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Abstract

Non-visual imaging sensors are widely used in the indus-

try for different purposes. Those sensors are more expen-

sive than visual (RGB) sensors, and usually produce images

with lower resolution. To this end, Cross-Modality Super-

Resolution methods were introduced, where an RGB image

of a high-resolution assists in increasing the resolution of

a low-resolution modality. However, fusing images from

different modalities is not a trivial task, since each multi-

modal pair varies greatly in its internal correlations. For

this reason, traditional state-of-the-arts which are trained

on external datasets often struggle with yielding an artifact-

free result that is still loyal to the target modality character-

istics.

We present CMSR, a single-pair approach for Cross-

Modality Super-Resolution. The network is internally

trained on the two input images only, in a self-supervised

manner, learns their internal statistics and correlations, and

applies them to up-sample the target modality. CMSR con-

tains an internal transformer which is trained on-the-fly to-

gether with the up-sampling process itself and without su-

pervision, to allow dealing with pairs that are only weakly

aligned. We show that CMSR produces state-of-the-art su-

per resolved images, yet without introducing artifacts or ir-

relevant details that originate from the RGB image only.

1. Introduction

Super-Resolution (SR) methods are used to increase the

spatial resolution and improve the level-of-detail of digital

images, while preserving the image content. Such methods

have important applications for multiple industries, such as

health-care, agriculture, defense and film. ([26]) In recent

years, more advanced methods of SR have been heavily

based on Deep Learning. ([12, 21, 4])

The need for super-resolution becomes even more

prominent when dealing with sensors that capture other

modalities, different than the visible light spectrum, since

those sensors typically produce images with substantially

lower resolution. ([18, 25]) For example, Infra-Red (IR)

camera sensors are more expensive than classical camera

sensors, and their output images commonly have much

lower spatial resolution. To bridge that gap in level-of-

detail, Joint Cross-Modality methods were developed. The

idea is to use the higher-resolution RGB modality to guide

the process of super-resolution on images taken by the lower

resolution sensor, taking advantage of the finer details found

in the RGB images. The challenge is to remain loyal to the

target modality characteristics and to avoid adding redun-

dant artifacts or textures that may be present only in the

RGB modality.

In this work, learning is performed internally, relying

solely on the input pair of images. This approach does

not require any training data, and therefore avoids the need

for a modal-specific dataset, relying solely on the internal

image-specific statistics instead. ([6]) Using an internal

super-resolution method is particularly strong in the con-

text of cross-modality, since it allows the network to fit to

the unique properties and the modality characteristics of the

specific input pair. This feature stands in contrast to the

somewhat impractical task of generalizing to a large cross-

modal image dataset; each multi-modal pair is inherently

unique in its internal correlations, and therefore must be

treated differently.

State-of-the-art Joint Cross-Modality SR methods rely

on the assumption that their multiple inputs are well

aligned. ([1, 2, 36, 8, 27, 24, 22]) Thus, they perform well

only when the input images were captured by different sen-

sors placed in the exact same position, and taken at the ex-

act same time. As to be shown, in real-life scenarios perfect

alignment of multiple sensors is often hard to achieve. In

our work, we present new means to allow the two modal-

ities to be moderately misaligned, namely weakly aligned.

Our network contains a learnable deformation component

that implicitly aligns details in the two images together.

More specifically, our architecture includes a deformation

model that aligns details from the RGB image to the target

modality in a coarse-to-fine manner, before they are fused

together. The network does not use any explicit supervision

for the deformation sub-task, but rather optimizes the de-

formation parameters to adhere to the super-resolution goal.

Figures 1 and 8 present cases where a weakly aligned pair
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causes state-of-the-arts methods to fail, whereas our method

produces high-quality super-resolved output.

Another notable advantage of our single-pair approach

is the avoidance of over-transferal of information. Previous

approaches which train on external cross-modal datasets are

often limited in their ability to adjust to the specific nature

of the input pair. For this reason, they often struggle in

cases where the guiding modality should be only minimally

used, or even completely ignored; they tend to fuse redun-

dant details from the guiding modality anyway, resulting in

the addition of textures and artifacts to the lower resolution

modality. Our method is designed to adjust to the specific

input pair and therefore transfers details from the higher res-

olution image carefully and conservatively, learning only

the details which aid improving the super-resolution task.

