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Abstract

Human pose estimation is a major computer vision prob-

lem with applications ranging from augmented reality and

video capture to surveillance and movement tracking. In the

medical context, the latter may be an important biomarker

for neurological impairments in infants. Whilst many meth-

ods exist, their application has been limited by the need

for well annotated large datasets and the inability to gen-

eralize to humans of different shapes and body composi-

tions, e.g. children and infants. In this paper we present

a novel method for learning pose estimators for human

adults and infants in an unsupervised fashion. We ap-

proach this as a learnable template matching problem fa-

cilitated by deep feature extractors. Human-interpretable

landmarks are estimated by transforming a template con-

sisting of predefined body parts that are characterized by

2D Gaussian distributions. Enforcing a connectivity prior

guides our model to meaningful human shape representa-

tions. We demonstrate the effectiveness of our approach on

two different datasets including adults and infants. Project

page: infantmotion.github.io

1. Introduction

In today’s digitized world, images and videos are an al-

most endless source of unlabeled, but inherently structured

data. Tapping into this reserve of information and knowl-

edge requires the ability to reason in an unsupervised ca-

pacity; one of the most compelling and fundamental open

problems in machine learning and computer vision.

Self-supervision approaches have shown evidence that

they can provide a good supervisory signal for video

data [24]. In video recordings an object usually maintains

its intrinsic feature distribution but changes its predomi-

nantly linear relationships between localized features [23].

In this paper we consider the problem of human pose es-

timation. Motivated by a wide range of applications includ-

Figure 1. Schematic overview of our approach. Top: We define

a part-based human template consisting of 2D Gaussian ellipses

and estimate the transformation parameters to estimate the pose of

humans with any body composition. Anchor-points are defined

between adjacent body parts in order to enforce a connectivity

constraint. Bottom: We also evaluate downstream applicability

by estimating 3D body poses.

ing motion capture, visual surveillance and robot control, a

continuous effort has been put into generating datasets and

models where a manually annotated ground truth pose and

key points are available as labels for full supervision. These

are currently the most attractive approaches for industrial

applications due to their promise of higher accuracy.

However, ground truth generation is laborious and often

limited to a narrow domain, for example, standard poses of

healthy adults. In domains with limited demand or special

requirements, extensive labeling efforts are often not jus-
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tified. Such domains include medical applications, where

key point definitions may vary according to diagnostic aims

and body shapes might not comply with the learned expec-

tations from a standard training set. Indeed, motion track-

ing has a variety of applications in medicine, for example

to examine the progression of neurological disease and to

evaluate treatment success [29], the assessment of injury [5]

or for the early diagnosis of impaired neurological develop-

ment in infants [50, 13]. None of these applications allow

for excessive data collection and annotation, often because

of a limited number of subjects, restrictions on recording

in the clinical environment and economical considerations.

Moreover, the direct application of models trained on com-

mon benchmark datasets [22, 3, 17] is often challenging.

To tackle this issue, unsupervised and weakly supervised

pose estimation methods [23, 34, 30] decompose images

into appearance, which encodes individual differences such

as clothing or body height and pose, describing the individ-

ual’s positioning and configuration of limbs and joints with

a canonical latent code. In this context, self-supervision

tasks, such as image reconstruction or translation, have been

shown to be powerful tools to estimate pose as a factor of

variation across images instead of relying on strong, man-

ual supervision signals.

We therefore aim at learning the 2D geometry of ob-

ject categories such as humans and infants with no addi-

tional supervision. We exploit the structured information

provided by raw videos of continuous pose changes and

propose to control inductive bias directly for arbitrary ob-

ject categories through the manual definition of very simple

templates. Thus, we intend to automatically train a neural

representation that can predict the 2D pose from a single

input image. We show that if such a 2D pose prediction is

accurate and compliant with an expected shape prior, these

estimations can be extrapolated to 3D poses with a lower

error than other existing methods.

