
Spatially-Adaptive Pixelwise Networks for Fast Image Translation

Tamar Rott Shaham1 Michaël Gharbi2 Richard Zhang2 Eli Shechtman2 Tomer Michaeli1

1Technion 2Adobe Research

Abstract

We introduce a new generator architecture, aimed at fast

and efficient high-resolution image-to-image translation. We

design the generator to be an extremely lightweight func-

tion of the full-resolution image. In fact, we use pixel-wise

networks; that is, each pixel is processed independently of

others, through a composition of simple affine transforma-

tions and nonlinearities. We take three important steps to

equip such a seemingly simple function with adequate ex-

pressivity. First, the parameters of the pixel-wise networks

are spatially varying, so they can represent a broader func-

tion class than simple 1 × 1 convolutions. Second, these

parameters are predicted by a fast convolutional network

that processes an aggressively low-resolution representation

of the input. Third, we augment the input image by concate-

nating a sinusoidal encoding of spatial coordinates, which

provides an effective inductive bias for generating realistic

novel high-frequency image content. As a result, our model is

up to 18× faster than state-of-the-art baselines. We achieve

this speedup while generating comparable visual quality

across different image resolutions and translation domains.

1. Introduction

Translating images from one domain to another has been
extensively studied in recent years [18]. Current approaches
usually train a conditional Generative Adversarial Network
(GAN) to learn a direct mapping from one domain to the
other [53, 5, 48, 32, 27]. Although these approaches have
made rapid progress in terms of visual quality, model size
and inference time have also grown significantly. The com-
putational cost of these algorithms becomes even more acute
when operating on high resolution images, which is the most
desirable setting in typical real-world applications.

In this work, we present a novel architecture, designed
for fast image-to-image translation1. The key ingredient for
an efficient runtime is a new generator that operates pixel-

wise: each pixel is processed independently from the others
using a pixel-specific, lightweight Multi-Layer Perceptron

1https://tamarott.github.io/ASAPNet_web

ASAPNet (Ours) Pix2PixHD SPADE

0 100 200 300 400

Runtime [ms]

500 600 700

4

3

2

1

0

R
e
s
o
lu

ti
o
n

[M
e
g
a
p
ix

e
ls

]

ASAPNet

(Ours)
pix2pixHD

SPADE

CC-FPSE

SIMS

CRN

Figure 1: Fast image translation. Our novel spatially adap-
tive pixelwise design enables generating high-resolution
images at significantly lower runtimes than existing meth-
ods, while maintaining high visual quality. Particularly, as
seen in the plot our model is 2-18× faster than baselines
[27, 32, 34, 48, 5], depending on resolution.

(MLP). At first glance, the representation power of this gener-
ator should appear limited. However, three key components
make our network fully expressive. First, in contrast to tradi-
tional convolutional networks, where network parameters are
shared across spatial positions, the parameters of the MLPs
vary spatially so each pixel is effectively transformed by a
different function. Second, the spatially-varying parameters
are predicted at low-resolution by a convolutional network
that processes a drastically downsampled representation of
the input. This makes the MLPs adaptive to the input image
(i.e., the pixel-functions depend on the input image itself).
Third, in addition to the input pixel values, the local MLPs

14882

1024× 1024 label map ground truth SPADE [32], 359ms pix2pixHD [48], 166ms ASAP-Net (ours), 35ms

512× 1024 label map CC-FPSE [27], 520ms SPADE [32], 190ms

ground truth pix2pixHD [48], 95ms ASAP-Net (ours), 29ms

Figure 2: Fast image-to-image translation. Our model translates high-resolution images in short execution time comparing
to baselines, while maintaining high visual quality. In this example, we translate 512× 1024 and a 1024× 1024 label images
into equal-sized outputs in only 29 and 35 ms, respectively – up to 10× and 18× faster than the state-of-the-art methods
SPADE [32] and CC-FPSE [27], respectively – while maintaining the same visual quality (see § 4.1 for a user study and
quantitative comparisons). Please note that CC-FPSE cannot be trained on 1024× 1024 images due to memory constraints.

consume a sinusoidal encoding of the pixel’s spatial posi-
tion [46]. Together, these three components enable realistic
output synthesis with coherent and detailed image structures.

