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Abstract

Action segmentation refers to inferring boundaries of se-

mantically consistent visual concepts in videos and is an

important requirement for many video understanding tasks.

For this and other video understanding tasks, supervised

approaches have achieved encouraging performance but re-

quire a high volume of detailed frame-level annotations.

We present a fully automatic and unsupervised approach

for segmenting actions in a video that does not require any

training. Our proposal is an effective temporally-weighted

hierarchical clustering algorithm that can group semanti-

cally consistent frames of the video. Our main finding is

that representing a video with a 1-nearest neighbor graph

by taking into account the time progression is sufficient

to form semantically and temporally consistent clusters of

frames where each cluster may represent some action in the

video. Additionally, we establish strong unsupervised base-

lines for action segmentation and show significant perfor-

mance improvements over published unsupervised methods

on five challenging action segmentation datasets. Our code

is available.1

1. Introduction

Human behaviour understanding in videos has tradi-

tionally been addressed by inferring high-level semantics

such as activity recognition [12, 3]. Such works are of-

ten limited to tightly clipped video sequences to reduce

the level of labelling ambiguity and thus make the prob-

lem more tractable. However, a more fine-grained under-

standing of video content, including for un-curated content

that may be untrimmed and therefore contain a lot of ma-

terial unrelated to human activities, would be beneficial for

many downstream video understanding applications. Con-

sequently, the less-constrained problem of action segmen-

tation in untrimmed videos has received increasing atten-

tion. Action segmentation refers to labelling each frame of

1https://github.com/ssarfraz/FINCH-Clustering/tree/master/TW-FINCH

a video with an action, where the sequence of actions is

usually performed by a human engaged in a high-level ac-

tivity such as making coffee (illustrated in Figure 1). Action

segmentation is more challenging than activity recognition

of trimmed videos for several reasons, including the pres-

ence of background frames that don’t depict actions of rel-

evance to the high-level activity. A major challenge is the

need for significantly more detailed annotations for super-

vising learning-based approaches. For this reason, weakly-

and unsupervised approaches to action segmentation have

gained popularity [34, 27, 18, 32]. Some approaches have

relied on natural language text extracted from accompany-

ing audio to provide frame-based action labels for training

action segmentation models [2]. This of course makes the

strong assumption that audio and video frames are well-

aligned. Other approaches assume some a priori knowl-

edge of the actions, such as the high-level activity label or

the list of actions depicted, in each video [11, 34]. Even

this level of annotation however, requires significant anno-

tation effort for each training video as not all activities are

performed using the same constituent actions.

Most weakly- and unsupervised methods, whatever their

degree of a priori knowledge, focus on acquiring pseudo-

labels that can be used to supervise training of task-specific

feature embeddings [22, 32, 9, 26, 28, 34]. As pseudo-

labels are often quite noisy, their use may hamper the effi-

cacy of the learned embeddings. In this work, we adopt the

view that action segmentation is fundamentally a grouping
problem, and instead focus on developing clustering meth-

ods that effectively delineate the temporal boundaries be-

tween actions. This approach leads to an illuminating find-

ing: for action segmentation, a simple clustering (e.g., with

Kmeans) of appearance-based frame features achieves per-

formance on par with, and in some cases superior to, SoTA

weakly-supervised and unsupervised methods that require

training on the target video data (please refer to section 3 for

details). This finding indicates that a sufficiently discrimi-

native visual representation of video frames can be used to

group frames into visually coherent clusters. However, for

action segmentation, temporal coherence is also critically
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φ Take cup Spoon Powder Pour Milk Stir Milk φ 

Figure 1. Segmentation output example from Breakfast Dataset [14]: P46 webcam02 P46 milk. Colors indicate different actions in chrono-

logical order: ϕ, take cup, spoon powder, pour milk, stir milk, ϕ, where ϕ is background shown in while color.

important. Building on these insights, we adapt a hierarchi-

cal graph-based clustering algorithm to the task of temporal

video segmentation by modulating appearance-based graph

edges between frames by their temporal distances. The re-

sulting spatio-temporal graph captures both visually- and

temporally-consistent neighbourhoods of frames that can be

effectively extracted. Our work makes the following main

contributions:

• We establish strong appearance-based clustering base-

lines for unsupervised action segmentation that outper-

form SoTA models;

• We propose to use temporally-modulated appearance-

based graphs to represent untrimmed videos;

• We combine this representation with a hierarchical

graph-based clustering algorithm in order to perform

temporal action segmentation.

Our proposed method outperforms our strong baselines and

existing SOTA unsupervised methods by a significant mar-

gin on 5 varied and challenging benchmark datasets.

2. Related Work

There exists a large body of work on spatial and spatio-

temporal action recognition in videos (see [12, 3] for recent

surveys). In this section we review works related to our

problem of interest, temporal action segmentation, focusing

on weakly- and unsupervised methods.