We present a method for the unsupervised estimation of

2D keypoints requiring only a simple template and an unan-

notated video of a single human performing actions in front

of a static background to learn a meaningful pose represen-

tation. Inspired by previous work [24], where this problem

is framed as a conditional image generation and translation

approach, pose information is utilized to recover a particu-

lar frame of a video from any other randomly chosen time-

point. Despite the effective use of self-supervision and rep-

resentational bottleneck, this approach still requires another

prior in the form of unpaired labels and introduces suscep-

tibility to domain shift if these labels come from a different

datset. Our model however does not require an additional

dataset of unpaired 2D pose examples and relies solely on

a simple 2D template consisting of connected body parts

modeled as 2D Gaussians. The update of these Gaussians

can be learned as affine transformations. Even though im-

ages are 2D representations of 3D information, affine trans-

formations allow to model all possible projected configu-

rations of body parts. Motivated by part-based approaches

such as [64] we introduce anchor-points in order to enforce

connectivity between body parts and regularize model train-

ing and prediction.

In summary, we make the following contributions:

• We introduce a conceptually simple but effective

method to learn 2D human-interpretable keypoints

based on transforming a single manually defined 2D

template.

• Our proposed approach is capable of performing 2D

human pose estimation without any additional need for

labeled data, either paired or unpaired.

• We demonstrate the high adaptability of our approach

by evaluating it on benchmark data and in the wild on

a challenging infant pose estimation dataset.

2. Related Work

We consider the problem of predicting the 2D pose of an

object from a single 2D RGB image as a pose recognition

task. We structure related methods according to full super-

vision, where dense manual annotations are paired to each

frame in a dataset, and weak supervision or no supervi-

sion, when only partial or no annotations are available or

when models are transferred to a new domain. The ques-

tion when a method can be referred to as weakly supervised

or unsupervised remains debatable, which is why we do not

make this distinction explicit.

Inductive bias and prior knowledge are also important in

this context. Very often latent manifold distributions that

are known a priori are used as an initialization step. This

can include models that have been learned from other data

or any other type of supervision or empirical priors. Similar

to recent attempts in this field, e.g. [23], our method is un-

supervised but it uses a very simple empirical prior, which

we hypothesize leads to better results.

Fully supervised models rely on carefully annotated data,

which is available for narrow fields of applications, e.g.

MS COCO keypoints [32], MPII Human Pose database [3],

Human3.6M [22] or LSP [17]. Methods utilizing these

datasets are usually trained without additional priors due

to the abundance of direct labels. Pictorial structures [12,

4, 39, 41, 43, 45, 62] have been used to describe poses

and CNNs have shown evidence to be powerful estimators

for keypoints [55] and their uncertainties [54]. Confidence

heatmaps are popular for scenes where a single pose needs

to be estimated [6, 7, 9, 37, 40, 53, 58] or multiple poses at

once [8, 21]. Our framework does not use existing image

annotation to learn a pose prediction model.
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Weakly supervised and unsupervised methods includ-

ing self-supervised approaches have grown in popularity

due to their efficiency in dealing with limited ground truth

data. This becomes especially important when there are

no large publicly available datasets available for the target

domain. Jakab et al. [23] propose to learn a pose repre-

sentation via conditional image translation. By leveraging

the extracted pose representation and given another frame

containing the same person in a different pose they task

the model to reconstruct the original image. However, a

pixel-wise reconstruction loss does not encourage meaning-

ful, low-dimensional representations. To avoid the model

from simply encoding pixel information similar to an au-

toencoder, a representational bottleneck in the form of k

tuples of (x, y) coordinates is introduced. This enables un-

supervised pose landmark detection provided that the back-

ground remains static. However, the extracted landmarks

follow no common convention and are difficult or impos-

sible to interpret. To tackle this, [24] further propose the

introduction of a fully differentiable image-based represen-

tation, resembling a human skeleton. Adversarial training

with unpaired pose labels is required to make the model

converge towards human-interpretable outputs.