As a result, our model, which we coin ASAP-Net (A
Spatially-Adaptive Pixelwise Network), generates images
of high visual quality at very short execution times, even
for high-resolution inputs (see Fig. 1). A visual compari-
son to state-of-the-art methods can be seen in Fig. 2. Here,
our model processes 512 × 1024 and 1024 × 1024 label
maps in only 29 and 35 milliseconds on a GPU. This is
over 4.5×, 10× and 18× faster than the high-performance
pix2pixHD [48], SPADE [32] and CC-FPSE [27] models,
respectively, on the same hardware.

We evaluate our model on several image domains and at
various resolutions, including transferring facade labels to
building images and generating realistic city scenery from
semantic segmentation maps. Additionally, we show the
flexibility of our method by testing on a markedly different
translation task, predicting depth maps from indoor images.

In all cases, our model’s runtime is considerably lower than
existing state-of-the-art methods, while its visual quality is
comparable. We confirm this with human perceptual studies,
as well as by automatic metrics.

2. Related Work

Convolutional image-to-image translation. Classic net-
works for image-to-image translation typically adopt a se-
quential convolutional design, such as encoder-decoder
based models [18, 38, 34] or coarse-to-fine strategies [5].
Architectural improvements such as residual blocks [53],
conditional convolution blocks [27] and normalization tech-
niques [25, 17, 32] have rapidly improved the output image
quality. Unfortunately, these improvements have also led
to models with higher complexity, increased computational
costs and slower runtime [24], even with faster hardware.
Our work strives to break away from the purely sequential
convolutional network design: we synthesize full-resolution
pixels using lightweight, spatially adaptive pixel-wise net-

14883

works, whose parameters are predicted by a fast convolu-
tional network running at a much lower resolution.

Adaptive neural networks. Networks that can tailor their
parameters to specific inputs have been used in various con-
texts. Co-occurence networks [40] can tune weights based
on pixel co-occurences within a fixed-size window. Kernel-
predicting networks [1, 29, 49] produce spatially-varying
linear image-filtering kernels. Deformable convolutions [7]
enable irregularly-shaped local filters. [39] proposed a model
that rescales the receptive field of local filters based on im-
age content. Adaptive normalization techniques [16, 32] and
activation techniques [35, 21] modulate the parameters of
these layers according to an input signal (e.g., label maps).
Closer to our approach, hypernetworks [13] have been used
in visual reasoning and question-answering [33], video pre-
diction [19], one-shot learning [2] and parametric image pro-
cessing [9]. Our low-resolution convolutional network is an
instance of a hypernetwork. It predicts spatially-varying pa-
rameters for a family of pixel-wise fully connected networks.
Hypernetwork functional image representations [22] are sim-
ilar but use a single fully-connected network to encode the
image globally and have been used as image autoencoders.
Our pixelwise networks are local, optimized for speed, and
used in a generative context.

Trainable efficient image transformations. The key to our
model’s efficiency is that most of the computationally heavy
inference is performed at extreme low-resolution, while the
high-resolution synthesis is comparatively lightweight. This
strategy has been employed in the past to efficiently approx-
imate costly image filters [12, 3]. The work most closely
related to ours in this context is that of [11], where a net-
work predicts a set of affine color transformations from a
low-resolution image, which are then upsampled to the full
image size in an edge-aware fashion [4]. The local affine
color transformations model is a good fit for photographic
edits (e.g., tone mapping or Local Laplacian filtering [31]),
but not expressive enough for more complex image-to-image
translation tasks. In particular, this model purely relies on
existing edges in the input and cannot synthesize new edges.

Functional image representations. Another representation
that inspired our design are Compositional Pattern Producing
Networks (CPPNs) [43]. A CPPN is a continuous functional
mapping from spatial (x, y) coordinates to image colors. Our
pixelwise networks, which operate at full resolution, can be
viewed as spatially varying CPPNs. Instead of the raw (x, y)
values, we encode pixel positions using sinusoids at various
frequencies. This is similar in spirit to Fourier CPPNs [44],
although we do not perform any Fourier transform. Similar
representations have been used to encode 3D scenes [42, 30].

Network optimization and compression. There exist many
techniques to accelerate neural networks, either by Neural
Architecture Search [54, 24], weight-prunining [28], param-

eter quantization [52, 14] or low-rank approximation of the
filters [23]. Our approach is largely orthogonal to these tech-
niques. Our low-resolution convolutional network can bene-
fit from the same accelerations and our full-resolution pixel-
wise operators are lightweight and highly parallelizable, and
thus efficient by design.

