature of the prob-

lem. The main goal is to get sharp (LS) reconstructions

of the object (LF ) that do not contain the background

(LL), move smoothly over time (LT ), and reconstruct the

input image (LI ) according to the generalized formation

model (3). Therefore, the loss is a combination of five parts,

L = LF + αILI + αTLT + αSLS + αLLL . (4)

Appearance reconstruction loss LF captures the super-

vised sub-frame reconstruction of the object’s appearance

and mask. Since the input is a single blurred image, we do

not know whether time goes forward or backward. In fact,

both of them will generate the same blurred image. These

two cases are indistinguishable, as e.g. in determining tem-

poral order of images from 3D structure [30]. Therefore,

we evaluate both directions and calculate the loss only with

respect to the time direction that best aligns with the ground

truth. More precisely, we define LF as

LF

(

{Rt, R̃t}
1
0

)

= min
(

∫

1

0

LR(Rt, R̃t) dt,

∫

1

0

LR(Rt, R̃1−t) dt
)

,

(5)
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and the rendering loss LR for a pair of the estimated render-

ing Rt and the ground truth rendering R̃t as

LR

(

Rt = (Ft,Mt), R̃t = (F̃t, M̃t)
)

= L1(Mt, M̃t, M̃t > 0)

+ L1(Mt, M̃t, M̃t = 0) + L1(FtMt, F̃tM̃t, M̃t > 0) ,

(6)

where we combine three terms. The first two terms evaluate

the difference between masks on two sets of pixels: where

the object is present, and the rest of the image, as given by

the ground truth. The last term calculates the difference be-

tween the appearances, evaluated on the first set of pixels.

The intuition of this splitting is that the object usually oc-

cupies only a fraction of the input image, and we want the

loss to focus more on the object itself. Then, the L1 loss is

L1(M1,M2, O) =
1

|O|

∑

p∈D

‖M1(p)−M2(p)‖1O(p) , (7)

where M(p) denotes the value of the image M at pixel lo-

cation p. If the occupancy mask O is omitted, the whole

image domain D is assumed. The appearance reconstruc-

tion loss is the only one that requires ground truth object

renderings R̃t, i.e. it is the only supervised loss.

Image reconstruction loss LI is a direct application of the

generalized formation model (3). We penalize for the dif-

ference between the input image and the synthetic image

reconstructed from the input background and FMO render-

ings. The image reconstruction loss is defined as

LI({Ft,Mt}
1
0) = L1

(

I,

∫

1

0

FtMt dt+
(

1−

∫

1

0

Mt dt
)

B
)

, (8)

where we enforce the underlying physical model of tem-

poral integration. This loss and all the following ones are

self-supervised and do not require ground truth.

Time-consistency loss LT captures temporal smoothness

of the sub-frame renderings, according to the prior knowl-

edge of the problem. We expect that renderings Rt will be

similar for nearby t. Therefore, the similarity between ren-

derings at two different points in time is defined as the max-

imum value of normalized cross-correlation over the image

domain, which can be efficiently implemented on GPU us-

ing convolutions. To account for possible object translation,

we apply zero-padding of 10% of the image size to one of

the renderings. The loss is defined as

LT ({Rt}
1
0) = 1−

∫

1

0

maxncc(Rt, Rt+dt) dt . (9)

Sharpness loss LS enforces sharp image reconstruction,

which is the main task of deblurring. In the FMO setting,

the object sharpness is assessed by its mask. Enforcing the

mask to be binary is not ideal since we have mixed pixels at

object boundaries. However, almost all pixels are expected

to be close to zero or one. One mathematical way to express

this statement is to minimize the per-pixel binary entropy

H2 averaged over the image domain D,

LS({Mt}
1
0) =

∫

1

0

1

|D|

∑

p∈D

H2

(

Mt(p)
)

dt . (10)

Latent learning loss LL models the latent space such that

blurred images of the same FMO moving along the same

trajectory but in front of different backgrounds generate the

same latent representation. We achieve this by training in

such pairs of images, and compute the loss as

LL(X
1
, X

2) =
1

K
‖X1 −X

2‖1 , (11)

where X1 and X2 are latent spaces generated by the first

and the second images. All other losses, renderings and

computations are done only on the first image, i.e. relating

to X1. The latent learning loss especially helps in early

training stages and stabilizes the training.

