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Abstract

We wish to detect specific categories of objects, for on-

line vision systems that will run in the real world. Object de-

tection is already very challenging. It is even harder when

the images are blurred, from the camera being in a car or

a hand-held phone. Most existing efforts either focused on

sharp images, with easy to label ground truth, or they have

treated motion blur as one of many generic corruptions.

Instead, we focus especially on the details of egomotion

induced blur. We explore five classes of remedies, where

each targets different potential causes for the performance

gap between sharp and blurred images. For example, first

deblurring an image changes its human interpretability, but

at present, only partly improves object detection. The other

four classes of remedies address multi-scale texture, out-of-

distribution testing, label generation, and conditioning by

blur-type. Surprisingly, we discover that custom label gen-

eration aimed at resolving spatial ambiguity, ahead of all

others, markedly improves object detection. Also, in con-

trast to findings from classification, we see a noteworthy

boost by conditioning our model on bespoke categories of

motion blur.

We validate and cross-breed the different remedies ex-

perimentally on blurred COCO images and real-world blur

datasets, producing an easy and practical favorite model

with superior detection rates.

1. Introduction

A little motion blur is present in most hand-held pho-

tography. Blur is ever harder to ignore because images are

increasingly captured on the move, e.g. by a gimbaled robot

or from an autonomous vehicle. Precisely these on-the-go

situations prompt us to explore: how much does motion blur

severity impact object detection? What can be done about

it? Detection is important because it underpins many other

tasks, such as tracking and re-identification, and our initial

scope is further narrowed to egomotion induced blur.

Unsurprisingly, the severity of the blur correlates with

detection failure [2]. Fig. 1 shows an example. An ideal al-

gorithm will make that degradation more gradual, and could

Figure 1. a) Original sharp MS COCO [26] image with object de-

tections. b) Same image with significant linear motion-blur, with

COCO ground-truth. c) Failed predictions from original Faster-

RCNN. d) Predictions from network with our proposed model.

someday enable a model that surpasses even a human’s abil-

ity to see through blur. Instead of a single breakthrough, it

is more likely that a combination of approaches is needed.

Much like the “devil in the details” papers [6, 7], the task

specifics and pipeline likely make a difference.

Our main contribution is an empirical exploration of five

classes of remedies. These remedies are selected to cope

with five proposed causes for reduced detection accuracy.

The five cause/remedy pairs explored here are: 1) Is the en-

tire image too blurry to be useful? Deblur test image first.

2) Is texture mismatch along blur axes confusing the model?

Spatially transform image to compensate. 3) Does test-time

blur differ from training data? Train model for out-of-

distribution robustness, and/or perform test-time tuning of

network. 4) Are the training labels incorrect? Customize

labels to match detection-in-blur task and reconsider labels

used for testing. 5) Are egomotion blur types too diverse?

Treat detection in blur as a multi-task problem.

Overall, we propose a new model that focuses on the

remedies from (4) and (5), and set a new standard for online

object detection in egomotion-induced blur.

2. Related Work

Deblurring: A close topic with valuable data and poten-

tial insights is image deblurring. The first canonical method
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Figure 2. We explore the baseline with five categories of remedies across both train and test time. 1) Deblurring: Deblur the input

using Nah et al. [31] before passing it to the detector at test time. 2) Squint: Influenced by [19, 37], we undersample the incoming

image on each axis, according to known blur kernel shape during training and testing (assuming oracle knows test kernel). We forward

pass through the backbone and carry out the reverse sampling operation on outgoing activations, before passing them to the detection

head. 3) Out-of-distribution: Treat motion blur as an out-of-distribution robustness problem and use two leading methods as remedies:

3a) AugMix: Augment training images as in AugMix [16] with two main flavors: all augmentations from the AugMix paper, or only

non-spatial augmentations. We then use the model normally at test time. 3b) Using minibatch statistics: As in [43], modify the batch

normalization statistics at every layer in the network to be a weighted average of the incoming minibatch (size one) statistics and the

original training-averaged batch normalization statistics. 4) Label Modification Under blur, the spatial extent and center of the bounding

box are ambiguous. We experiment with training with labels expanded to include the superset of object locations given by the extent of the

blur kernel’s reach, under blur augmentation and when using spatial augmentation in AugMix. We also report results for both expanded

COCO minival labels and without. 5) Blur Augmentation Augment COCO images using either 5a) a random selection of kernels across

all possible motion-blurs we can generate, or 5b) training networks specialized on specific blur-kernel varieties. At test time, we use either

a network trained under general blur augmentation, or a system that incorporates a bag of models and a blur estimation module that selects

the appropriate specialized network for the task.