3. Method

We consider image-to-image translation tasks, in which a
neural network is trained to implement a mapping between
two image domains. That is, given a high-resolution input
image x ∈ R

H×W×C from the source domain, the out-
put y ∈ R

H×W×3 should look like it belongs to the target
domain. In cases where the input is a label map, C is the
number of semantic classes and x is their one-hot repre-
sentation. When the input is an image, C = 3. Our goal
is to design a network that is more efficient than existing
approaches yet produces the same high-fidelity outputs.

Inspired by HDRNet [11], we argue that although an-

alyzing and understanding the image’s content is a com-
plex task and calls for an accordingly deep and expres-
sive neural network, this analysis need not be performed at
full-resolution. Furthermore, synthesizing the output pixels
should not require tens of convolutional layers. Our strategy
is thus twofold: first, we synthesize the high-resolution pixels
using lightweight and highly parallelizable operators (§ 3.1),
and second we perform the more costly image analysis at
a very coarse resolution (§ 3.2). This design allows us to
keep the full-resolution computation to a minimum, perform
the incompressible heavy computation on a much smaller
input, while maintaining a high output fidelity. Our overall
architecture is illustrated in Fig. 3.

3.1. Spatially Adaptive Pixelwise Networks

At the full-resolution of the input image, computation
comes at a premium. To keep the runtime low, we model the
output as a spatially-varying pointwise nonlinear transfor-
mation fp of the high-resolution input, where p denotes the
pixel position. This is shown in the top branch in Fig. 3. The
pointwise property makes the computation parallelizable,
since each pixel is now independent of the others. But with-
out a careful design and a proper choice of inputs, the lack
of spatial context can also limit the model’s expressiveness.

To preserve spatial information, we use two mechanisms.
First, each pixelwise function fp takes as input the pixel’s
coordinates p, in addition to its color value xp. Second,
the pixelwise functions are parameterized with spatially-
varying parameters φp and conditioned on the input image x.
Specifically, each fp is a Multi-Layer Perceptron (MLP) with
ReLU activations defining the mapping

fp(xp, p) = f(xp, p, ;φp) =: yp, (1)

14884

pixelwise networks inputs

F
U

L
L
-R

E
S

O
L

U
T

I
O

N

 P
R

O
C

E
S

S
I
N

G

L
O

W
-R

E
S

O
L

U
T

I
O

N

P
R

O
C

E
S

S
I
N

G

bilinear

downsampling

nearest neighbor

upsampling

parameter-predicting

convolutional network

low-resolution

input

input map positional encodings

spatially-varying

pixelwise MLPs

spatially-varying

MLP parameters

output

MLP at

Figure 3: Architecture overview. Our model first processes the input at very low-resolution, xl, to produce a tensor of weights
and biases φp. These are upsampled back to full-resolution, where they parameterize pixelwise, spatially-varying MLPs fp
that compute the final output y from the high-resolution input x. In practice, we found nearest neighbor upsampling to be
sufficient, which means that the MLP parameters are in fact piecewise constant.

where f denotes the MLP architecture — shared by all pixel-
wise functions — and φp are the (spatially-varying) weights
and biases for the MLPs. We found that MLPs with 5 layers
and 64 channels per layer provide fast execution and good
visual quality.

Under this model, different input images yield different
sets of per-pixel parameters. This in turn means each image
is processed by completely different pointwise networks that
vary across space. Without these two properties — input-
adaptive and spatially-varying parameters — the pointwise
approach would reduce to a much less expressive model: a
static stack of 1× 1 convolutional layers. Figure 9c shows
the results of using this spatially-uniform alternative.

3.2. Predicting pixelwise network parameters from
a low­resolution input

For the transformation to be adaptive, we want φp to be a
function of the input image. Predicting a (potentially large)
parameter vector φp for each pixel independently would
be prohibitive. Instead, the parameter vectors are predicted
by a convolutional network G, operating on a much lower
resolution image xl. Specifically, the network G outputs a
grid of parameters at S× smaller resolution than x. This
grid is then upsampled using nearest neighbor interpolation
to obtain a parameter vector φp for every high-resolution
pixel p, so that

φp = [G(xl)]⌊ p

S
⌋ . (2)

For this step, our framework can in fact accommodate any
upsampling scheme. However, empirically, we found that
nearest-neighbor upsampling yields sufficiently good results,
with the advantage of not requiring additional arithmetic
operations for interpolation.