Most existing temporal action segmentation methods, be

they fully supervised [8, 14, 17], weakly supervised [34,

22, 28, 11] or unsupervised [18, 32, 2], use frame-level

annotations to train their models. They differ in whether

the annotations are collected by human annotators or ex-

tracted in a semi- or unsupervised manner. These mod-

els largely follow a paradigm in which an embedding is

trained on top of pre-extracted frame-level video features,

such as I3D [5], as in [34, 11], or hand-crafted video

features such as improved dense trajectories IDT [38], as

in [22, 32, 18, 9, 26]. To train the embedding, a dis-

criminative objective function is used in conjunction with

the collected annotations [22, 32, 9, 26, 28, 34]. Weakly-

supervised and unsupervised methods, discussed next, vary

largely in the manner in which they extract and exploit

pseudo-labels.

Weakly-supervised methods generally assume that both

the video-level activity label and the ordering of actions,

termed transcripts, are known during training. Some

weakly-supervised works have a two-stage training process

where pseudo-labels are first generated using transcripts and

then used to train a frame classification network [16, 26]. In

contrast, the method NN-Vit [28] directly leverages tran-

scripts while learning a frame classification model. For this

they introduce a loss based on Viterbi decoding that en-

forces consistency between frame-level label predictions.

In a similar spirit, a recent proposal called MuCoN [34]

aims to leverage transcripts while learning a frame classi-

fication model. They learn two network branches, only one

of which has access to transcripts, while ensuring that both

branches are mutually consistent. Another recent method

called CDFL [22] also aims to use transcripts when train-

ing their frame labelling model. They first build a fully-

connected, directed segmentation graph whose paths rep-

resent actions. They then train their model by maximiz-

ing the energy difference between valid paths (i.e paths that

are consistent with the ground-truth transcript) and invalid

ones. In SCT [11], the authors assume that the set of ac-

tion labels for a given video, but not their order, is known.

They determine the ordering and temporal boundaries of the

actions by alternatively optimizing set and frame classifica-

tion objectives to ensure that frame-level action predictions

are consistent with the set-level predictions.

Unsupervised methods generally assume knowledge only

of the video-level activity label [32, 2, 18, 1, 36]. In Mal-

low [32], the authors use video-level annotations in an itera-

tive approach to action segmentation, alternating optimiza-

tion of a discriminative appearance model and a generative

temporal model of action sequences. In Frank-Wolfe [2],

video narrations are extracted using ASR and used to extract

an action sequence for a set of videos of an activity. This

is accomplished by separately clustering the videos and the

ASR-recovered speech to identify action verbs in the spe-
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cific video. Temporal localization is then obtained by train-

ing a linear classifier. CTE [18] proposes to learn frame

embeddings that incorporate relative temporal information.

They train a video activity model using pseudo-labels gen-

erated from Kmeans clustering of the videos’ IDT features.

The trained embeddings are then re-clustered at the ground-

truth number of actions and ordered using statistics of the

relative time-stamps with a GMM+Viterbi decoding. VTE-

UNET [36] uses similarly learned embeddings in combina-

tion with temporal embeddings to improve upon [18]. An-

other interesting approach is LSTM+AL [1], which fine-

tunes a pre-trained VGG16 model with an LSTM, using

future frame prediction as a self-supervision objective, to

learn frame embeddings. These embeddings are then used

to train an action boundary detection model.

All of these methods require training on the target video

dataset, which from a practical standpoint is a very restric-

tive requirement. In contrast, our method does not require

any training, and relies only on frame clustering to segment

a given video.

3. Method

As mentioned in the introduction, unsupervised temporal

video segmentation is inherently a grouping and/or cluster-

ing problem. We observe that, given a relatively good video

frame representation, the boundaries of actions in a video

are discernible without the need for further training on ob-

jectives that use noisy pseudo-labels, something that almost

all current methods pursue. To substantiate this observa-

tion and to have a basis for our later discussion we provide

results of directly clustering a commonly used untrimmed

video benchmark (Breakfast dataset [14] with 1712 videos)

in Table 1. The goal of clustering is to group the frames of

each video into its ground-truth actions. We consider two

representative clustering methods: (1) Kmeans [23], repre-

senting centroid-based methods; and (2) a recent proposal

called FINCH [31], representing state-of-the-art hierarchi-

cal agglomerative clustering methods. We cluster the ex-

tracted 64-dim IDT features of each video to its required

number of actions (clusters). The performance is computed

by mapping the estimated cluster labels of each video to the

ground-truth labels using the Hungarian method, and the

accuracy is reported as mean over frames (MoF). Section 4

contains more details about the experimental setup. As can

be seen, simple clustering baselines Kmeans/FINCH per-

forms at par with the best reported weakly/un-supervised

methods in this video level evaluation. These results es-

tablish new, strong baselines for temporal video segmenta-

tion, and suggest that focusing on more specialized cluster-

ing techniques may be promising.