Joint loss Even perfectly optimized joint loss will not nec-

essarily produce the ground truth renderings because some

parts of the loss function are biased. For example, the time-

consistency and sharpness losses are not minimized by the

ground truth renderings since the ground truth masks are

not binary on boundaries, and the appearance is not static.

Whether the ground truth renderings are the global mini-

mizers of the joint loss is an open research question.

Some parts of the joint loss can be loosely related

to the energy minimization terms in the TbD [11] and

TbD-3D [27] methods, e.g. appearance reconstruction

loss ≈ template-matching term [11], image reconstruction

loss ≈ data likelihood [11, 27], time-consistency loss ≈ reg-

ularization term enforcing similarity of the object in neigh-

boring time intervals [27]. Other regularizers, e.g. total vari-

ation, are expected to be data-driven and learned by the net-

work from the synthetic training set. In comparison to our

work, the previous methods are not neural network models,

are handcrafted, computationally slow, and do not handle

complex objects well (see Sec. 2).

4. Training and evaluation datasets

Real-world datasets for evaluation Only a small num-

ber of real-world annotated datasets with fast moving ob-

ject exists. The FMO dataset [26] contains 16 sports se-

quences, where FMOs are manually annotated with poly-

gons. It lacks ground truth (GT) sharp appearances, seg-

mentation masks, or even trajectories. The TbD dataset [11]

made a step further and captured 12 high-speed videos at

240 fps in raw format with full exposure. Subsequently,

low-speed videos at 30 fps were created by temporal averag-

ing. Ground truth was generated from the high-speed video

semi-manually by annotating the object in the first frame,

applying the state-of-the-art tracker [16], and correcting the

mistakes. Thus, ground truth for sharp appearances, masks,
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Figure 3. FMO reconstruction on a validation image from

the synthetic dataset. We compare to the TbD-3D-Oracle [27]

method (with ground truth trajectory). Flying table is synthetically

superimposed on the image of a table tennis game.

and full trajectory is provided in this dataset. However, the

dataset contains only sports videos with mostly spherical

objects and almost no appearance changes over time. To ad-

dress some of these shortcomings, the TbD-3D dataset [27]

was recorded in the same fashion as TbD, but capturing ob-

jects that significantly change their appearance within one

low-speed video frame. The dataset has only 10 sequences,

and the objects are all but one spherical. The recent Falling

Objects dataset [10] is the first to contain objects with non-

trivial shapes, e.g. box, pen, marker, cell, key, eraser. High-

speed videos are provided, but no GT trajectories.

We augmented the ground truth of [10] with trajectories

by running the tracker [16] with annotations – we provide

a manual box in the first frame, track the object, and cor-

rect the mistakes by re-initializing the tracker. We use this

augmented dataset for testing and in the ablation study.

Synthetic dataset for training is created due to the lack of

a large and diverse real-world annotated dataset with FMOs.

To create a synthetic image, we use triplets: an object, a

6D trajectory, and a background frame. Then, we render

the object along the given 6D trajectory using Blender Cy-

cles [3] to get a set of sub-frame renderings. Finally, we

apply the generalized formation model (3) to generate the

low-speed frame showing the blurred FMO.

Objects are sampled from 3D models of the 50 largest

classes of the ShapeNet [1] dataset, each class is repre-

sented uniformly. Since most ShapeNet objects are not

well-textured, we apply DTD [2] textures, as in the dataset

creation for the Neural Voxel Renderer [23]. The textures

are split into 1600 for training and 200 for validation.

Trajectories are sampled uniformly as linear with the dis-

placement in the range between 0.5 and 2 object sizes in x, y
image directions, and between 0 and 0.2 sizes in z direction

towards the camera. 3D rotations are sampled with a maxi-

mal rotation change of 30◦ in each direction. For rendering,

the trajectory is discretized into N = 24 equal parts.