Figure 5 presents an example with cross-modality ambigu-

ity. Namely, the RGB modality contains an object which

does not exist in the target modality; this object should ide-

ally be ignored. Our network successfully avoids transfer-

ring it, whereas a competing cross-modality method results

in unwanted artifacts and textures. We show that our net-

work achieves state-of-the-art results on different modali-

ties (Thermal, NIR, Depth), while being generic in support-

ing any modality as input and requiring no pre-training (and

thus, no training data).

2. Related Works

Super-Resolution has been extensively studied through-

out the last two decades. See [26] for a survey covering var-

ious SR techniques. Recent surveys ([35, 4]) cover more ad-

vanced methods, including Deep-Learning based methods.

The first notable deep network-based method of SR method

is SRCNN, ([12]) a simple fully convolutional method that

showed superior results to traditional methods. Like most

methods, SRCNN uses external image datasets, like T91,

Set5 and Set14 ([20, 21]) for training and evaluation.

However, it was claimed ([16, 37, 6]) that methods which

rely on large external datasets do not learn the internal

image-specific properties of the given input. In [16, 37],

the subject of internal patch recurrence is investigated, and

the benefits of a single-image approach were shown. This

strong observation gave rise to powerful Zero-Shot meth-

ods, ([14, 6, 9]) and most notably ZSSR. ([6]) Our work

extends the concept of Zero-Shot to cross-modality. This

way, we not only enjoy the advantage of being dataset inde-

pendent and adjusting to any modality, but we also enable

our network to adapt to the specific properties (which are to

be discussed) of the specific input pair.

2.1. Joint CrossModality

In the Joint Cross-Modality setting the two different

modalities are jointly analyzed to enhance one of them.

As mentioned earlier, camera sensors capturing the RGB

modality produce images with richer HR details than other

modalities. Thus, a common setting is the usage of a visual

HR version of the image, alongside with a LR version taken

by the other modality sensor. This setting was adopted by

all relevant joint cross-modality methods.

In [27], a learning-based visual-depth method is pre-

sented. It is based on a CNN architecture operating on a

LR depth-map and a sharp edge-map extracted from the

HR visual modality. The network is trained on visual-

depth aligned pairs from the Middlebury dataset. ([30])

The method Deep Joint Image Filtering ([22]) presented

a framework for denoising and upsampling depth-maps.

Their network performs concatenation of features extracted

from the guiding image and features extracted from the tar-

get modality image. It was evaluated on the Middlebury

dataset and has shown promising results for its task. It is

however designed to be pretrained on a full multi-modal

datasets of perfectly aligned pairs. Almastri et al. ([1])

introduced the learning-based visual-thermal SR methods

VTSRCNN and VTSRGAN, built on top of the existing

SRCNN and SRGAN. They perform joint visual-thermal

SR by concatenating feature maps extracted from each in-

put modality, and are trained and evaluated on the ULB17-

VT ([3]) visual-thermal dataset consisting of well aligned

pairs. In Guided Super-Resolution as Pixel-to-Pixel Trans-

formation ([24]), the problem of guided depth-maps SR

was posed as a pixel-to-pixel translation of the HR guid-

ing modality to a newly predicted HR depth-map, con-

strained by the intensities of the matching regions from the

LR depth-map input. This method has shown to produce

sharp HR depth-maps, but is based on perfect alignment be-

tween the input and the guiding modality.

Cross-Modal Misalignment In the context of cross-

modality super-resolution, misalignment is a major limita-

tion in producing artifact-free SR results. This was previ-

ously discussed in related works, ([1, 22]) and shown ex-

plicitly in this paper. Our method’s approach in handling

cross-modal misalignment is to deform the RGB modality

and align details that improve the SR objective to the target

modality.

Our Method Our method differs from the aforemen-

tioned joint cross-modality techniques in two central as-

pects. First, it does not require any training data, and there-

fore avoids the need for a modal-specific dataset, relying on

the internal image-specific statistics instead. This feature

is especially attractive for cross-modality super-resolution;

learning from the single input pair encourages the network

to adapt to the specific cross-modal properties existing in

that particular pair, which may be unique. This is un-

like previous state-of-the-arts which are trained on external

datasets and are often limited in their capability to adapt to a
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Pixel-to-Pixel SR [24] DeepJF [22] CMSR GT RGB Input

Figure 1: In this visual-thermal pair, the two inputs are displaced (visualised in Figure 6), a phenomenon which often occurs

in real-world scenarios. This is a failure case even for state-of-the-arts, as they are based on perfect alignment. CMSR adapts

to the given misalignment, and corrects it as a part of the SR process, producing a sharp result (41.069 dB PSNR). The

deformed RGB image is presented in Figure 6

specific pair, and therefore result in over-transferal of infor-

mation (such as in Figures 5 and 9). Second, it requires only

weak alignment, as opposed to the aforementioned tech-

niques which rely on well aligned pairs. This attribute is

critical when operating in real-life scenarios. For example,

state-of-the-arts like Pixel-to-Pixel SR ([24]) and DeepJF

([22]) struggle when applied to pairs that were captured in

less-than-optimal imaging conditions, as shown most no-

tably in Figures 1 and 8.