Among existing clustering methods, hierarchical cluster-

ing methods such as [31] are an attractive choice for the

task at hand, as such methods provide a hierarchy of par-

Weakly Sup. Unsupervised

CDFL [22] LSTM+AL [1] VTE-UNET [36] Kmeans FINCH

MoF 50.2 42.9 52.2 42.7 51.9

Table 1. Simple clustering with Kmeans or FINCH is competitive

with the best reported weakly or unsupervised methods.

titions of the data as opposed to a single partition. In this

paper we adopt a hierarchical clustering approach to action

segmentation that does not require video-level activity la-

bels. In contrast, the existing body of work requires not

only such prior knowledge but also requires training on the

target video data. The ability to generate a plausible video

segmentation without relying on training is highly desirable

from a practical standpoint. To the best of our knowledge

there is no existing prior work that addresses this challeng-

ing and practical scenario.

Our proposal is similar in spirit to the FINCH [31] al-

gorithm. The authors in [31] make use of the observa-

tion that the nearest and the shared neighbor of each sam-

ple can form large linking chains in the data. They define

an adjacency matrix that links all samples to their nearest

first neighbour, thus building a 1-nearest neighbor (1-NN)

graph. They showed that the connected components of this

adjacency graph partitions the data into fixed clusters. A re-

cursive application of this on the obtained partition(s) yields

a hierarchy of partitions. The algorithm typically provides

hierarchical partitions of the data in only a few recursion

steps.

Based on this observation of finding linking chains in

the data with nearest or shared neighbours, we propose a

similar hierarchical clustering procedure for the problem of

temporal video segmentation. We propose to use a spatio-

temporal graphical video representation by linking frames

based on their feature space proximity and their respective

positions in time. In particular, we would like this represen-

tation to encode both feature-space and temporal proximity.

We achieve this by using time progression as a modulating

factor when constructing the graph.

For a video with N frames X = {x1,x2, · · · ,xN}, we

define a directed graph G = (V,E) with edges describing

the proximity of frames in feature space and time. We con-

struct G by computing the frames’ feature space distances

and then modulating them by their respective temporal po-

sitions, using the following:

Gf (i, j) =

{

1− 〈xi ,xj〉 if i 6= j

1 otherwise
(1)

where Gf represents a graph with edge weights computed

in the feature-space. The inner product is computed on

L2-normalized feature vectors to ensure that the distance

is in the [0, 1] range. A similar graph Gt is defined in

the time-space, and edge weights are computed from the

time-stamps. For N frames the time-stamps are defined as
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T = {1, 2, · · · , N}, and the edge weights are computed as:

Gt(i, j) =

{

|ti − tj |/N if i 6= j

1 otherwise
(2)

The edges in Equation 2 represent the temporal difference

between the nodes, weighted by the total length of the se-

quence. Because we want to use the temporal graph as

a modulating factor for the feature-space graph, The term

|ti − tj |/N provides a weighing mechanism relative to the

sequence length. We then compute temporally-modulated

appearance-based distances as follows:

W (i, j) = Gf (i, j) ·Gt(i, j). (3)

W (i, j) therefore specifies the temporally weighted dis-

tance between graph nodes (i.e. frames) i and j. Finally,

from this we construct a 1-NN graph by keeping only the

closest node to each node (according to W (i, j)) and set-

ting all other edges to zero.

G(i, j) =

{

0 if W (i, j) > min
∀j

W (i, j)

1 otherwise
(4)

The 1-NN temporal graph G defines an adjacency ma-

trix where each node is linked to its closest neighbor ac-

cording to the temporally weighted distances W . For all

non-zero edges G(i, j), we make the links symmetric by

setting G(j, i) = 1. This results in a symmetric sparse ma-

trix that encodes both feature space and temporal distances,

and whose connected components form clusters. Note that

Equation 4 only creates absolute links in the graph and we

do not perform any additional graph segmentation steps.

In contrast, popular methods that build similar nearest-

neighbour graphs, such as spectral clustering [37], need to

solve a graph-cut problem that involves solving an eigen-

value decomposition and thus have cubic complexities.

The connected components of the graph in Equation 4

automatically partition the data into discovered clusters.

We use a recursive procedure to obtain further successive

groupings of this partition. Each step forms groups of

previously-obtained clusters, and the recursion terminates

when only one cluster remains. Because in each recur-

sion the graph’s connected components form larger linking

chains [31], in only a few recursions a small set of hier-

archical partitions can be obtained, where each successive

partition contains clusters of the previous partition’s clus-

ters.

The main steps of the proposed algorithm are shown in

Algorithm 1. After computing the temporal 1-NN graph

through Equations 1-4, its connected components provide

the first partition. We then merge these clusters recursively

based on the cluster averages of features and time-stamps.

Figure 2. Segmentation output on a video from Breakfast

Dataset [14]: Our method provides more accurate segment lengths

of actions occurring in this video.

Algo. 1 produces a hierarchy of partitions where each suc-

cessive partition has fewer clusters. To provide the required

number of clusters K we choose a partition in this hierar-

chy with the minimal number of clusters that is ≥ K. If

the selected partition has more than K clusters, we refine it,

one merge at a time as outlined in Algo. 2, until K clusters

(i.e. actions) remain.

Note that since in each successive merge time-stamps

represent the average or central time of the cluster, this

automatically ensures that merged clusters are highly tem-

porally consistent. This aspect of our proposal is impor-

tant as it may provides better temporal ordering of actions.