Backgrounds are sampled from the VOT [13] sequences

for training, and from Sports-1M [8] for validation. For the
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Train Val Test – Falling Obj. [10]

LF LI LT LL LS PSNR↑ PSNR↑ PSNR↑ SSIM↑ TIoU↑

TbD-3D [27] 6.58 6.59 23.0 .695 .545

X ✗ ✗ ✗ ✗ 23.0 22.6 24.8 .691 .684

X X ✗ ✗ ✗ 22.5 22.2 25.5 .705 .653

✗ X X X X 11.6 10.9 19.7 .459 .347

X ✗ X X X 12.3 12.2 17.5 .362 .489

X X ✗ X X 21.6 21.5 25.8 .743 .673

X X X ✗ X 22.2 22.0 26.1 .739 .678

X X X X ✗ 22.4 22.2 26.4 .750 .676

X X X X X 22.5 22.4 26.4 .753 .703

Table 1. Ablation study of DeFMO. Training and validation

datasets are generated synthetically. Training without additional

self-supervised losses overfits to the training set (rows 2, 3). Val-

ues are color-coded, darker is better.

latent space learning, the foreground image is synthesized

on a pair of backgrounds. The background B that we use as

input to the method is estimated as a median over 5 previ-

ous frames. This way, the method gets exposed to complex

non-static backgrounds as the VOT dataset has a variety of

dynamic scenes but no other FMOs [26].

In total, we generate 50,000 training and 1,000 valida-

tion images (example in Fig. 3). The synthetic dataset is

more challenging than a real-world dataset (ablation study

Table 1). The reported metrics are better on the test dataset

(Falling Objects [12]) than on the synthetic training dataset,

which has more complex objects and textures.

Training settings Both the encoder and the rendering

networks are based on ResNet [4] with batch norm [5]

and ReLU [18]. The encoder is ResNet-50 cropped af-

ter the fourth down-sampling operator, pre-trained on Im-

ageNet [29]. The latent space is up-scaled by 2 using pixel

shuffle [32] four times, each followed by ResNet bottleneck

(i.e. 1024, 256, 64, 16, 4 channels). We used ADAM [9] op-

timizer with fixed learning rate 10−3. For the input im-

age resolution w × h, the resolution of the latent space is

2048× w/16× h/16 = K (due to 4 down-sampling oper-

ators). The input to the rendering network is augmented by

copying the time index channel t along the first dimension,

leading to resolution 2049×w/16×h/16. In experiments,

we set w = 320 and h = 240. Loss weights are set as

αI , αS , αL = 1 and αT = 5. The encoder and the render-

ing networks have 23.5M and 20.1M parameters, respec-

tively. The model is implemented in PyTorch [21], trained

in 24 mini-batches on 3 nVidia 16GB GPUs. We trained for

50 epochs, which took approximately four days. For eval-

uation, the method runs in real-time on a single GPU and

works for various resolutions and sub-frame time indices.
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D
at

as
et

Typical Object Score
Inputs Compared Methods Proposed Traj. Oracle

B I Jin et al. [7] Debl.GAN [14] TbD [11] TbD-3D [27] DeFMO TbD-3D-Or.

F
al

li
n
g

[1
0

]

TIoU↑ N/A N/A N/A N/A 0.539 0.539 0.684 1.000

PSNR↑ 19.71 23.76 23.54 23.36 20.53 23.42 26.83 23.38

SSIM↑ 0.456 0.594 0.575 0.588 0.591 0.671 0.753 0.692

T
b
D

-3
D

[2
7

]