Zhang et al. [63] introduce equivariance and invariance

constraints under an autoencoder-based formulation, while

Lorenz et al. [34] expand this approach by introducing dis-

entanglement between object pose and appearance. Kundu

et. al. proposed to use an energy-based optimization ap-

proach combined with a part-based shape template to esti-

mate 3D poses in images with varying backgrounds [30].

The method produces impressive results but still relies on a

set of unpaired real 3D pose labels.

Earlier methods learn to predict dense 3D human meshes

from sparse 2D keypoint annotations, e.g. [25], by using a

parametric human mesh model [33] and regularization by

adversarial learning from motion capture coordinates. Re-

lated approaches have been proposed in [14, 15, 16, 36, 46,

56, 57, 61].

Others propose methods to match pairs of images of an

object, but sacrifice geometric invariants such as keypoints

to achieve this [26, 44, 47]. Sparse and dense landmarks are

introduced by [49, 52, 51] in the unsupervised context. Syn-

thetic views of 3D models like in [49, 20] are a reasonable

workaround which our method does not use.

Other noteworthy approaches learn a dense deformation

field, e.g. for faces [47, 59]. In contrast to their methods

and similar to [24] we predict semantically meaningful key-

points, however, our points can be freely defined and easily

changed through a simple template. Thus, the quality of

our landmarks is higher per definition of our approach and

adaptable for any given application.

Human pose estimation in medicine: Medical applica-

tions pose a larger challenge for pose estimation algorithms.

For infants, existing learned pose estimation models suf-

fer from domain shift, thus, focused models have been de-

veloped. Pose Estimation in videos of infants has been

proposed as an early diagnosis tool of diseases related to

impaired neurological development affecting the sensori-

motor system [50, 13]. In previous work, marker-based

approaches relying on optical [2] or electromagnetic [27]

tracking have been utilized to track motion in infants. How-

ever, these methods rely on clinical specialists, expertise,

often costly equipment and a substantial amount of man-

ual preparation and calibration. Different marker-less ap-

proaches have been proposed based on optical flow [48]

or particle matching [42]. With the advent of compact and

cheap cameras with integrated depth sensors, several more

recent works combine images and depth information with

random fern classifiers [20], a deformable parts model [28]

or by employing a shape model [38, 19].

For medical applications 3D pose prediction holds addi-

tional value. The most common approach to 3D pose es-

timation is full supervision as detailed above. One of the

earliest approaches outlining a supervised deep learning ap-

proach to the task was proposed by Li et al. [31] with a

network analogous to [55]. In [11], the authors proposed

splitting the human pose estimation task into two parts. The

first is a generic 2D pose estimation model using CNNs,

the second is a non-parametric nearest neighbor model that

paired the estimated 2D pose to the closest 2D pose from a

dictionary of paired 2D and 3D poses. Martinez et al. [35]

took this a step further, replacing the 3D dictionary lookup

model with a deep learning 3D lifting network that took

the estimated 2D pose vectors as an input and produced

3D ’lifted’ outputs. The use of a differentiable soft argmax

function [10] allows end-to-end training of a fully differen-

tiable model and an L2 loss function can be used to directly

regress 3D keypoint locations.

3. Approach

In this section we present our proposed method. We

draw inspiration from [24] and formulate a self-supervision

task by tasking our model to reconstruct an initial frame ft

conditioned on an estimated low-dimensional pose repre-

sentation p̃t. On a high level, our method is composed of

two modules. The first network ϕ, given the initial frame

ft and a template T consisting of 2D Gaussian heatmaps of

human body parts, extracts an estimate p̃t of the true pose pt
represented by a spatial arrangement of different body parts.

The second module is an encoder-decoder network φ which

receives as input the previously extracted pose together with

a frame ft+k containing the same person in a different pose
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Figure 2. Left: Body part heatmaps; Right: combined template

with defined anchor points plotted in red.

pt+k, and tasked to reconstruct the original frame ft.

f̃t = φ(ft+k, p̃t) (1)

p̃t = ϕ(ft,T) (2)

The pose representation p̃t is found by optimizing the model

to encode all necessary information to recover the original

pose whilst enforcing representational constraints to avoid

the encoding of low-level image features.