for image deconvolution comes from Richardson [39] and

Lucy [28] where a known point spread function (PSF) - the

blur kernel - is used to iteratively minimize an energy func-

tion to find a maximum likelihood estimate of the original

image. Deblurring can be non-blind where the blur kernel is

known [42], or it can be blind, where the kernel is either first

estimated [11, 44, 23] - usually optimized with the final re-

sult [8] - or the entire deblurring method is non-interpretable

and runs end to end [31, 49]. Deblurring can also assume

either a uniform blur kernel throughout an image [11, 44]

or variable nonuniform blur either due to camera egomo-

tion (rotation, zoom) [52], depth-of-field effects [48], or dy-

namic object motion blur [18, 31, 23].

Previous work has made use of an L0 sparse represen-

tation [53], dark image regions [32], and multiple frames

in a video [45]. More invasive methods exploit hard-

1707



ware, including using a coded shutter [36], inertial measure-

ments [22], flash frame information integration [57], bursts

of blurry images [1], high and low frame rate cameras [47],

or an event driven camera tied to an RGB sensor [33].

Some deep learning deblurring methods are interpretable

[44, 5, 54, 46], but most are end-to-end [49, 24, 55, 31] with

the recent state-of-the-art by Nah et al. trained on the high

frame rate GOPRO dataset [31]. We explore using a state-

of-the-art deblurring method as a preprocessing step, and

measure the overall effectiveness of such a baseline.

Boracchi et al. [3] generate a statistical model for motion

blur kernel generation for benchmarking image restoration

model performance. The blur kernels they generate are pa-

rameterized to simulate camera shake and exposure, making

their kernel generation method a good candidate for synthe-

sized blur augmented training.

Although deblurring’s aesthetics driven approach means

that there are competitive methods for extracting high fre-

quency information in blur, use in an online vision appli-

cation might be impractical, especially given that networks

are very sensitive to changes in training distribution.

Blur and Scene Understanding Tasks: Directly related

to this work, Vasiljevic et al. [51] explore the effect of blur

on ImageNet [10] classification performance and blur aug-

mentation strategies using a set of synthetically generated

blur kernels; however they use a limited set of 100 17× 17
pre-generated fixed length motion blur kernels and a restric-

tive image resolution of 384×384 during training and eval-

uation. They experiment with different blur types and fine

grained blur augmentation for classification, but only a seg-

mentation dividing blur types - and not across blur exposure

with different kernel types - is considered; only defocus blur

is explored for image segmentation. For image segmenta-

tion, they evaluate their networks using a soft boundary for

accuracy, but do not explore the effect of spatial ambiguity

on fine-tuning networks for blur during training, especially

since only defocus blur (no shift in barycenter naturally) is

used for fine-tuning the segmentation task. Vasiljevic et al.

note that knowing blur information apriori could be helpful,

but don’t explore such a blur estimator.

Overall, we find that building explicit robustness into vi-

sion models for dealing with realistic camera motion blur

needs more exploration, especially for spatial tasks.

Out-of-Distribution Robustness: Recent work [15,

14] treats image corruptions (brightness, contrast, snow,

noise, blur) as out-of-distribution samples compared to

the in-distribution clean images a network was trained on.

ImageNet-C [15] is a variant of the ImageNet classifica-

tion dataset that contains images corrupted by 15 differ-

ent types of canonical image corruptions, and is used as a

benchmark for out-of-distribution model performance. Cru-

cially, ImageNet-C - and others such as ImageNet-R [14]

and ImageNet-A [17] - are not meant to be trained on. In-

stead, the argument is that a model’s ability to generalize

to images outside of the training set’s distribution can be

measured by evaluating its performance on these datasets.

Although ImageNet-C contains motion blur corruptions,

the method only considers straight line motion blur ker-

nels. Michaelis et al. [29] use the same corruptions from

ImageNet-C to produce a robustness benchmark for detec-

tion, by augmenting MS COCO [26]. COCO-C also in-

cludes straight line blurred images, but changes in labels

under the spatial ambiguity brought upon by blur are not

addressed. We call this type of naive blur ’Non-Centered,’

and we show why it’s important for spatial reasoning.