TIoU↑ N/A N/A N/A N/A 0.598 0.598 0.879 1.000

PSNR↑ 19.81 24.80 24.52 23.58 18.84 23.13 26.23 24.84

SSIM↑ 0.426 0.640 0.590 0.603 0.504 0.651 0.699 0.705

T
b
D

[1
1

] TIoU↑ N/A N/A N/A N/A 0.542 0.542 0.550 1.000

PSNR↑ 21.48 25.06 24.90 24.27 23.22 25.21 25.57 26.36

SSIM↑ 0.466 0.568 0.530 0.537 0.605 0.674 0.602 0.712

Runtime (on 240× 320) N/A N/A 2 fps 10 fps 0.01 fps 0.001 fps 20 fps 0.001 fps

Table 2. Evaluation on: Falling Objects [10], TbD-3D [27], TbD [11] datasets2. The datasets are sorted by decreasing difficulty: arbitrary

shaped and textured [10], mostly spherical but significantly textured [27], and mostly spherical and uniformly colored objects [11]. DeFMO

is superior to the compared methods by a wide margin on all datasets except for the easiest [11] since the TbD(-3D) methods [11, 27] are

specifically designed for such easy cases. TbD-3D-Oracle [27] is given ground truth trajectories and estimates only sub-frame appearance.

5. Evaluation

We evaluated DeFMO on several datasets2 (Sec. 4)

and compared it to the state of the art. Evaluation met-

rics are PSNR (peak signal-to-noise ratio), SSIM (struc-

tural similarity index measure), and TIoU (Intersection over

Union averaged along the trajectory) [11]. We compare to

FMO deblurring methods based on energy minimization:

TbD [11], TbD-3D [27], and TbD-3D-Oracle (where we

provide the ground truth trajectory). All FMO deblurring

methods and ours use the same estimate of the background –

a median of the previous 5 frames. We also compare to

two state-of-the-art generic deblurring and temporal super-

resolution methods: DeblurGAN-v2 [14] (generates a sin-

gle output, compared to the best aligned high-speed frame)

and Jin et al. [7] (generates a mini-video, the same com-

parison to GT as for DeFMO). We do not compare to the

method [10] since it covers a very special case of a con-

stant planar appearance with 2D rotation parallel to the im-

age plane, and for the general case, it is inferior to TbD-

3D [27]. The authors of [10] introduced the Falling Ob-

jects dataset but evaluated only qualitatively on three cho-

sen frames where the object appearance was constant.

The high-speed video is available at 8 times higher

frame rate than the low-speed video, both at full expo-

sure. Therefore, we generate full exposure (ǫ = 1) tem-

poral super-resolution for quantitative evaluation to match

the high-speed frames. As discussed in Sec. 3, we generate

{Ik/8:(k+1)/8}
7
k=0 according to (3), and discretize each in-

tegral by 5 parts. For qualitative results, we reconstruct ob-

jects as sharp as possible and visualize zero exposure tem-

poral super-resolution. Since our temporal super-resolution

task is done from a single image, the direction of time is am-

2https://github.com/rozumden/fmo-deblurring-benchmark/
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Figure 4. Trajectory estimation on sequences from the TbD-3D

dataset [27] (left) and Falling Objects dataset [10] (right).

biguous. Hence, we compute scores for both directions and

report the best one (for all methods). FMOs are retrieved

and approximately localized by the bounding box using the

FMO detector [26]. Sub-frame trajectory (Fig. 4) is esti-

mated as the center of mass of the generated masks Mt.

Falling Objects dataset Most previous methods fail on this

challenging dataset (Table 2, top block [10]), mainly be-

cause the objects change their appearance too much within

one frame (Fig. 7). DeFMO outperforms all others in

all metrics on this dataset. It even outperforms TbD-3D-

Oracle, although that method requires GT trajectories as in-

put, which are not available in real-world scenarios.

TbD-3D dataset Table 2 (middle block [27]) shows that

DeFMO outperforms all other methods not using the ground
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Figure 5. Temporal super-resolution on selected sequences from test datasets. We compare to the TbD-3D-Oracle [27] with the

manually provided ground truth trajectory from a high-speed footage (GT). Ground truth masks are computed as a difference image

between the GT sub-frame and the background. The proposed DeFMO method estimates everything just from inputs on the left.

Input I [14] F1 M1 I1 Static

Figure 6. FMOs in the wild, captured by a mobile device and

reconstructed by DeFMO and DeblurGAN-v2 [14]. Our results

are shown in 3 columns: estimated appearance F1, mask M1, and

the composed temporal super-resolution I1. Other methods, such

as TbD [11] and Jin et al. [7], do not produce competitive results.

truth trajectory. DeFMO compares well even against TbD-

3D-Oracle (better PSNR, slightly worse SSIM).