As seen in the bottom branch of Fig. 3, the low-resolution
computation starts with bilinearly downsampling x by a fac-
tor S1 to obtain xl. This image is then processed by G, which
further reduces the spatial dimensions by a factor S2 using a
sequence of strided-convolution layers. The final output of
the network G is a tensor with channels corresponding to the
weights and biases of the full-resolution pixelwise networks.

We use S2 = 16 throughout and set S1 so that xl has
at most 256 pixels on the short axis of the image. There-
fore, the total downsampling S := S1 × S2 depends on the
image size (e.g. S = 64 for an input of size 1024 × 1024).
This means that our low-resolution stream processes a very
low resolution representation of the input image (e.g., only
16 × 16 pixels for images with aspect ratio of 1), which
dramatically reduces the computation cost of G. Additional
network details can be found in the supplemental material.

3.3. Synthesizing high­resolution details using posi­
tional encodings

Image translation requires hallucinating fine details, often
finer than the input itself (e.g. in the case of translating label
maps to images). However, our function parameters φp are

14885

256x256 512x512 1024x1024 2048x2048
Resolution

0
10
20
30
40
50
60
70
80
90

Ru
nt

im
e

[m
s]

ASAPNet (Low-res)
ASAPNet (High-res)

Figure 4: We show a breakdown of our method’s runtime
between the low-resolution convolutional network, and the
full-resolution pixel-wise computation. Note that the runtime
for the convolutional component remains roughly constant
with resolution, while the pixelwise part scales linearly with
the number of pixels to process (see SM for 4Mpix results).

predicted at low-resolution and then upsampled. This should
somewhat limit their ability to synthesize high frequency
details. We circumvent this limitation by augmenting the
pixelwise functions fp to take an encoding of pixel posi-
tion p as additional input [26]. Thus, like Compositional
Pattern-Producing Networks (CPPN) [43], our spatially-
varying MLPs can learn to generate details finer than the
sampling resolution of their parameters. Furthermore, neural
networks have been shown to have a spectral bias towards
learning low-frequency signals first [36, 37]. So, instead of
passing p directly to the MLP, as suggested by Equation (1),
we found it useful to encode each component of the 2D
pixel position p = (px, py) as a vector of sinusoids with fre-
quencies higher than the upsampling factor. This approach
is similar in spirit to Fourier CPPN [44]. Specifically, in ad-
dition to the pixel value xp, each MLP consumes 2× 2× k
additional input channels:

(

sin(2πpx/2
k), cos(2πpx/2

k)
)

for k = 1, . . . , log
2
(S) and similarly for py. The pixelwise

MLPs can take advantage of these additional inputs to synthe-
size high frequency image patterns. This encoding is shown
in Figure 3. Figure 9b illustrates their crucial role.

3.4. Training and implementation details

Our contribution is our architectural design, and we fol-
low best practices for the optimization procedure. We train
our generator model adversarially with a multi-scale patch
discriminator, as suggested by pix2pixHD [48]. We follow
the optimization procedure of SPADE [32] which includes
an adversarial hinge-loss [47], a perceptual loss [8, 10, 20]
and a discriminator feature matching loss [48]. Please see
the supplemental material for details.

4. Experiments

We validate the performance of our method on several
image translation tasks and compare runtime and image
quality (quantitatively and qualitatively) with previous work.

Baselines. We compare our model, ASAP-Net, with five re-
cent, competitive methods. These include three recent GAN
based methods: (i) CC-FPSE [27], which introduces new
conditional convolution blocks that are aware of the differ-
ent semantic regions, (ii) SPADE [32], which uses spatially
adaptive normalization to translate semantic label maps into
realistic images, and (iii) pix2pixHD [48], which takes a
residual learning approach that enables high-resolution im-
age translation. We also include two earlier non-adverserial
methods: (iv) SIMS [34] which refines compositions of seg-
ments from a bank of training examples, and (v) CRN [5]
which uses a coarse-to-fine generation strategy. Finally, we
also include a comparison with the lighter-weight pix2pix
model [18], which was the first to address this task.

Datasets. We use three datasets: (i) CMP Facades [45],
which contains 400 pairs of architecture labels and their cor-
responding building images of varying sizes. We randomly
split it into 360/40 training/validation images, respectively.
We construct two versions of this dataset, corresponding to
resolutions 512× 512 and 1024× 1024. (ii) Cityscapes [6],
which contains images of urban scenes and their semantic
label maps, split into 3000/500 training/validation images.
We construct 256 × 512 and 512 × 1024 versions of this
dataset. (iii) NYU depth dataset [41], which contains 1449
pairs of aligned RGB and depth images of indoor scenes,
split into 1200/249 training/validation images.