In the data augmentation space, AutoAugment [9] finds

an optimal augmentation policy for a model and dataset

pair achieving state-of-the-art accuracy for classification

datasets, but requires 15,000 compute hours on an NVIDIA

Tesla P100 for training ImageNet. Rusak et al. [41] propose

an adverserial noise training scheme for increasing clas-

sification model accuracy and robustness on ImageNet-C,

mainly combating pixel noise and not blur. AugMix [16]

is an augmentation strategy for improving classification

model robustness to out-of-distribution images. It involves

alpha blending copies of a training image that have been

corrupted by a random chain of image augmentations. They

use the same corruptions in [9], including both pixel level

value changes and spatial augmentations. Although the

AugMix paper also doesn’t discuss how spatial augmenta-

tion should affect spatial labels, we explore the effective-

ness of AugMix for blur robustness after making decisions

on how spatial labels should be changed.

Schneider et al. [43] analyze the effect of normalizing

activations in batch normalization layers using a weighted

average of the statistics of both the source training set

and the minibatch. Their method achieves state-of-the-art

on ImageNet-C and improves ImageNet-C robustness on

vanilla Resnet-50 classification models, even with a mini-

batch of size one.

While these methods are a promising way of increasing

model robustness to unseen corruptions, the aim of the pro-

posed work is to explore the specific impact of motion blur

on detection, and so we focus our effort on manufacturing

the most realistic blur kernels available in the literature.

3. Designing Detection Models for Motion Blur

To improve online object detection, we propose a uni-

fied framework that allows us to measure the impact of

different remedies and their combinations. The frame-

work is based on a state-of-the-art object detector, Faster-

RCNN [38], with training and testing on data derived from

the MS COCO [26] detection dataset. The baseline and data

are explained in this section. The proposed remedies are ex-

plained in detail in Sec. 4, and are evaluated in Sec. 5. Fig-

ure 2 illustrates both the baseline model, and the different
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enhanced alternatives.

3.1. Detection Baseline

For reproducibility, we use the pretrained Faster R-

CNN variant trained on COCO, available through Pytorch’s

torchvision [34] library, as a baseline for all our experi-

ments. We use a ResNet-50 [13] backbone with a Feature

Pyramid Network (FPN) [25]. This baseline achieves 58.5

mAP@0.5 and 37.0 mAP@0.5:0.95 on the COCO test set.

While other models achieve better accuracy on the COCO

minival set, we choose this framework for its accessibility

and as a good baseline representation of a canonical detec-

tion framework with top-10 performance for the backbone’s

size [21, 27].

3.2. Selecting Data for Training and Testing

Ideally, we’d select data with detection labels for im-

ages exhibiting motion blur. Due to the way MS COCO

is gathered [26], there are very few blurry images in the

dataset. This leaves us with the task of generating synthet-

ically blurred COCO images for both training and evalu-

ation. Related but not directly applicable here, there are

multiple real-world image datasets for deblurring. These

were generated using high frame rate video [31] or shutter

tied cameras [40]. They either don’t contain enough images

for training and evaluating detection models ([40] only con-

tains 5500 images) and/or lack object annotations. Zhang et

al. [56] generate blurry images as part of a GAN architec-

ture for deblurring. Although they train the blur generation

module using a discriminator trained on real world blurry

images, it is not trivial to modify labels, given spatial am-

biguity, since camera motion is not made explicit. Brooks

& Barron [4] use multiple adjacent images (as few as two)

to generate realistic motion blur. But to use that would re-

quire a video or stereo dataset with ground truth labels for

the detection task.

This leaves methods that synthesize blurry images via

convolution with synthetic motion blur kernels [42, 3, 51,

29, 15]. ImageNet-C [15] and COCO-C [29] contain im-

ages blurred using straight line motion blur exclusively,

with no control over simulated camera shake. Vasiljevic et

al. [51] use a limited set of motion-blur kernels since they

are constrained by a fixed length spline formation model.

Boracchi & Foi [3] describe a method that allows con-

trol over different characteristics of a camera’s trajectory

through space, including the amount of shake and jerk with

variable exposure.

3.3. Blur Generation and Space Discretization

We adapt the blur kernel generation method from Borac-

chi & Foi [3]. We fix their high level controllable parameter

P to one of three values, P1−3, representing three distinct

Figure 3. Example blur kernels based on Boracchi & Foi’s [3]

motion-blur model. All kernels occupy a space of 128 × 128. In

our modification, used everywhere unless stated otherwise, kernels

are centered by shifting the barycenter of all nonzero points to the

origin of the filter. P1 type kernels tend to be very erratic, while

P3 kernels contain mostly rectilinear trajectories representative of

when camera ego motion is linear.

types of camera motion. We also modulate exposure via

early camera trajectory clipping.