In temporal video segmentation, obtaining correct ordering

of actions is crucial and quite challenging. Existing SoTA

unsupervised methods [18, 32, 28] employ expensive post-

processing mechanisms such as Generalized Mallow mod-

els [24], Gaussian mixture models and Viterbi decoding to

improve the ordering of their predicted action segments.

In contrast, because of our temporal weighing, our clus-

tering algorithm inherently produces time-consistent clus-

ters, thus largely preserving the correct lengths of the ac-

tions occurring in a video. In Figure 2 we visualize the

obtained action segments and their order (by mapping the

obtained segments under Hungarian matching) on a sample

video. This video depicts 4 ground-truth clusters and has

≈ 800 frames. The first step of Algo. 1 (lines 4-5) pro-

vides a partition of these 800 frames with 254 clusters. The

successive merges of this partitioning produce 3 hierarchi-

cal partitions with 67, 20, 3 and 1 cluster(s) and the algo-

rithm stops in only 4 steps. We then use Algo. 2 to obtain

the required number of ground-truth action segments, 4, for

this video. The partition with the minimal number of clus-

ters ≥ 4 (in this case partition 3 with 20 clusters) is refined

one merge at a time to produce the 4 clusters or action seg-

ments. Note that, in direct contrast to Kmeans and FINCH,

our temporally-weighted clustering provides better action

segments and also preserves their order in the video.

While we use a similar procedure for hierarchical merges

as in FINCH [31], our work differs in scope and technical

approach. In our proposal we build a temporally modulated

1-NN graph which, unlike FINCH, requires us to use all

pairwise distances of samples both in space and in time for

building the adjacency matrix. Our method, thus, can be
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Algorithm 1 Temporally Weighted Clustering Hierarchy

1: Input: Video X = {x1,x2, · · · ,xN}, X ∈ R
N×d

2: Output: Set of Partitions S = {P1,P2, · · · ,PS}
such that Pi+1 ⊇ Pi ∀i ∈ S . Each partition Pi =
{C1, C2, · · · , CPi

} is a valid clustering of X .

3: Initialization:

4: Initialize time-stamps T = {1, 2, · · · , N}. Compute

1-NN temporally weighted graph G via Equation 1-4

5: Get first partition P1 with CP1
clusters from connected-

components of G .

6: while there are at least two clusters in Pi do

7: Given input data X and its partition Pi prepare aver-

aged data matrix M = {x̄1, x̄2, · · · , x̄CΓi
} and aver-

aged time-stamps TM = {t̄1, t̄2, · · · , t̄CPi
} , where

M
CPi

×d and TM
CPi

×1.

8: Compute 1-NN temporally weighted graph GM via

Equation 1-4 with feature vectors in M and time-

stamps in TM .

9: Get partition PM of Pi from connected-components

of GM .

10: if PM has one cluster then

11: break

12: else

13: Update cluster labels in Pi : PM → Pi

14: end if

15: end while

considered a special case of FINCH which is well suited

for videos. Because of these differences, and for clarity in

comparing both, we term our method Temporally Weighted

FIrst NN Clustering Hierarchy (TW-FINCH). For action

segmentation, TW-FINCH shows clear performances ad-

vantages over both Kmeans and FINCH, as we will show

next in section 4.

4. Experiments

In this section, we first introduce the datasets, features,

and metrics used to evaluate our TW-FINCH method,

before comparing it both to baseline and SoTA approaches.

Datasets: We conduct experiments on five challenging

and popular temporal action segmentation datasets, namely

Breakfast (BF) [14], Inria Instructional Videos (YTI) [2],

50Salads (FS) [35], MPII Cooking 2 (MPII) [30], and Hol-

lywood Extended (HE) [4]. As shown in Table 2, these 5

datasets cover a wide variety of activities (from cooking dif-

ferent types of meals to car maintenance), contain videos of

varying lengths (from 520 frames on average to up to 11788

frames), and have different levels of average action granu-

larity (from 3 up to 19).

Features: To ensure a fair comparison to related work,

Algorithm 2 Final Action Segmentation

1: Input: # of actions K, Video X = {x1,x2, · · · ,xN}
and a partition Pi from the output of Algorithm 1.

2: Output: Partition PK with required number of action

labels.

3: Merge two clusters at a time:

4: for steps = # of clusters in Pi - K do

5: Initialize time-stamps T = {1, 2, · · · , N}. Given

input data X and its partition Pi prepare averaged

data matrix M = {x̄1, x̄2, · · · , x̄CPi
} and averaged

time-stamps TM = {t̄1, t̄2, · · · , t̄CPi
}

6: Compute 1-NN temporally weighted graph GM via

Equation 1-4

7: ∀GM (i, j) = 1 keep only one symmetric link (i, j)
with the minimum temporal distance W (i, j) ob-

tained in Equation 3 and set all others to zero.