2.2. MultiModal Alignment

The subject of multi-modal image registration has been

studied mainly in the context of medical imaging. Deep

methods ([31, 11, 10]) have mostly based their architec-

tures on a regressor, a spatial transformer and a re-sampler.

They use supervision to optimize their regression and defor-

mation models. It is also possible to use similarity metrics

like cross-correlation ([10]) instead, and obtain an unsuper-

vised registration framework. In [5], unsupervised regis-

tration was performed through an image-to-image transla-

tion objective. Namely, the better the network translates

one modality to the second modality (which is the modality

being deformed), the better the deformation is assumed to

be done.

In our work, multi-modal image registration is not per-

formed per se. Our goal is not to register the two in-

put modalities together completely, but to give the network

enough freedom to align only the details that assist and ad-

here to the super-resolution task. For this reason, it is possi-

ble that the network chooses to only partly align the guiding

modality. The alignment phase is integrated into the main

SR task. We use the same SR reconstruction loss to opti-

mize our deformation parameters. Thus, we do not require

aligned pairs for training. The deformation framework used

in our method consists of three steps performed in a coarse-

to-fine manner, with the help of affine, CPAB and TPS lay-

ers. ([28, 32]) More specific details are found in later sec-

tions.

3. Single-Pair Cross-Modality Super Resolu-

tion

One of the fundamental problems of cross-modality su-

per resolution is that it is hard to transfer only the relevant

details from the higher resolution image to the lower reso-

lution one while ignoring unnecessary details, which often

cause ghosts and unwanted artifacts (such as those in Figure

5 and Figure 9). When training on a large dataset of cross-

modality image pairs, it is hard (and often impossible) for a

network to learn which details exactly should be transferred

and which should not be, for each given cross-modality pair.

This is mostly because similar objects might be present (and

thus, should be transferred) in some pairs in the dataset, and

not in others. This way, externally trained networks have to

decide in inference whether to incorporate some given RGB

detail or not. To avoid this problem, we opted to use a super

resolution method trained on a single input pair, and enable

the network to adapt to it specifically.

3.1. Network Architecture

Our network includes a patch selection component

which generates a training set out of a single pair of im-

ages, and a super-resolution network. Our method enables

dealing with misaligned pairs by including a deformation

phase, done internally, which aligns objects in both images

right before they enter the SR network (see Figures 3 and

4). We hereby introduce and describe the components of

our network, which are incorporated into our training and

inference schemes as covered in Sections 3.2 and 3.3.

Alignment using Learnable Deformation Our network

corrects displacements between the two modalities on-the-

fly, through a local deformation process applied to the RGB

modality as a first gate to the network, optimized implicitly

during training. To that end, instead of using explicit su-

pervision to optimize the deformation parameters, they are

trained with the super-resolution loss and therefore deform

only parts which are relevant to this task. Hence, the goal

6380



Figure 2: CMSR performs three-way summation; two of

the resulting feature maps, one from each modality, are

summed together with the original modality input that is

naively up-sampled, in a residual manner.

of the deformation step is not to form a perfect alignment

between the images, but rather to allow partial alignment

to boost the super-resolution task, where needed. Our de-

formation process consists of three different transformation

layers, performing the learned alignment in a coarse-to-fine

manner.

The first layer of our deformation framework is the origi-

nal Affine STN layer by Jaderberg et al. ([17]) It captures a

global affine transformation that is used to position the two

modalities together as a rough initial approximation.