First, we generate a trajectory by finding a random path

in 2D space. We assign an initial velocity vector v0, drawn

at random from a unit circle, and a position in space x0 for

the camera. At every step, the camera’s velocity vector is

updated by the acceleration vector,

∆v = P (∆vg − Ixt), (1)

where ∆vg is random acceleration with elements drawn

from N (0, σ2). Ixt is an inertial tendency for the camera

to stay where it is, and P ∈ P1−3 is the high level anxi-

ety parameter we fixed above. P3 has the highest random

velocity change on every step. Further, to model a camera

jerk, with a randomly sampled indicator function, the accel-

eration update also includes a component equal to twice the

current velocity vector in a random direction, so

∆v = ∆v + 2P |v|∆vj, (2)

where ∆vj is sampled from the unit circle. Again, with a

high P, there is a higher chance of a jerk happening and a

shakier camera. When starting a trajectory, I , σ2, and j are

drawn once from uniform random distributions to increase

variability under the same class of blur P ∈ P1−3. Note

that this leads to some overlap between kernels generated

across different P s.

In summary, the type of camera behavior falls into one

of three classes: 1) P1 simulates a very nervous camera, 2)

P2 for back and forth behavior, and 3) P3 simulates mostly

straight rectilinear motion-blur. To simulate exposure, we

stop the motion path early using the exposure factor (trajec-

tory length) E. We discretize exposure to one of 5 values,

E1−5. Examples of these kernels can be seen in Fig. 3. Sub-

pixel interpolation produces kernels for convolving sharp

images.
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3.4. Implementation Details

Kernel Generation: To speed up training, a corpus

of 12,000 blur kernels is generated for every pair of

{P1−3} × {E1−5}, for a total of 180,000 possible motion

blur kernels. However, random kernels are generated on the

fly during evaluation for each combination of blur type and

exposure, with fixed seeds for reproducibility. Trajectory

length is 96 and blur kernels fit in 128× 128 filters.

Blurring: Unlike in [15, 51, 29], we don’t resize im-

ages to a fixed size before blurring. Instead each image

is convolved separately with reflection padding, to account

for what would otherwise be real world data. We opt not

to resize our blur kernels to match image size as a way of

simulating changes in focal length. We implement sparse

convolution on the GPU for applying blur kernels. As per

Sec. 4.4, we make sure to center our motion-blur kernels by

translating their barycenters to the center of the filters.

Training: All networks start from a base Resnet-50FPN

pretrained on COCO. We use an FPN framework that out-

puts activations at four scales from the backbone. There

was no apparent difference in blur augmented performance

when training all five blocks vs. fixing the weights of the

first two.

4. Proposed Remedies for Improved Detection

Suspecting specific underlying causes for the adverse ef-

fects of blur on detection, we now propose bespoke reme-

dies. Where appropriate, some of the remedies are also

crossbred, and experimental results appear in Sec. 5.

4.1. Deblurring as a Preprocess

Image deblurring is useful for aesthetic purposes, but

could also aid other vision tasks. To test this remedy, we

use the recent deblurring model from the GoPro dataset pa-

per, [31], before passing the result to the detector. Deblur-

ring is a slow process, by 12× in this case, so heavy opti-

mizations would be needed for an online robot.

4.2. Reconciling Texture Information With Scale

When motion-blur is biased to one major direction over

another, it removes more high frequency information (and

texture) in that direction. It is reasonable to expect a net-

work is not natively designed for this imbalance. CNNs

usually understand texture and shape information across

multiple scales under the same aspect ratio, but we’re also

asking the network to deal with a texture imbalance along

the blur kernel’s major axis. Influenced by the work on

Spatial Transformers [19] (which proved a slightly inferior

baseline) and neural sampling layers [37], we instead un-

dersample the incoming image along the principal compo-

nents of the blur kernel. The reverse operation is carried out,

using reciprocal scaling factors, on every activation output

from the backbone. This “Squint” process is done at both

train and test time. For best-case testing, an oracle is as-

sumed to know the blur kernel.