8: Update cluster labels in Pi: Merge corresponding i, j
clusters in Pi

9: end for

BF [14] YTI [2] FS [35] MPII [30] HE [4]

#Videos 1712 150 50 273 937

Avg. #Frames-per-video 2099 520 11788 10555 835

Feature Dim. 64 3000 64 64 64

#Activities (V) 10 5 1 67 16

Avg. #Actions-per-video (A) 6 9 19 17 3

Background 7% 63.5% 14.1% 29% 61%

Table 2. Statistics of datasets used in the experiments: Background

refers to the % of background frames in a dataset.

we use the same input features that were used by recent

methods [18, 32, 11, 22, 27]. Specifically, for the BF, FS,

MPII, and HE datasets we use the improved dense trajectory

(IDT) [38] features computed and provided by the authors

of CTE [18] (for BF and FS) and SCT [11] (for MPII and

HE). For YTI [2], we use the features provided by the au-

thors, which are 3000-dimensional feature vectors formed

by a concatenation of HOF [19] descriptors and features ex-

tracted from VGG16-conv5 [33]. For all datasets, we report

performance for the full dataset, consistent with literature.

Metrics: To evaluate the temporal segmentation, we require

a one-to-one mapping between the predicted segments and

ground-truth labels. Following [18, 32, 22, 11, 27], we gen-

erate such a mapping using the Hungarian algorithm then

evaluate with four metrics: (i) accuracy, calculated as the

mean over frames (MoF); (ii) the F1-score; (iii) the Jaccard

index, calculated as the intersection over union (IoU); and

(iv) the midpoint hit criterion [29], where the midpoint of

the predicted segment must be within the ground-truth. We

report MoF and IoU for all datasets, and in addition F1-

score for YTI and midpoint hit for MPII, as used in previ-

ous works. For all metrics, a higher result indicates better

performance.

Evaluation Setup: Recent methods [1, 18, 32, 22, 36] all
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Breakfast dataset

Supervision Method IoU MoF T

Fully Sup.

HOGHOF+HTK [14] — 28.8 ✓

TCFPN [9] — 52.0 ✓

HTK+DTF w. PCA [15] 9.8 56.3 ✓

GMM+CNN [16] 36.1 50.7 ✓

RNN+HMM [17] — 61.3 ✓

MS-TCN [10] — 66.3 ✓

SSTDA [7] — 70.2 ✓

Weakly Sup.

ECTC [13] — 27.7 ✓

GMM+CNN [16] 12.9 28.2 ✓

SCT [11] — 30.4 ✓

RNN-FC [26] — 33.3 ✓

RNN+HMM [17] — 36.7 ✓

TCFPN [9] 24.2 38.4 ✓

NN-Vit. [28] — 43.0 ✓

D3TW [6] — 45.7 ✓

MuCon [34] — 49.7 ✓

CDFL [22] 33.7 50.2 ✓

Unsup. Baselines

Equal Split 21.9 34.8 ✗

Kmeans 23.5 42.7 ✗

FINCH 28.3 51.9 ✗

Unsup.

Mallow* [32] — 34.6 ✓

CTE* [18] — 41.8 ✓

LSTM+AL [1] — 42.9 ✓

VTE-UNET [36] — 52.2 ✓

TW-FINCH 42.3 62.7 ✗

Unsup. TW-FINCH (K=gt/video) 44.1 63.8 ✗

Table 3. Comparison on the Breakfast dataset [14] (* denotes re-

sults with Hungarian computed over all videos of an activity to-

gether). T denotes whether the method has a training stage on

target activity/videos.

evaluate at ground-truth number of actions for an activity.

We adopt a similar approach and set K, for a video of

a given activity, as the average number of actions for that

activity. To provide an upper limit on the performance of

our method we also evaluate with K set as the groundtruth

of each video.

4.1. Comparison with baseline methods

As established in section 3, Kmeans [23] and

FINCH [31] are strong baselines for temporal action seg-

mentation. In this section we establish an additional base-

line, which we call Equal Split, that involves simply split-

ting the frames in a video into K equal parts. It can be

viewed as a temporal clustering baseline based only on the

relative time-stamps of each frame. This seemingly triv-

ial baseline is competitive for all datasets and actually out-

performs many recent weakly-supervised and unsupervised

methods for the BF (Table 3) and FS (Table 5) datasets. TW-

FINCH, however, consistently outperforms all baselines by

significant margins on all five datasets, as shown in Ta-

ble 3 (BF), Table 4 (YTI), Table 5 (FS), Table 6 (MPII)

and Table 7 (HE). We attribute these strong results to better

temporal consistency and ordering of actions, which TW-

FINCH is able to achieve due to temporal weighting.

4.2. Comparison with the Stateoftheart

We now compare TW-FINCH to current state-of-the-

arts, discussing results for each of the 5 datasets in turn.

However, as noted in [18] even though evaluation metrics

are comparable to weakly and fully supervised approaches,

one needs to consider that the results of the unsupervised

learning are reported with respect to an optimal assignment

of clusters to ground-truth classes and therefore report the

best possible scenario for the task. For each dataset, we

report IoU and MoF results for TW-FINCH. We report ad-

ditional metrics when they are commonly used for a given

dataset.