3.1. Template and Anchor­points

Inspired by [30] and [64], we design a human template

as shown in Figure 2 that consists of 18 body parts in an

effort to represent human anatomy (forearm, torso, head,

etc.). Instead of transforming this template according to

previously found keypoints in the image, we directly es-

timate the transformations and make use of the template

as a strong prior. Each part is characterized by its central

position (x0, y0) surrounded by a 2D Gaussian with vari-

ance (Varx, Vary). We pre-define the mean and variance

of each Gaussian for all body parts in an effort to represent

the length and width of the individual parts. Hence, we are

able to model a canonical T-pose as shown in Figure 2. This

pose was chosen because it roughly represents the mean of

possible pose configurations. Each representation of a body

part l ∈ R
h×w is saved in an individual channel resulting in

a tensor of shape (B,K,H,W ) where B is the batch size,

K the number of body parts andH,W are width and height

of the input image.

For each body part lj in our template T we defineNj (up

to three depending on which part) anchor points a
j
i ∈ R

2 in

image space, with j = 1, ...,K and i = 1, ..., Nj . Our tem-

plate design and the resulting anchor points coincide with

the most commonly used landmark definitions for human

pose estimation. However, the detected landmarks can be

easily changed by simply choosing different points on each

body part.

3.2. Pose Extractor

The network ϕ : R3×h×w → R
k×3×3 is implemented

as a fully-convolutional neural network followed by a fully-

connected layer. An image ft is passed through a series of

down-sampling convolutional layers and mapped to a pose

representation described by the parameters of affine trans-

formations Θk ∈ R
3x3 for each k-th body part from the

original template:

Θ =





θ1,1 θ1,2 tx
θ2,1 θ2,2 ty
0 0 1



 , (3)

where tx,y represent the translations across the two dimen-

sions and θ correspond to rotation, shear, and scale. Each

part of the template is then warped by its corresponding

transform, resulting in T
′ = (ϑ0(l0), ..., ϑk(lk)), where ϑi

is the corresponding transform for each Θi.

3.3. Image Translation Module

The network φ : R3+k×h×w → R
3×h×w receives a dif-

ferent frame ft+k along with the transformed template T
′

concatenated along the channel dimension and outputs an-

other image f̃t following an encoder-decoder pathway. Intu-

itively, this network learns to implicitly disentangle content

(i.e., person identity) and pose in an image and transforms

the content according to the conditioning pose.

3.4. Training Objectives

Our training objective is split into three parts: A recon-

struction loss is associated with the image translation mod-

ule while a boundary and an anchor loss guide the training

of the pose extractor network.

Reconstruction Loss The main loss component in our

method is the reconstruction objective between the origi-

nal frame ft and the output of the image translation network

φ. Similar to [24], we found it to be beneficial to use a

perceptual loss with a pretrained VGG network in order to

stabilize training:

Lrecon = ||ψ(f̃t)− ψ(ft)||
1
1, (4)

where ψ(f) are feature vectors extracted from a frame by

the VGG network and f̃t the output of the image translation

network.

Anchor-point Loss Each anchor point is being trans-

formed by the corresponding body part transform: ã
j
i =

Θja
j
i . In order to enforce connectivity between body parts,
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Figure 3. Schematic overview of our approach: We define a part-based human puppet template and predict the transformation parameters

to estimate the pose for an input frame.

we define a set A = {(ãlj , ã
m
k )|l 6= m} containing all pairs

of transformed anchor points which we require to have the

same position. Lastly we compute the mean squared L2

distance of the two points over all tuples:

Lanchor =
1

M

∑

ã
l
j
,ãm

k
∈A

||ãlj − ã
m
k ||22, (5)

where M = number of anchor point pairs.

Boundary Loss Additionally, we found it beneficial for

convergence and to prevent the network from outputting

transformation parameters leading to a translation of the

template shapes out of the image boundaries to enforce the

anchor points to be contained within the image:

Lbx =

{

|aji,x|, if |aji,x| > B

0, otherwise,
(6)

where a
j
i,x is the x-coordinate of the anchor point in pixel

space and B corresponds to the size of the (quadratic) im-

age. The loss Lby for the y-component is analogous.