4.3. Training vs. Test Distribution

We consider treating complex motion-blur as an out-of-

distribution corruption as in [15, 29, 16, 43], and use two

promising methods from the OOD literature. We use Aug-

Mix [16] as a training time remedy. We propose three fla-

vors, the first is a purely pixel level version where we aug-

ment pixel intensities only. The second applies all spatial

augmentations as well as suggested in [16], but does not rec-

oncile the shifts in bounding box changes. The third is an

“Expanded” version following Sec. 4.4, where we change

COCO labels at train time to match the superset of where

an object is shifted to across branches. AugMix roughly ap-

proximates blur when augmentations are selected that trans-

late an image before concatenating with other branches.

Further, at test time, we use covariate shift adaptation

from the upcoming [43]. The first step is to get a weighted

average of the incoming activation statistics of the mini-

batch (n = 1 for online inference) and the source statistics

of the model where N = 16,

µ =
n

N + n
µt +

N

N + n
µs, and (3)

σ2 =
n

N + n
σ2
t +

N

N + n
σ2
s . (4)

We then use these new normalization statistics for batch

normalization in all network layers.

4.4. Customizing Labels

When an image is motion blurred, objects are no longer

confined to the bounding boxes they had occupied in the

sharp image. The objective may no longer be to estimate

that original bounding box. See Fig. 4. We discuss two

remedies for this problem, that apply when training under

augmentation and for evaluation.

Kernel Centering The start point of a motion blur path

corresponds to the exposure at t = 0. Any path that leads

away from the center, as in Fig. 4(b), will offset the blurred

version of the object in some direction, so the “ground

truth” bounding box is no longer centered on the blurred

object. This introduces a mismatch between the blurred in-

put and its label. This mismatch is created in [15, 29],

introducing label ambiguity and noise in training.

We center a kernel using a weighted average of the ker-

nel’s nonzero points. The aim is to have the detection frame-

work learn to localize objects based on where they are, on

average, during the exposure. This remedy is similar to how

[40] aligned images from paired long/short exposure cam-

eras to train for deblurring. In our case, the training loss is

noisier when training on non-centered kernels, and the drop
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Figure 4. a) An image from the MS COCO [26] trainset with an associated bounding box label. b) The same image but blurred and with

the same non-translated bounding box, now introducing a training/evaluation mismatch. The object may have been there at the start of the

exposure (or end if the kernel smeared the other way), but this is certainly not true for the rest of the image. c) The first remedy, centering

the kernel by shifting the barycenter of the nonzero points to the center of the filter. d) The object is smeared outside of the original COCO

bounding box, so the label is expanded using the filter’s max/min points to capture the superset of object locations.

in accuracy can be up to 8-10mAP@50 (see ”Non-Centered

Augmented” and ”Standard Augmentated” in Fig. 5) points

with the most severe blur. All networks shown here will be

trained and evaluated with centered kernels, except when

explicitly mentioned. We include ablation experiments with

no-centering in the supplemental.

Expanding Target Boxes Compared to the original

bounding box, the expanded label can cover the superset

of pixels where an object projected during an exposure; see

Fig. 4(d). A worst-case scenario could occur without this

correction during training: for a small object, the sharp im-

age’s label could seemingly miss the blurred object entirely

due to IOU cutoffs. As a remedy, for every generated cen-

tered kernel, we find the maximum offsets for non zero ker-

nel elements in both 2D axes, x−, x+, y−, y+, and use them

to expand the boundaries of COCO bounding box labels.

The new bounding box labels (top left and width/height)

are now

b̂x = bx − |x−|

b̂y = by − |y−|

b̂w = bw + |x−|+ |x+|

b̂h = bh + |y−|+ |y+|.

(5)

We train variants of our networks with these expanded

boxes alongside kernel centering. During test time, we eval-

uate these networks using expanded bounding boxes.

4.5. Specializing for Categories of Blur

The final category of remedies explores if egomotion in-

duced blur is perhaps multiple problems masquerading as

one. We explore training blur specialized networks on spe-

cific partitioned segments of the blur space, as if categories

of blur are mutltiple distinct tasks. The findings on recogni-

tion in [51] show that specialized networks can sometimes

achieve higher task accuracy on their respective blur types

than general blur augmented networks.

Two Specialized Meta-Models We make two sets of

specialized networks, that differ in how the motion kernels

are clustered into categories. First, motion blur is grouped

based on the type of kernel P , alone, leading to a bespoke

network for each of P1−3 with a fourth generalist network

trained for all types and exposures.

The second grouping creates three networks specialized

at each P but exclusively on long exposure blur. One fur-

ther network handles all low exposure blur. As per [12],

networks are biased toward texture. Instead of using this

knowledge to create more corruption robust networks, it is

exploited here to make more shape biased networks for sub-

stantial motion blur.