4.1. Evaluations

We compare our method to the baselines in terms of run-
time, human perceptual judgements, and automatic metrics.

Speed. We benchmark the inference time of all models on
an Nvidia GeForce 2080ti GPU. Working at low resolu-
tion with only pointwise full-resolution operations gives our
model up to a 6× speedup compared to pix2pixHD, 10×
speedup compared to SPADE (in spite of the comparable
number of trainable parameters), SIMS [34] and CRN [5],
and 18× speedup compared to CC-FPSE [27], depending on
resolution. Figure 1 summarizes inference times for various
input sizes and shows that our runtime advantage becomes
more significant at higher resolutions. One of the reasons for
this is that the runtime of our low resolution convolutional
stream is almost constant with respect to the image size, as
can be seen in Fig. 4. In fact, the only operation in the low-
resolution stream whose runtime depends on the image size
is the bilinear downsampling. Indeed, S2 is kept fixed while
S1 is adapted to the image size, so that the convolutional
network’s output resolution is always 16×16 for inputs with
a 1 : 1 aspect ratio, regardless of the input image size.

14886

1024× 1024 label map SPADE [32], 359ms pix2pixHD [48], 166ms ASAP (ours), 35ms

512× 1024 label map CC-FPSE [27], 520ms SPADE [32], 190ms pix2pixHD [48], 95ms ASAP (ours), 29ms

Figure 5: Qualitative comparison. Our method (rightmost column) achieves similar visual quality as the baselines methods,
for a fraction of the computational cost.

Qualitative comparisons. Examples of our translated im-
ages are shown in Fig. 5 and many more results are provided
in the supplemental material (SM). Our method generates
plausible outputs with high fidelity details, whose visual
quality is at least comparable to the baselines (and even
significantly better in some cases).

Human perceptual study. To further assess the realism of
the generated images, we conduct a user study on Amazon
Mechanical Turk (AMT). We adopt the protocol of [51] and
compare our models with CC-FPSE [27], SPADE [32] and
pix2pixHD [48], which are the competitors with the best
runtime-accuracy tradeoff (see Fig. 6). For each test (11 in
total) we asked 50 users which image looks more realistic in

a Two Alternative Forced Choice (2AFC) test between our
method and each baseline. For each study we used 50 dif-
ferent pairs of images. The results are summarized in Fig. 7.
Across most resolutions, datasets and baselines, users rank
our method at least on par with the baselines. User’s ranking
scores point that up to a 10× speedup, ASAP-net does not
incur any degradation in visual quality compared to base-
lines. At 18× speedup, we experience a small degradation
with respect to CC-FPSE on Cityscapes, but still maintain a
significant advantage over CC-FPSE on Facades.

Quantitative evaluation. We follow previous works [32,
48] and quantify the quality of the generated images using:
(i) the Fréchet Inception Distance (FID) [15], which mea-

14887

50

75

100

125

150

FI
D

(
)

SPADE
pix2pixHD

pix2pix
CC-FPSE

CRN

ours

Facades 512x512

SPADEpix2pixHD
pix2pix CRN

ours

Facades 1024x1024

SPADE
pix2pixHD

pix2pix

CC-FPSE
CRN

SIMS
ours

Cityscapes 256x512

SPADE
pix2pixHD

pix2pix

CC-FPSECRN

SIMS

ours

Cityscapes 512x1024

50

60

70

80

90

Pi
xe

l a
cc

u.
 (

)

SPADEpix2pixHD

pix2pix CRN

CC-FPSEours

SPADEpix2pixHD

pix2pix CRN
ours

SPADE

CC-FPSEpix2pixHD

pix2pix
CRNSIMS

ours SPADE CC-FPSE
pix2pixHD

pix2pix

CRN

SIMS
ours

101 102

Runtime [ms]

0

20

40

60

80

m
Io

U
(

)

SPADE CC-FPSEpix2pixHD
pix2pix CRN

ours

102

Runtime [ms]

SPADE
pix2pixHD

pix2pix CRN

ours

101 102

Runtime [ms]

SPADE CC-FPSE
pix2pixHD

pix2pix

CRNSIMSours

102 103

Runtime [ms]

SPADE CC-FPSE
pix2pixHD

pix2pix

CRN
SIMS

ours

Figure 6: Performance vs. runtime We compare our method to all baselines using several metrics. FID (lower is better),
segmentation accuracy and mean intersection over union (higher is better) show our model outperforms pix2pix and is
comparable to CRN, SIMS, pix2pixHD, SPADE, CC-FPSE across all datasets and resolutions. This is while our model is
nearly as fast as pix2pix and significantly faster than all other baselines.