Combined Loss Formulation In summary our training

objective is expressed as

L = Lrecon + λ1 Lanchor + λ2 (Lbx + Lby). (7)

Training Our whole model including all subnetworks is

trained in an end-to-tend manner. For sampling pairs, we

define a course grid and corresponding bounding boxes

based on the supplied masks and select frames from the

same bounding box to ensure a static background. Note,

that the hyper-parameters λ1, λ2 are empirically tuned.

4. Experiments

We evaluate our approach on two different datasets, Hu-

man3.6m and an infant dataset from clinical practice. We

compare our method to results with various degrees of su-

pervision, as reported in recent literature. Additionally, we

performed an ablation study to demonstrate the effective-

ness of our proposed anchor and boundary losses.

Human3.6m is an industry standard dataset for human

pose estimation [22] containing 3.6 million images with

corresponding 3D and 2D landmarks and captured with dif-

ferent actors in a controlled studio environment with a static

background.

Infant Dataset is a clinical dataset containing videos of

24 infants captured in their cod in the hospital. The dataset

was recorded and curated by the authors and their clinical

collaborators using an image labelling tool [1]. All subjects

were recruited from consenting parents while the study and

its use has been cleared by the appropriate ethics commit-

tees. We train our method on 20 subjects and evaluate on

four, resulting in a total of 290k unlabelled training and 471

manually labelled test images.

Moving Infants In RGB-D (MINI-RGBD) consists of

12 synthetically rendered movement sequences of infants

with different body shapes and backgrounds [18]. The

dataset was designed to cover challenging and diverse

movements and overall contains 12k images together with

various label information including landmarks and masks.

We introduce this dataset to demonstrate the issue of do-

main shift when using these labels as an additional prior.
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Figure 4. Results of our model on random frames from subjects 9 and 11 in Human 3.6m. Top row: input images with detected keypoints.

Bottom row: corresponding deformed shape templates

Figure 5. Example for limitations of our model. While sitting is a

very difficult pose, facing away from the camera is the most chal-

lenging situation. We observe the full loss of coherent landmarks

in some of these cases. Moreover, the model switches left and

right when a person is facing away from the camera.

4.1. Evaluation Procedure

Human 3.6m In order to make our results comparable to

recent literature with regards to the Human3.6m dataset, we

adopt the evaluation strategy from [34, 63]. The model is

trained on subjects 1,5,6,7,8 and tested on subject 9. We re-

strict the performed actions to {direction, discussion, pos-

ing, waiting, greeting, walking} during testing in order to

ensure mostly upright poses, resulting in a total of 80k im-

ages for testing. 16 landmarks are predicted and compared

with the ground truth. More results can be found in the

supplemental material. The comparison methods make use

of the supplied estimated rough person masks and substract

the background. We did not perform this extra preprocess-

ing step.

Many proposed unsupervised or weakly supervised

methods require an additional post-processing step and di-

rect supervision via ground truth 2D keypoints. Most use

a linear regressor, in order to output human-interpretable

landmarks. Our approach returns interpretable landmarks

in form of anchorpoints by design. The latter also coincide

with the most commonly used conventions, since they are

placed around the joints.

BBox SPP UL T

Lorenz [34] ✓ ✓ ✗ ✗

Zhang [63] ✓ ✓ ✗ ✗

Jakab [24] ✓ ✗ ✓ ✗

Ours ✓ ✗ ✗ ✓

Table 1. Comparing different sources of labels used for different

methods. BBox: bounding box centered around the person, SPP:

supervised post-processing. A linear regressor is applied to map

discovered landmarks to human-interpretable locations. UL: Use

of unpaired manually annotated poses as a prior. T: the manual

design of a single template including individual body parts and

anchorpoints

Infant Dataset As a baseline, we fine-tune a fully su-

pervised ResNet based network [60] pretrained on both

ImageNet and adult poses from MPII Human Pose [3].