Blur Estimation and Network Selection A ResNet-18

blur estimator module is added, and runs 10× faster than

the detection framework. The estimator categorizes the blur

present in the image at test time. One network is trained on

16 classes (sharp and the combinations of all exposures and

blur types) and the other network focuses on the separation

between specific blur types at high exposures and general

blur at low exposure (four classes). Details of how these

estimators are trained are in the supplemental materiel.

5. Comparisons and Evaluation

We report COCO minival results for all proposed reme-

dies, at both test time and train time. Detection accuracy at

mAP@50 is reported for all below-listed models and vari-

ants in Fig. 5 and Fig. 6, where the former uses COCO orig-

inal labels, and the latter uses expanded labels. We also re-

port accuracy results on two pseudo-real blur datasets, GO-

PRO [31] and REDS [30], and a real-world blur dataset,

RealBlur [40], obtained using shutter tied cameras. These

datasets don’t have box annotations, so we utilize a state-

of-the-art high accuracy detector, DetectoRS [35], to obtain

pseudo-groundtruth bounding-boxes for evaluation. For

evaluating expanded bounding boxes, we generate our own

GOPRO testset using grountruth sharp frames and use flow
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Figure 5. Non-expanded Standard Labeling COCO minival mAP@50 accuracy values across the three blur types and then exposures.

Almost all methods and hybrids improve beyond the Original network. There is no benefit in augmenting for blur, and then using either

minibatch statistics or a deblurer network.

Figure 6. Expanded Labeling COCO minival mAP@50 accuracy values across the three blur types and then exposures. The Spec by

Exposure network (“Ours”) excels at both ends of the exposure extremes, likely due to the biased training and specialized networks it

enjoys. All expanded-box trained networks (except AugMix trained on expanded labels via spatial augmentation) perform better than

their standard counterparts. Networks augmented with both blur and non-spatial AugMix perform well at low exposures and dataset

generalization; in Table 1 we show performance for Spec By Exposure that makes use of this for improved performance on other datasets.

computed using [50] for bounding-box expansion.

Names in the figures are explained below, and map to the

five remedy categories. Qualitative video here: visual.

cs.ucl.ac.uk/pubs/handlingMotionBlur.

• Standard Augmented and Expanded Labels were

trained on non-expanded but centered COCO labels,

and expanded and centered COCO labels respectively.

Both were trained on a 10/90 mixture of sharp to blurry

images across all blur types.

• Deblur then original and Deblur then Standard

Augmented are both modes of operation where the im-

age is first deblurred using [31] then run through either

the original network or a Standard Augmented net-

work respectively.

• Squint and Squint Expanded Labels come from

Sec. 4.2, and have been trained either using standard

labels under blur or expanded labels, respectively.

• AugMix [16] Hendrycks et al. [16] As described in

Sec. 4.3, we evaluate a non spatial version, AugMix

PixelLevel, a spatial version without label expansion,

AugMix [16], and a version trained with expanded

labels as per augmentations and evaluated with blur

based label expansions AugMix Expanded Labels.

• Standard Augmented w/MiniBatch and Expanded

Labels w/MiniBatch follow Schneider et al. [43] and

use modified minibatch normalization with N = 16
and n = 1 as in Sec. 4.3 with networks that have been

augmented for blur using either standard labels or ex-

panded labels respectively.

• Standard Augmented w/ NonSpatial AugMix and

Expanded Labels w/ NonSpatial AugMix have been

trained by first transforming the image using non spa-

tial AugMix then blurring the image and training with

expanded labels. NonSpatial AugMix augmentation

helps when generalizing to other datasets at low ex-

posure blur.
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GOPRO [31] RealBlur [20] REDS [30] GOPRO Expanded*

Model Sharp Blurry Sharp Blurry Sharp Blurry Sharp Blurry

Spec by Exposure w/ † 34.89 28.15 43.23 36.37 39.86 32.55 38.06 30.99

Low-Exp Net w/ NonSpatial AugMix † 34.89 27.87 43.23 36.28 39.86 32.53 38.06 30.92

Spec by Exposure 34.80 27.05 42.91 35.26 40.06 31.51 36.79 31.14

Spec by Type 32.42 27.50 40.91 36.11 36.96 30.33 35.26 31.01

Low-Exposure Net 34.80 26.91 42.91 35.20 40.06 31.47 36.79 31.60

Standard Aug w/ NonSpatial AugMix‡ 32.16 27.05 42.77 36.82 35.61 28.72 35.18 29.94