Ours
2-6x faster

Ours
4-10x faster

SPADEpix2pixHD

5
4

.0

5
0

.2

5
5

.6

6
6

.8

4
9

.6

5
0

.3

5
5

.7

6
7

.0

Cityscape 256x512 Cityscape 512x1024 Facades 512x512 Facades 1024x1024

Ours
8-18x faster

CC-FPSE

4
5

.0
7

4
0

.5
6

6
8

.5

Figure 7: Human Perceptual Study. We ask users to choose
the most realistic result in a Two Alternative Forced Choice
(2AFC) perceptual test. We compare our outputs indepen-
dently to pix2pixHD, SPADE and CC-FPSE. Across most
datasets and resolutions, users prefer our images with a rate
over 50%. On the high-resolution Facades dataset user pref-
erence for our method even reaches 67%.

sures the similarity between the distributions of real and
generated images, and (ii) semantic segmentation scores;
for this we run the generated images through a semantic
segmentation network [50] (we use the drn-d-105 model for
Cityscapes and the drn-d-22 for Facades) and measure how
well they match the real segmentation map according to pix-
elwise accuracy and mean Intersection-over-Union (mIoU).
These evaluations are summarized in Fig. 6. As seen in the
first row of Fig. 6, our model achieves the best FID scores

0 50 100 150 200 250 300 350 400
Runtime [ms]

100

125

150

175

200

FI
D

(lo
we

r i
s b

et
te

r)

SPADE

SPADE (24ch)

SPADE (32ch)

pix2pixHD

pix2pixHD
(16ch)

ours

Facades 1024x1024

Figure 8: ASAP vs. slimmer baseline variants. When grad-
ually decreasing the number of channels in SPADE [32]
and pix2ixHD [48] until reaching the execution time of our
ASAP network, both experience a severe degradation in FID.

at the low runtime regime, populating a new region in the
FID-runtime plane. This is true for all datasets and resolu-
tions. Particularly, we obtain FID scores that are compara-
ble to pix2pixHD and SPADE and significantly better than
pix2pix [18], while operating at a comparable runtime to
pix2pix (note the logarithmic runtime scale). This shows the
speedups we obtain typically come on the expense of mini-
mal degradation in visual quality, if any. A similar behavior
is seen in terms of pixelwise accuracy and mIoU scores.

To further investigate FID score trends, in Fig. 8 we
compare our method with several variants of SPADE and
pix2pixHD. When gradually cutting down their number of
channels to reach the same runtime as ASAP-net, both these
methods incur a significant degradation in performance.

14888

(a) label map (b) w/o pos. enc. (c) constant fp (d) S = 64 (e) S = 16 (f) ours, S = 32

Figure 9: Ablations. The two main components of our model are crucial for its success. (b) Omitting the position encoding,
fp can only use the semantic labels pointwise and is unable to hallucinate new high frequency details. (c) When preventing
fp from varying spatially, the expressiveness of the model is severely limited. (d)-(e) The down-sampling factor S is critical
for both quality and speedup; using larger S reduces the runtime of the model (12.1ms) but is detrimental to visual quality,
whereas reducing S results in high quality image, but with 2× longer runtime (28.1ms). (f) Our final model strikes a good
balance. It can translate the 512× 512 inputs (a) into realistic images in only 14.2ms.

input image SPADE ASAP-Net ground truth

Figure 10: Beyond labels. The architecture of SPADE [32]
is designed specifically for the task of translating labels into
images, and is therefore less successful for task like depth
estimations. Our approach, on the other hand, manages to
preform well on this task. Please see SM for more results.

4.2. Analysis

Beyond labels. We qualitatively test the ability of ASAP-
Net to perform additional tasks, other than translating labels
to images. We train our model on the NYU dataset [41] to
predict depth maps from RGB images. As can be seen in
Fig. 10, SPADE [32] completely fails in this task, which
involves continuous-valued inputs. This is because its nor-
malization is specifically designed for discrete label maps.
Our model, on the other hand, is not restricted to labels, and
manages to learn a plausible depth-to-RGB mapping.