For further comparison, we implemented and trained the

method proposed by Jakab et al. [24] on our clinical infant

images combined with unpaired poses from the synthetic

MINI-RGBD infant dataset [18] in order to demonstrate the

method’s susceptibility to domain shift. 12 landmarks are

predicted and compared with the ground truth.

For a fair comparison of the results, we make this explicit

by adding supervised post-processing in parenthesis for all

results where this step was included. We also compiled Ta-

ble 1 to clearly indicate the different sources of labels that

are used by the different methods.

4.2. Results

Human 3.6m For adult pose estimation, we summarize

our results in Table 2. As expected, none of the self-

supervised methods perform as well as the supervised base-

line due to the lack of labels. All prior work makes use

of paired or unpaired manual annotations in some capacity.

Despite the complete lack of such annotations, our method

performs competitively on the same task while only requir-

ing the template. Our model is also able to predict land-

marks for difficult poses such as sitting on a chair, as can

be seen in Figure 4. Errors are largest when self-occlusion

occurs. In the most severe cases, when a person is facing
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Figure 6. Results of our model on random frames from the test subjects of our in-house dataset. Anonymisation was applied to maintain

patient privacy. Top row: input images with detected keypoints. Bottom row: corresponding deformed shape templates

H36M all wait pose greet direct discuss walk

fully supervised baseline

Newell [37] 2.16 1.88 1.92 2.15 1.62 1.88 2.21

self-supervised + supervised post-processing

Thewlis [52] 7.51 7.54 8.56 7.26 6.47 7.93 5.40

Zhang [63] 4.14 5.01 4.61 4.76 4.45 4.91 4.61

Lorenz [34] 2.79 – – – – – –

self-supervised (unpaired labels)

Jakab [24] 2.73 2.66 2.27 2.73 2.35 2.35 4.00

self-supervised (template, no labels)

Ours 3.31 3.51 3.28 3.50 3.03 2.97 3.55

Table 2. Comparison with state-of-the-art methods for human

landmark detection on the Simplified Human3.6M dataset; %-

MSE normalized by image size is reported on a per action ba-

sis. Note that our method does not require any annotations at all

while results are en-par with the state-of-the-art unsupervised ap-

proaches utilizing unpaired labels or post-processing.

Infants all hips knees feet shoulders hands params

fully supervised (fine-tuned) baseline

Xiao [60] 1.74 2.39 1.50 1.47 1.76 1.59 34.0 M

self-supervised (unpaired labels)

Jakab [24] 8.98 6.89 8.18 13.15 5.33 11.36 8.6 M

self-supervised (template, no labels)

Ours 4.86 3.79 4.60 5.53 3.19 7.21 7.8 M

Table 3. Comparison with state-of-the-art methods for the Infant

dataset; %-MSE normalized by image size is reported on a per

body-part basis. Our method outperforms prior unsupervised ap-

proaches for this task because it is not influenced by annotation

domain shift.

away from the camera and both arms and hands are covered

by the body, estimating these landmarks becomes extremely

difficult without further supervision in the form of manually

annotated examples or additional views captured by a sec-

ond camera.

Infant Pose Estimation The results for infant pose esti-

mation are summarized in Table 3 and 5. Figure 6 displays

predictions of our model on infants. Our implemented ver-

sion of [24] performs worse despite the access to 11,000

unpaired landmark annotations. We attribute this to domain

shift. Since the model relies on adversarial training on these

labels, the performance will drop if the latter are not cover-

ing a diverse enough range of possible poses. In fact, the

authors demonstrate a drop in performance in their own ex-

periments when using labels from a different dataset.

Our model is capable of predicting consistent and inter-

pretable landmarks from images of infants with different

body shapes and in different poses. Again, the largest er-

rors are introduced by self-occlusion, especially when arms

are positioned in front of the chest and shoulders. This is

consistent with our observation that the landmark detection

works best on the legs, which are most of the time not posi-

tioned above or below other body parts.