Standard Augmented 32.42 26.54 40.93 35.63 36.96 29.24 35.26 30.75

Non-Centered Augmented 33.08 25.66 40.47 34.47 36.82 28.80 36.74 28.47

Standard Aug w/ Minibatch 30.06 23.78 35.01 31.32 28.99 24.94 33.32 26.79

Original w/ NonSpatial AugMix 33.68 19.10 43.90 29.63 43.38 23.52 36.63 22.16

Original w/ Minibatch 31.78 16.73 38.54 27.17 36.03 22.18 33.45 20.50

Deblur then Standard Augmented 12.53 5.14 32.53 28.90 34.53 28.42 34.54 29.72

Deblur then Original 10.58 2.24 31.45 28.76 40.56 31.84 35.74 26.70

Original 35.85 19.64 42.39 29.00 42.02 24.38 36.33 22.30

Table 1. mAP@0.5 for models trained on COCO images with synthesized blur and evaluated on real world blur datasets using predictions

on sharp images using DetectoRS [35] as groundtruth. While NonSpatial AugMix doesn’t improve performance for blur augmentation on

the COCO minival, it does increase the performance of the COCO trained Low-Exposure† and Standard Augmented‡ networks on real

world datasets. Spec by Exposure w/† utilizes the NonSpatial AugMix augmentation version of the Low-Exposure network. *Expanded

augmented trained versions of the networks are used on this expanded labels test-set.

• Spec by Type is the first bag of specialists from

Sec. 4.5 where the Standard Augment network is

used when no blur is detected. Spec by Exposure

is the second bag of specialists where each of three

networks specializes in one P , but only at long ex-

posures, and one network handles all short exposures

and sharp images, Low-Exposure Augment. Again a

blur estimator trained for these classes selects the right

network. Spec by Type Expanded Labels and Spec

by Exposure Expanded Labels are obviously variants

trained on expanded labels. These networks and asso-

ciated mode of operation outperform the rest due to

their exploiting of the texture vs. bias trade-off and the

use of an accurate blur estimator. Notably, the network

responsible for sharp and low exposure blur recovers

the accuracy lost on sharp images usually associated

with blur augmentation networks.

6. Discussion

We achieve state-of-the-art object detection results for

egomotion-blurred images. We have succeeded in identify-

ing that two factors adversely affect detection in such im-

ages. The first is that labels for sharp images should be cus-

tomized for the motion-blur domain. In our remedies, that

means translating and expanding the bounding box labels to

match the blurred versions of relevant objects. The second

is that categories of motion blur are distinct enough for the

model to be trained for each blur-category separately. In-

terestingly, the second factor is the opposite of what [51]

found with recognition tasks, where mixing blur-types dur-

ing training was effective.

Through our “differential diagnosis” approach, the other

three factors explored here seem unpromising for explain-

ing the destructiveness of blur on CNN-based detection.

These negative results are not conclusive, as the remedies

may simply be immature. For example, better deblurring

may eventually restore missing texture at all scales.

In the future, to reduce the memory footprint of our

favored solution, the blur-selector and distinct exposure-

specific models could be combined into one multi-task

model. They are already end-to-end differentiable, but then

they could share layers. Further progress in this direction

could benefit from a distilled dataset that allows for detec-

tion labels and blur from real data, perhaps through the use

of event driven cameras or multi-camera datasets.

One clear limitation is that even sharp images

have < 60 mAP@0.5 detection accuracy with a realtime-

capable backbone, before blur hurts the situation further.

Depth or disparity data would help address scenes with dy-

namic blur, since the blur kernels are depth-dependent. 360-

cameras, augmented as proposed here for COCO, could be

beneficial for dealing with sharp or blurred target objects

that are partially outside a typical camera’s field of view.

The impact of our approach could be especially helpful

in particular applications, such as drone-based following,

where even brief interruptions in tracking can ruin a film.
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Fox, and R. Garnett, editors, Advances in Neural Informa-

tion Processing Systems 32, pages 8024–8035. Curran Asso-

ciates, Inc., 2019. 4

[35] Siyuan Qiao, Liang-Chieh Chen, and Alan Yuille. Detectors:

Detecting objects with recursive feature pyramid and switch-

able atrous convolution. arXiv preprint arXiv:2006.02334,

2020. 6, 8

[36] Ramesh Raskar, Amit Agrawal, and Jack Tumblin. Coded

exposure photography: motion deblurring using fluttered

shutter. In ACM SIGGRAPH 2006 Papers, pages 795–804.