The second layer is a DDTN transformation layer (Deep

Diffeomorphic Transformation Network, [32]), a variant of

the original STN layer supporting more flexible and expres-

sive transformations. Our chosen transformation model is

CPAB (Continuous Piecewise-Affine Based, [28, 32]). It

is based on the integration of Continuous Piecewise-Affine

(CPA) velocity fields, and yields a transformation that is

both differentiable and has a differentiable inverse. It is

Continuous Piecewise-Affine w.r.t a tessellation of the im-

age into cells. For this reason, it is well suited to our align-

ment task; each cell can be deformed differently, yet con-

tinuity is preserved between neighboring cells, yielding a

deformation that can express local (per-cell) misalignments

while preserving the image semantics.

The third and last layer of our deformation framework

performs a TPS (Thin-plate spline) transformation, a tech-

nique that is widely used in computer vision and particularly

in image registration tasks. ([7]) Our implementation (also

taken from [32]) learns the displacements of uniformly-

distributed keypoints in an arbitrary way, while each key-

point’s surrounding pixels are displaced in accordance to

it, using interpolation. ([7]) Since TPS displaces its key-

points freely, the displacement is unconstrained to any im-

age transformation model, and has the power to align the

fine-grained objects of the scene, providing the final refine-

ment of our alignment task.

Patch Selection We produce our training set from a sin-

gle pair of images by sampling patches using random aug-

mentations. In our implementation we use scale, rotation,

shear and translations. This random patch selection yields

two patches that correspond to roughly the same area in the

scene: one taken from the target modality and the second is

taken from the deformed RGB modality which was previ-

ously aligned to the target modality.

CMSR network The CMSR network is the main compo-

nent of our architecture, responsible for performing super-

resolution. It produces a HR version of its target modality

LR input image, guided by its HR RGB input. As Figures

3 and 4 suggest, CMSR can be applied to varying image

sizes, thanks to its fully convolutional nature.

The first gate to the network is up-sampling of the LR

modality input to the size of the RGB input. This is done

naively, using the Bi-cubic method, in case no specific ker-

nels are given. 1 From the up-sampled modality input

we generate a feature map using a number of convolu-

tional layers, denoted as Feature-Extractor 1 in Figure 2.

From the RGB modality input that was previously aligned

to target modality input, we generate a feature map using

Feature-Extractor 2. We perform summation of the two

resulting feature maps, one from each Feature-Extractor

block, alongside with an up-sampled version of the LR tar-

get modality image, in a residual manner. This yields our

HR super-resolved output.

3.2. Training

During each training iteration, we perform local defor-

mation on the RGB modality input and produce a displaced

version of it, aligned to the target modality image, as de-

scribed in 3.1. Then, a random patch is selected from the in-

put pair (illustrated in Figure 3), yielding two corresponding

patches; one taken from the target modality, and the second

from the displaced (aligned) RGB modality, as described in

3.1. The patch selection phase is an integral part of the net-

work, and is done in a differentiable manner, so as to allow

the gradients to backpropagate through it to the deforma-

tion model. This enables us to optimize the transformation

on the entire RGB image despite using patches of the image

during training.

1Optimal blur kernels can be directly estimated as shown in [16], and

are fully supported by our method as an additional input to the network.
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Figure 3: Training process. The RGB image first goes through a deformation step which aligns it to the target modality (in

blue). Then, random patches are selected by an augmentation step (in Red) and down-sampled (in green). The patches are

used to train the CMSR network (in orange) and the deformation parameters. The loss function is measured between the

super-resolved output and the input target modality images.

Figure 4: Inference. During inference, the learned defor-

mation parameters and the CMSR component are used to

up-sample the original LR modality input image, guided by

the HR RGB input image.

In order to generate supervision for the training process,

we down-sample the two patches and use the original target

modality patch as ground-truth. We use L1 reconstruction

loss between the reconstructed patch and original input tar-

get modality patch. Note that there is no ground truth for a

perfectly aligned RGB modality. Instead, the deformation

parameters are optimized using the same L1 reconstruction

loss as an integral part of the SR task.

3.3. Inference

At inference time, we use the trained CMSR network and

deformation parameters, to perform SR on the entire target

modality image guided by the RGB modality image (see

Figure 4).

Since CMSR is fully convolutional, it can operate on any

image size (e.g., both image patches of different scales, and

full images) using the same network. We first apply the

alignment dictated by the optimized deformation parame-

ters, and then feed the LR target modality image and the

aligned HR RGB image to the SR network which outputs a

HR version of the target modality image.