The column T in the tables denotes whether the method

requires training on the target videos of an activity before

being able to segment them. A dash indicates no known

reported results.

Breakfast dataset (BF): BF contains an average of 6 ac-

tions per video, and 7% of frames in the dataset are back-

ground frames.

In Table 3 we report results on BF and compare TW-

FINCH with recent state-of-the-art unsupervised, weakly-

supervised and fully-supervised approaches. TW-FINCH

outperforms all unsupervised methods, with absolute im-

provements of 10.5% over the best reported unsupervised

method VTE-UNET and 19.8% over LSTM+AL [1]. Sim-

ilarly TW-FINCH outperforms the best reported weakly-

supervised method CDFL [22] with a 8.6/12.5% gain on

the IoU/MoF metrics.

Methods [18, 32] train a separate segmentation model

for each activity, and set K to the maximum number of

groundtruth actions for that activity. They then report re-

sults by computing Hungarian over all videos of one activ-

ity. Since we are clustering each video separately, using K
as maximum would over segment most of the videos. This

however still enable us to show the impact on performance

in such a case. When we set K to the maximum # actions

per activity on the BF dataset, our performance is 57.8%, as

many of the videos are over segmented. To see the purity

of these over-segmented clusters we computed the weighted

cluster purity in this setting, which comes out to be 83.8%.

This high purity indicates that, even with an inexact K, our

clusters can still be used for downstream tasks such as train-

ing self-supervised video recognition models.

Inria Instructional Videos (YTI): YTI contains an average

of 9 actions per video, and 63.5% of all frames in the dataset

are background frames.

In Table 4 we summarize the performance of TW-

FINCH on YTI and compare to recent state-of-the-art un-

supervised and weakly-supervised approaches. To enable

direct comparison, we follow previous works and remove a
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Inria Instructional Videos

Supervision Method F1-Score MoF T

Unsup. Baselines

Equal Split 27.8 30.2 ✗

Kmeans 29.4 38.5 ✗

FINCH 35.4 44.8 ✗

Unsup.

Mallow* [32] 27.0 27.8 ✓

CTE* [18] 28.3 39.0 ✓

LSTM+AL [1] 39.7 — ✓

TW-FINCH 48.2 56.7 ✗

Unsup. TW-FINCH (K=gt/video) 51.9 58.6 ✗

Table 4. Comparison on the Inria Instructional Videos [2] dataset.

* denotes results with Hungarian computed over all videos of an

activity together.

50Salads

Supervision Method eval mid T

Fully Sup.

ST-CNN [21] 68.0 58.1 ✓

ED-TCN [20] 72.0 64.7 ✓

TricorNet [8] 73.4 67.5 ✓

MS-TCN [10] 80.7 — ✓

SSTDA [7] 83.8 — ✓

Weakly Sup.

ECTC [13] — 11.9 ✓

HTK+DTF [15] — 24.7 ✓

RNN-FC [26] — 45.5 ✓

NN-Vit. [28] — 49.4 ✓

CDFL [22] — 54.7 ✓

Unsup. Baselines

Equal Split 47.4 33.1 ✗

Kmeans 34.4 29.4 ✗

FINCH 39.6 33.7 ✗

Unsup.

LSTM+AL [1] 60.6 — ✓

TW-FINCH 71.1 66.5 ✗

Unsup. TW-FINCH (K=gt/video) 71.7 66.8 ✗

Table 5. Comparison to SoTA approaches at eval and mid granu-

larity levels on the 50Salads dataset [35]. We report MoF.

ratio (τ = 75%) of the background frames from the video

sequence and report the performance. TW-FINCH outper-

forms other methods and achieves F1-Score of 48.2% and

MoF of 56.7%, which constitute absolute improvements

of 8.5% on F1-Score over the best published unsupervised

method.

Impact of Background on YTI. As 63.5% of all frames

in the YTI dataset are background, methods that train on

this dataset tend to over-fit on the background. In contrast,

a clustering based method is not strongly impacted by this:

when we evaluate TW-FINCH while including all of the

background frames our MoF accuracy drops from 56.7 →
43.4% as is expected due to having more frames and thus

more errors. Given such a significant data bias on back-

ground frames this relatively small drop indicates that TW-

FINCH works reasonably with widely-varying degrees of

background content.

50Salads (FS): FS contains an average of 19 actions per

video, and 14.1% of all frames in the dataset are background

MPI Cooking 2

Supervision Method IoU Midpoint-hit MoF T

Precision Recall

Fully Sup.

Pose + Holistic [29] — 19.8 40.2 — ✓

Fine-grained [25] — 28.6 54.3 — ✓

GMM+CNN [16] 45.5 — — 72.0 ✓

Weakly Sup. GMM+CNN [16] 29.7 — — 59.7 ✓

Unsup. Baselines

Equal Split 6.9 25.6 44.6 14.6 ✗

Kmeans 14.5 21.9 34.8 30.4 ✗

FINCH 18.3 26.3 41.9 40.5 ✗

Unsup. TW-FINCH 23.1 34.1 54.9 42.0 ✗

Unsup. TW-FINCH (K=gt/video) 24.6 37.5 59.2 43.4 ✗

Table 6. Comparison on the MPII Cooking 2 dataset [30].