Ablation study In order to verify the individual contribu-

Figure 7. Pose conditioning. Top row: Input image; Middle row:

New Conditioning Pose; Bottom row: Resulting image. We ob-

serve that our image translation sub-module is able to disentangle

pose and content and produce photo-realistic images with the con-

ditioning poses.
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tion of our loss components, we partially train several mod-

els with different loss configurations and present the results

in Table 4.

all hips knees feet shoulders hands

anchor and boundary loss (ours)

6.54 3.56 5.19 8.90 4.70 7.95

with anchor, no boundary loss

65.99 64.65 71.70 76.33 59.00 62.59

with boundary, no anchor loss

12.42 13.84 13.17 7.29 12.94 8.76

no anchor, no boundary loss (model diverges)

446.47 433.64 385.77 662.41 502.69 276.49

Table 4. Mean joint distance in % of image size (values>100 are

outside of image). All models trained for 10 epochs.

Image Translation Since our decoder network is trained

to synthesize images conditioned on the pose input, we are

able to perform image editing by combining a frame f with

a different set of poses p. The images displayed in Figure 7

illustrate the principle and demonstrate disentanglement be-

tween pose and appearance. Moreover, the image transla-

tion modules’ ability to produce images given a condition-

ing pose could serve as a tool in the analysis for indicators

of impaired neurological development. This, however, re-

mains a topic of future work.

Limitations Our method is limited by occlusions and par-

tial views of the body and is currently not able to distin-

guish back-facing from front-facing poses. If not accounted

for, this can result in large errors due to the switching of

joints with their left/right counterpart. The problem only

occurs for adult pose estimation, as infants are lying on their

backs during a recording and are physically not able to turn

around. We believe that the inclusion of a directional vector

could alleviate the observed limitation.

5. Downstream application study

To study the downstream effects of 2D pose prediction

accuracy in a realistic setting we integrate our method into

a setup as it is currently used for clinical evaluation of

neonatal movement quality. Physiological movement qual-

ity assessment requires 3D coordinates, thus a fully super-

vised 3D lifting network is applied after 2D pose estima-

tion. The lifting model is adapted from the work of Mar-

tinez et al. [35]. This model was first pre-trained on the

MPI INF 3DHP adult dataset [36] before fine-tuning on the

infant MINI-RGBD dataset [18]. Figure 8 compares the the

qualitative differences when results from previous 2D pose

estimation methods [24] are used or ours. Quantitatively

Synthetic Infants all hips knees feet shoulders hands

self-supervised (unpaired labels)

Jakab [24] 59.7 10.1 58.4 73.3 58.0 101.5

self-supervised (template, no labels)

Ours 44.7 8.0 57.5 80.9 35.6 78.7

Table 5. 3D lifting results. The error is reported as the distance

between predicted and ground truth 3D landmarks in mm.

Ours

Jakab et al. [24]

Figure 8. Visual results from the lifting network on a synthetic

infant image. Top: ours, bottom: Jakab et al. [24]. The accuracy

of the predicted 2D keypoints has a noticeable impact on the final

3D predictions.

this can be captured by evaluating the joint position error in

mm. These results are summarized in Table 5.

6. Conclusion

We presented a novel approach to unsupervised human

pose estimation by transforming a part-based shape tem-

plate. Given a video of a person moving in front of a static

background, we are able to predict human interpretable key-

points without requiring any paired or unpaired labels. We

have exhibited our method’s performance on two different

datasets and achieved similar or better results in unsuper-

vised human pose estimation while only requiring a sim-

ple canonical 2D pose template instead of numerous man-

ual labels. Moreover, our method is able to adapt to hu-

mans or infants of different shapes and sizes and alternative

keypoints can be defined easily by choosing different loca-

tions on each body part. We also demonstrate an increase

in performance when using our method’s extracted poses

in downstream tasks like 3D pose extrapolation, which is

of significance for both industrial and medical applications.

Although some manual work is required to define the tem-

plate, this could be easily realized in a simple GUI, where

the user would be able to draw body parts and define anchor-

as well as keypoints within minutes.
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