After the HR target modality image is obtained, we per-

form two additional refinement operators aimed to further

improve our SR results. The first operator, Geometric Self-

Ensemble, is an averaging technique shown to improve SR

results. ([23, 33, 6]) The second operator, Iterative Back-

Projection, is an error-correcting technique that was used

successfully in the context of SR. ([13, 15, 6])

4. Results and Evaluation

4.1. Implementation Details

Our model is implemented in Tensorflow 1.11.0 and

trained on a single GeForce GTX 1080 Ti GPU. We typi-

cally start with a learning rate of 0.0001 and gradually de-

crease it to 10
−6, depending on the slope of our reconstruc-

tion error line, whereas the learning rates of our transfor-

mation layers follow the same pattern, multiplied by con-

stant factors. Those factors are treated as hyper-parameters,

and should typically be larger when dealing with highly

displaced input pairs, like in the case of weakly aligned

modalities. Performing a 4x SR on an input of size 60x80

typically takes around 30 seconds on a single GPU. We

stop training when the reconstruction error slope does not

change dramatically over a fixed number of iterations. To

6382



Figure 5: CMSR successfully ignores details that appear only in the RGB image (a standing man). It does not add ghosts,

while VTSRGAN does. CMSR also surpasses the baseline single-modality method, ZSSR, which only operates on the NIR

input.

Figure 6: We evaluated CMSR on a severely misaligned

visual-thermal pair, (a) and (b), with both global and local

displacements. We overlaid the images, once before train-

ing (c), and once after training the network (d). CMSR de-

formed its RGB input on-the-fly to better alignment, relying

solely on our SR loss.

achieve SR of higher scales, we perform gradual SR with

intermediate scales, as this further improves the results.

([19, 34, 6])

For Feature-Extractor 1 we use eight hidden layers,

each containing 64 channels and a filter size of 3x3. We

place a ReLU activation function after each layer except for

the last one. The size of feature maps remains the same

throughout all layers in the block. For Feature-Extractor 2

we typically use four to eight hidden layers with number of

channels ranging from 4 to 128, a filter size of 3x3 and a

ReLU activation function. The last layer has no activation

and a filter size of 1x1. We find that highly detailed RGB

inputs require Feature-Extractor 2 to have more channels.

The hyper-parameters rarely require adjustments; they only

require manual tuning when dealing with inputs that are

unique, unusual, or ones that reflect very unusual displace-

ments.

4.2. Evaluation with Stateofthearts

Thermal (Infrared). We compared our method to

cross-modal state-of-the-art SR methods on visual-thermal

pairs. We used the ULB17-VT dataset ([3]), consisting of

pairs (two examples are shown in the supplementary mate-

rial, Figure 5, bottom row) that are mostly well aligned. We

have included the results of our evaluation in Table 1, show-

ing that our method, despite not being previously trained,

beats competing methods. In Figure 7 a visual result from

that evaluation is included. In Figure 1 another visual-

thermal example is given, taken from a visual-thermal agri-

cultural dataset.

NIR (Near-infrared). In Figures 5, 9 and in supple-

mentary material Figure 1 (containing a more extensive

evaluation), we include visual results from our evaluation

on the EPFL NIR dataset. ([29]) The conservative approach

of our method enables it to surpass state-of-the-art methods

(Table 1), even though the competing methods were pre-

trained, whereas our method operates on a single input pair

without pretraining.

Depth. The Middlebury dataset ([30]) contains

strongly aligned depth-visual pairs as shown in the supple-

mentary Figure 5 (top row). Multiple angles from different

sensor placements are included. To obtain weakly-aligned

pairs, we shuffled the pairs together such that the resulting

pairs would correspond to sensor misplacements. An

example is given in the supplementary material. We denote

the new resulting dataset as Shuffled-Middlebury. CMSR

surpasses competing cross-modal methods on those weakly

aligned pairs by using a coarse-to-fine alignment approach,

as summarized in Table 1 and presented in Figure 8.

Single Modality. We evaluated CMSR against the

baseline state-of-the art single modality method, ZSSR.
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Figure 7: We compare our method to its baseline method, ZSSR ([6]), as well as to another cross-modality method, VT-

SRGAN ([1]) on a visual-thermal pair from the ULB17-VT evaluation. On the right, the output of Feature-Extractor 2

(Figure 2) is given as the learned RGB residual which is added to our output. This RGB residual resembles an edge-map; it

is artifact-free and contains no unwanted textures

Pixel-to-Pixel SR [24] DeepJF [22] CMSR GT RGB Input

Figure 8: This misaligned visual-depth pair is taken from our Shuffled-Middlebury dataset evaluation. Compared to cross-

modality state-of-the-arts, who struggle to produce a clear result, our method succeeds in this task (32.239 dB PSNR / 0.9403

SSIM) thanks to its alignment capabilities.