Hollywood Extended

Supervision Method IoU MoF T

Fully Sup. GMM+CNN [16] 8.4 39.5 ✓

Weakly Sup.

GMM+CNN [16] 8.6 33.0 ✓

ActionSet [27] 9.3 — ✓

RNN-FC [26] 11.9 — ✓

TCFPN [9] 12.6 28.7 ✓

SCT [11] 17.7 — ✓

D3TW [6] — 33.6 ✓

CDFL [22] 19.5 45.0 ✓

Unsup. Baselines

Equal Split 24.6 39.6 ✗

Kmeans 33.2 55.3 ✗

FINCH 37.1 56.8 ✗

Unsup. TW-FINCH 35.0 55.0 ✗

Unsup. TW-FINCH (K=gt/video) 38.5 57.8 ✗

Table 7. Comparison on the Hollywood Extended dataset [4].

frames.We evaluate with respect to two action granularity

levels, as described in [35]. The mid granularity level eval-

uates performance on the full set of 19 actions while the

eval granularity level merges some of these action classes,

resulting in 10 action classes. In Table 5 we show that

TW-FINCH obtains a MoF of 66.5% in the mid granular-

ity, 11.8% higher (in absolute terms) than the best weakly-

supervised method CDFL [22]. We see similar performance

gains in the eval granularity level evaluation as well. The

IoU score of TW-FINCH for mid and eval granularity is

48.4% and 51.5% respectively.

MPII Cooking 2 (MPII): MPII contains 17 actions per

video on average, and 29% of all frames in the dataset are

background frames. For MPII we report the midpoint hit

criterion [29] (multi-class precision and recall), the stan-

dard metric for this dataset, in addition to IoU and MoF.

The dataset provides a fixed train/test split. We report per-

formance on the test set to enable direct comparisons with

previously reported results. As Table 6 shows, TW-FINCH

outperforms our strong unsupervised baselines for all 4 re-

ported metrics. Our method also outperforms SoTA fully-

supervised methods that report the mid-point hit criterion.

Hollywood Extended (HE): HE contains an average of 3

(including background) actions per video, and 61% of all

frames in the dataset are background frames. We report
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(a) P39 cam02 P39 scrambledegg (b) changing tire 0023
Figure 3. Segmentation examples from (a) the Breakfast dataset [14], and (b) the Inria Instructional Videos dataset [2]. Colors indicate

different actions and are arranged in chronological order. We compare the segmentation quality of our method to Kmeans, FINCH, and

two state-of-the-art unsupervised methods, CTE and Mallow. Our method has predicted better lengths of actions occurring in these videos.

results for HE in Table 7, which shows that TW-FINCH

outperforms CDFL [22] by 15.5% (19.5→35.0) and 10.0%

(45→55.0) in IoU and MoF, respectively. Further, note

that the performance of our appearance-based clustering

baselines is quite similar to the performance of our method.

We attribute this to the small number of clusters per video

(3 clusters on average). As a result, Kmeans and FINCH

are roughly as effective as TW-FINCH, as temporally

ordering 3 clusters is less difficult.

Qualitative Results. Fig. 3 shows representative results

for two videos taken from the BF dataset (a) and the YTI

dataset (b). Note that in the visualization (b) we set the

background frames to white for all methods, according

to the ground-truth. This allows the misclassification and

mis-ordering of background frames to be more clearly

seen. In (a), one can observe that TW-FINCH accurately

predicts the length of segments, yielding better segmen-

tation boundaries. Both clustering baselines, neither of

which leverage temporal information, have noisy segments.

Other SoTA unsupervised methods either have inaccurate

temporal boundaries, incorrect ordering of actions, or

are missing actions altogether. In addition, background

frames are more often misclassified and mis-ordered for

competing methods. Similar observations can be made

in (b), where we show qualitative segmentation results on

a more challenging YTI video with 9 actions of varying

lengths, and several interspersed background scenes.

Limitations. Two main limitations for our work exist,

which are inherent to our unsupervised clustering-based

approach. The first, illustrated in Figure 3(b), occurs when

we over-segment a temporally-contiguous sequence due

to low visual coherence. The second may occur when

we assign frames that depict the same action to different

clusters because they are temporally distant.

Computational complexity. As we need to compute the

N×N temporal distances, the computational complexity of

Supervision Method Training Testing T

(hours) (seconds)

Weakly Sup.