TbD dataset contains objects that are mostly spherical

and with constant appearance. In this simplistic setting,

DeFMO is slightly worse than TbD(-3D) methods on the

SSIM metric (Table 2, bottom block [11]). On PSNR and

TIoU metrics, DeFMO is the best-performing method. Note

that TbD(-3D) methods are specifically designed for such

simple objects and work well there. Our method is more

general and does not have assumptions of spherical or con-

stant objects. However, DeFMO is several orders of magni-

tude faster but comparable in performance there. One way

to improve the performance on such objects is to generate a

synthetic training set with objects of constant appearance.

Ablation study in Table 1 validated that the self-supervised

losses (i.e. all except for the supervised appearance recon-

struction loss LF ) have a positive impact on the conver-

gence and generalization of the overall model. Neglecting

the sharpness loss LS generates more blurry object bound-

aries, which preserves the reconstruction quality but makes

the trajectory less precise. Training with only the appear-

ance reconstruction loss leads to overfitting to the training

set. At the other extreme, training in fully self-supervised

fashion completely fails (Table 1, row 4). We observed that

the main problem was in identifying the object of interest

and balancing the importance of the background motion.

The combination of supervised and self-supervised losses

shows the best performance.

Discussion None of the objects in the test datasets are

present in ShapeNet but are still successfully reconstructed

by our method. DeFMO can also reconstruct a deforming

object (Fig. 5, aerobie), even though only rigid bodies were

used during training. The method is able to deblur other

dynamic objects simultaneously if their motion is similar to

the object of interest, e.g. the volleyball in Fig. 1.

Limitations When the object’s appearance is similar to the

background color, the problem becomes severely ill-posed.

For instance, the black tip of the marker in Fig. 7 is not

reconstructed, as the object was moving in front of the black

background, and both reconstructions with and without the

tip correctly lead to almost the same input image.

The method is not designed for objects made of transpar-
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Figure 7. Comparison on the Falling Objects dataset [10] with the state-of-the-art methods: Jin et al. [7], DeblurGAN-v2 [14], TbD [11],

TbD-3D [27] and TbD-3D-Oracle that uses GT trajectories. For each method (except [7, 14] only showing deblurred results), we show

from left to right: estimated mask, estimated sharp appearance, and temporal super-resolution frames for t = 0 (top) and t = 1 (bottom).

ent materials, e.g. bottle, glass. The two sources of trans-

parency, background-foreground mixing due to fast motion

and the transparent material, are too difficult to distinguish.

Applications of the proposed method include temporal

super-resolution (Fig. 5). It can be used in fields such as

astronomy to reconstruct the appearance of fast asteroids

or data compression to decrease the frame rate at which a

video is stored and then recover it back with DeFMO. Other

applications are ball detection in sports and estimation of its

speed or full 3D reconstruction of a highly blurred object by

applying shape-from-silhouettes [15]. In combination with

a standard tracker, DeFMO can track objects that are FMOs

during parts of a video and not blurry in other parts.

DeFMO also works on sequences recorded in real-life

settings, as on a mobile device. We captured videos of hand-

thrown objects with a standard frame rate of 30 fps. Exam-

ple of their reconstruction is in Fig. 6 (shoes) and in Fig. 1

(lighter). FMO reconstruction of objects from YouTube

videos is in Fig. 1 (mic, cap). More examples and videos

are available in the supplementary material.

6. Conclusion

We proposed a novel generative model for disentangling

and deblurring of fast moving objects. Training on a com-

plex synthetic dataset with a carefully designed loss func-

tion incorporating prior knowledge of the problem scales

well to real-world data. Experimental results show that the

proposed model can handle fast moving objects with com-

plex shapes and significant appearance changes within one

video frame. DeFMO sets a new state of the art as it outper-

forms all previous methods on multiple datasets. Temporal

super-resolution is among the possible applications.
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