([6]) Our experiment shows that our method leverages the

fine details in its RGB input and produces a SR outputs that

are closer to a Ground-Truth version, as shown numerically

in Table 1 and visually in Figures 7 and in the our NIR eval-

uation. (supplementary material Figure 1)

4.3. Analysis

RGB Artifacts. A fusion of multiple image sources,

often causes the transfer of unnecessary artifacts. Those ar-

tifacts sabotage the image and harm its characteristics. Our

method learns only the relevant RGB information that im-

proves SR results; Figures 1, 5, 8 and 9 show cases where

the RGB input contains a great amount of textural informa-

tion, yet our SR output remains texture-free.

Local Deformation Ablation. As shown in Figure 6,

our method deforms the RGB modality, for better align-

ment, without using any aligned RGB ground-truth im-

ages. Our deformation component provides the network

the ability to align only details that assist and adhere to the

Figure 9: CMSR uses its RGB input conservatively. Com-

pared to VTSRCNN (top left) and VTSRGAN (top right),

CMSR avoids introducing noticeable redundant artifacts

and textures induced by RGB modality. Ground-Truth (bot-

tom right) is given as reference.

super-resolution task, rather than committing to an image-

to-image alignment per se.

To show the necessity of each layer of our coarse-to-fine

deformation framework, we evaluated CMSR on a weakly

aligned pair, adding one layer at a time and averaging across

multiple runs. The results indicate that each layer is neces-

sary and plays a different role in the alignment process as
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Metric Dataset ZSSR VTSRGAN VTSRCNN DeepJF CMSR

PSNR U-VT 26.789 27.988 27.968 27.036 29.928

SSIM U-VT 0.8567 0.8202 0.8196 0.8410 0.882

PSNR SMB 27.784 27.925 28.189 26.124 28.652

SSIM SMB 0.9140 0.9547 0.9386 0.8865 0.9341

PSNR NIR 28.807 30.665 30.143 27.094 31.201

SSIM NIR 0.8931 0.9005 0.8837 0.8694 0.9200

Table 1: We compared CMSR to competing cross-modal SR methods, VTSRCNN and VTSRGAN ([1]) and Deep Joint

Filtering ([22]), on the various datasets. (ULB17-VT, Shuffled-Middlebury, EPFL NIR) and have taken the mean PSNR /

SSIM scores, measured against the modality 4x GT versions.

Figure 10: We evaluated CMSR using different transforma-

tion layers. In the leftmost column, the resulting deformed

RGB image is given. In the other columns we show the

resulting alignment, visualized through blending of the R-

G (Red-Green) channels of the aforementioned deformed

RGB image, together with the Ground-Truth thermal im-

age.

can be seen visually in Figure 10, and numerically in the

supplementary material. Our goal is not to perform perfect

registration between the images, but rather to align only the

necessary details to improve the quality of the higher reso-

lution output. Hence, we measure the quality of the align-

ment through the generated SR result (e.g. in Figures 1 and

8), and not by conventional image registration metrics.

5. Conclusions

We have introduced CMSR, a method for cross-modality

super-resolution.

Novelty CMSR presents a novel way to tackle cross-

modality SR; it achieves state-of-the-art results, qualita-

tively (visually) and quantitatively, using a minimalistic,

easy to implement architecture, applied directly to any

modality pair without pretraining.

Figure 11: We let CMSR perform 4x SR on a Weakly

Aligned visual-thermal pair, with different transformation

layers, averaged across 5 runs. The results indicate that each

layer contributes to the final PSNR, which can also be seen

visually in Figure 10

.

Single Pair. As a self-supervised method, CMSR no

training data, a prominent advantage when dealing with

scarce and unique modalities. It adapts to the specifics of

the given input pair, including among others: (i) the spe-

cific cross-modal misalignment that exists within the input

pair and (ii) the degree and the manner in which the guiding

modality should be incorporated.

Misalignment. A unique property of our method is that

it is robust to cross-modal misalignment. This property is

imperative, since in real life conditions, sight misalignment

is, more often than not, unavoidable. It should be empha-

sized that the alignment is done without pre-training or any

supervision.

In the future, instead of deforming the entire RGB image

once, we would like to deform different RGB objects dif-

ferently, possibly using semantic segmentation, for further

enhancement.
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