2006. 3

[37] Adria Recasens, Petr Kellnhofer, Simon Stent, Wojciech Ma-

tusik, and Antonio Torralba. Learning to zoom: a saliency-

based sampling layer for neural networks. In Proceedings

of the European Conference on Computer Vision (ECCV),

pages 51–66, 2018. 2, 5

[38] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015. 3

[39] William Hadley Richardson. Bayesian-based iterative

method of image restoration. JoSA, 62(1):55–59, 1972. 2

[40] Jaesung Rim et al. Real-World Blur Dataset for Learning

and Benchmarking Deblurring Algorithms. PhD thesis, DG-

IST, 2020. 4, 5, 6

[41] Evgenia Rusak, Lukas Schott, Roland Zimmermann, Ju-

lian Bitterwolf, Oliver Bringmann, Matthias Bethge, and

Wieland Brendel. Increasing the robustness of dnns against

image corruptions by playing the game of noise. arXiv

preprint arXiv:2001.06057, 2020. 3

[42] Uwe Schmidt, Carsten Rother, Sebastian Nowozin, Jeremy

Jancsary, and Stefan Roth. Discriminative non-blind deblur-

ring. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 604–611, 2013. 2, 4

[43] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bring-

mann, Wieland Brendel, and Matthias Bethge. Improving

robustness against common corruptions by covariate shift

adaptation. Advances in Neural Information Processing Sys-

tems, 33, 2020. 2, 3, 5, 7

[44] Christian J Schuler, Michael Hirsch, Stefan Harmeling, and

Bernhard Schölkopf. Learning to deblur. IEEE transactions

on pattern analysis and machine intelligence, 38(7):1439–

1451, 2015. 2, 3

[45] Shuochen Su, Mauricio Delbracio, Jue Wang, Guillermo

Sapiro, Wolfgang Heidrich, and Oliver Wang. Deep video

deblurring for hand-held cameras. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 1279–1288, 2017. 2

[46] Jian Sun, Wenfei Cao, Zongben Xu, and Jean Ponce. Learn-

ing a convolutional neural network for non-uniform motion

blur removal. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 769–777,

2015. 3

[47] Yu-Wing Tai, Hao Du, Michael S Brown, and Stephen Lin.

Image/video deblurring using a hybrid camera. In 2008 IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1–8. IEEE, 2008. 3

[48] Chang Tang, Xinzhong Zhu, Xinwang Liu, Lizhe Wang, and

Albert Zomaya. Defusionnet: Defocus blur detection via re-

currently fusing and refining multi-scale deep features. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition (CVPR), June 2019. 2

[49] Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Ji-

aya Jia. Scale-recurrent network for deep image deblurring.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 8174–8182, 2018. 2, 3

[50] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field

transforms for optical flow. In European Conference on

Computer Vision, pages 402–419. Springer, 2020. 7

[51] Igor Vasiljevic, Ayan Chakrabarti, and Gregory

Shakhnarovich. Examining the impact of blur on

recognition by convolutional networks. arXiv preprint

arXiv:1611.05760, 2016. 3, 4, 5, 6, 8

[52] Oliver Whyte, Josef Sivic, Andrew Zisserman, and Jean

Ponce. Non-uniform deblurring for shaken images. Inter-

national journal of computer vision, 98(2):168–186, 2012.

2

[53] Li Xu, Shicheng Zheng, and Jiaya Jia. Unnatural l0 sparse

representation for natural image deblurring. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 1107–1114, 2013. 2

1715



[54] Xiangyu Xu, Jinshan Pan, Yu-Jin Zhang, and Ming-Hsuan

Yang. Motion blur kernel estimation via deep learning. IEEE

Transactions on Image Processing, 27(1):194–205, 2017. 3

[55] J. Zhang, J. Pan, J. Ren, Y. Song, L. Bao, R. W. H. Lau, and

M. Yang. Dynamic scene deblurring using spatially variant

recurrent neural networks. In 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 2521–

2529, 2018. 3

[56] Kaihao Zhang, Wenhan Luo, Yiran Zhong, Lin Ma, Bjorn

Stenger, Wei Liu, and Hongdong Li. Deblurring by realis-

tic blurring. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 2737–

2746, 2020. 4

[57] Shaojie Zhuo, Dong Guo, and Terence Sim. Robust flash

deblurring. In 2010 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, pages 2440–

2447. IEEE, 2010. 3

1716