TCFPN⋆ [9] 12.75 00.01 ✓

NN-Vit.⋆ [28] 11.23 56.25 ✓

CDFL⋆ [22] 66.73 62.37 ✓

MuCon-full⋆ [34] 04.57 03.03 ✓

Unsup. Baselines
Kmeans 00.00 38.69 ✗

FINCH 00.00 37.08 ✗

Unsup.
CTE [18] — 217.94 ✓

TW-FINCH (Ours) 00.00 40.31 ✗

Table 8. Run-time comparison of method with other state-of-the-

art methods on Breakfast dataset. Testing duration is measured as

the average inference for split 1 test set (252 videos). ⋆The run-

time of all the Weakly Sup. methods were taken from [34]

TW-FINCH is O(N2). In contrast FINCH is O(Nlog(N))
while other similar graph-based clustering methods such as

spectral methods are O(N3) and hierarchical agglomera-

tive linkage-based schemes are O(N2log(N)). Table 8 pro-

vides the total run-time of TW-FINCH and other state-of-

the-art methods on Breakfast dataset split 1 (252 videos).

Unlike previous methods that require hours of model train-

ing on GPUs, our method runs on a computer with an AMD

16-core processor, taking approximately 0.16 seconds on

average to segment one video (≈ 2000 frames).

5. Conclusion

We addressed the problem of temporal action segmenta-

tion and found that simple clustering baselines produce re-

sults that are competitive with, and often outperform, recent

SoTA unsupervised methods. We then proposed a new un-

supervised method, TW-FINCH which encodes spatiotem-

poral similarities between frames on a 1-nearest-neighbor

graph and produces a hierarchical clustering of frames. Our

proposal is practical as unlike existing approaches it does

not require training on the target activity videos to produce

its action segments. Our extensive quantitative experiments

demonstrate that TW-FINCH is effective and consistently

outperforms SoTA methods on 5 benchmark datasets by

wide margins on multiple metrics.
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Segmental spatiotemporal cnns for fine-grained action seg-

mentation. In European Conference on Computer Vision,

pages 36–52. Springer, 2016.

[22] Jun Li, Peng Lei, and Sinisa Todorovic. Weakly supervised

energy-based learning for action segmentation. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, pages 6243–6251, 2019.

[23] James MacQueen et al. Some methods for classification

and analysis of multivariate observations. In Proceedings of

the fifth Berkeley symposium on mathematical statistics and

probability, volume 1, pages 281–297. Oakland, CA, USA,

1967.

[24] Colin L Mallows. Non-null ranking models. i. Biometrika,

44(1/2):114–130, 1957.

[25] Bingbing Ni, Vignesh R Paramathayalan, and Pierre Moulin.

Multiple granularity analysis for fine-grained action detec-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 756–763, 2014.

[26] Alexander Richard, Hilde Kuehne, and Juergen Gall. Weakly

supervised action learning with rnn based fine-to-coarse

modeling. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 754–763, 2017.

[27] Alexander Richard, Hilde Kuehne, and Juergen Gall. Ac-

tion sets: Weakly supervised action segmentation without or-

dering constraints. In Proceedings of the IEEE Conference

11233



on Computer Vision and Pattern Recognition, pages 5987–

5996, 2018.

[28] Alexander Richard, Hilde Kuehne, Ahsan Iqbal, and Juer-

gen Gall. Neuralnetwork-viterbi: A framework for weakly

supervised video learning. In CVPR, 2018.

[29] Marcus Rohrbach, Sikandar Amin, Mykhaylo Andriluka,

and Bernt Schiele. A database for fine grained activity de-

tection of cooking activities. In 2012 IEEE conference on

computer vision and pattern recognition, pages 1194–1201.

IEEE, 2012.

[30] Marcus Rohrbach, Anna Rohrbach, Michaela Regneri,

Sikandar Amin, Mykhaylo Andriluka, Manfred Pinkal, and

Bernt Schiele. Recognizing fine-grained and composite ac-

tivities using hand-centric features and script data. Interna-

tional Journal of Computer Vision, 119(3):346–373, 2016.

[31] M. Saquib Sarfraz, Vivek Sharma, and Rainer Stiefelhagen.

Efficient parameter-free clustering using first neighbor rela-

tions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 8934–8943,

2019.

[32] Fadime Sener and Angela Yao. Unsupervised learning and

segmentation of complex activities from video. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 8368–8376, 2018.

[33] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[34] Yaser Souri, Mohsen Fayyaz, Luca Minciullo, Gianpiero

Francesca, and Juergen Gall. Fast weakly supervised ac-

tion segmentation using mutual consistency. arXiv preprint

arXiv:1904.03116, 2019.

[35] Sebastian Stein and Stephen J McKenna. Combining em-

bedded accelerometers with computer vision for recognizing

food preparation activities. In Proceedings of the 2013 ACM

international joint conference on Pervasive and ubiquitous

computing, pages 729–738, 2013.

[36] Rosaura G VidalMata, Walter J Scheirer, and Hilde Kuehne.

Joint visual-temporal embedding for unsupervised learning

of actions in untrimmed sequences. IEEE/CVF Winter Con-

ference on Applications of Computer Vision (WACV), 2021.

[37] Ulrike Von Luxburg. A tutorial on spectral clustering. Statis-

tics and computing, 2007.

[38] Heng Wang and Cordelia Schmid. Action recognition with

improved trajectories. In Proceedings of the IEEE inter-

national conference on computer vision, pages 3551–3558,

2013.

11234