Model ablations. In Fig. 9 we provide an ablation study
illustrating the role of each design component. Both the
positional encoding (Fig. 9b) and the spatially-varying func-
tions (Fig. 9c) are critical for obtaining realistic synthesis.
We also quantify the impact of the downsampling factor on
speed in Figs. 9d, 9e.

Limitations. Because most of our computations are done
at a very low resolution (e.g. S = 64), the accuracy of
our method is limited for very small object classes. This is

0 5 10 15 20 25 30 35
Object size [% of image]

0

20

40

60

80

100

Pe
r-c

la
ss

 m
Io

U

Per-class mIoU vs. object size

CC-FPSE
SPADE
pix2pixHD
CRN

SIMS
pix2pix
ours

Figure 11: Per-class mIoU. Our method sometimes mis-
represents very small objects because of its extremely low
resolution computation. When separating the mIoU scores
(cityscapes 256×512) into classes, we can see a degradation
for objects that are smaller than 3% of the image area.

reflected in mIoU segmentation scores (Fig. 6, third row).
Here, in some cases our scores are slightly inferior to those
of the baselines, although usually significantly higher than
pix2pix. When separating the scores into Per-class mIoU for
Cityscapes (Fig. 11), it is clear that the gap is due to small
objects, which occupy less than 3% of the image size.

5. Conclusion

We propose a new architecture for image-to-image trans-
lation problems that is an order of magnitude faster than
previous work, yet maintains the same high level visual
quality. We achieve this speedup by a new image synthesis
approach: at full resolution we use a collection of spatially-
varying lightweight networks that operates in a pixel-wise
fashion. The parameters of these networks are predicted by a
convolutional network that runs at a much lower resolution.
Despite the low-resolution processing and pixelwise opera-
tions, our model can generate high-frequency details. This is
due to the positional encoding of the input pixels.

Acknowledgements. This research was supported by the Is-
rael Science Foundation (grant 852/17) and by the Technion
Ollendorff Minerva Center.

14889

References

[1] Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer,
Jan Novák, Alex Harvill, Pradeep Sen, Tony Derose, and
Fabrice Rousselle. Kernel-predicting convolutional networks
for denoising monte carlo renderings. TOG, 2017.

[2] Luca Bertinetto, João F Henriques, Jack Valmadre, Philip
Torr, and Andrea Vedaldi. Learning feed-forward one-shot
learners. In NIPS, 2016.

[3] Jiawen Chen, Andrew Adams, Neal Wadhwa, and Samuel W
Hasinoff. Bilateral guided upsampling. TOG, 2016.

[4] Jiawen Chen, Sylvain Paris, and Frédo Durand. Real-time
edge-aware image processing with the bilateral grid. TOG,
2007.

[5] Qifeng Chen and Vladlen Koltun. Photographic image syn-
thesis with cascaded refinement networks. In ICCV, 2017.

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The cityscapes dataset for
semantic urban scene understanding. In CVPR, 2016.

[7] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang,
Han Hu, and Yichen Wei. Deformable convolutional networks.
In ICCV, 2017.

[8] Alexey Dosovitskiy and Thomas Brox. Generating images
with perceptual similarity metrics based on deep networks. In
NIPS, 2016.

[9] Qingnan Fan, Dongdong Chen, Lu Yuan, Gang Hua, Nenghai
Yu, and Baoquan Chen. Decouple learning for parameterized
image operators. In ECCV, 2018.

[10] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-
age style transfer using convolutional neural networks. In
CVPR, 2016.

[11] Michaël Gharbi, Jiawen Chen, Jonathan T Barron, Samuel W
Hasinoff, and Frédo Durand. Deep bilateral learning for real-
time image enhancement. TOG, 2017.

[12] Michaël Gharbi, YiChang Shih, Gaurav Chaurasia, Jonathan
Ragan-Kelley, Sylvain Paris, and Frédo Durand. Transform
recipes for efficient cloud photo enhancement. TOG, 2015.

[13] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks.
ICLR, 2016.

[14] Song Han, Huizi Mao, and William J Dally. Deep compres-
sion: Compressing deep neural networks with pruning, trained
quantization and huffman coding. ICLR, 2016.

[15] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter. GANs trained by a two
time-scale update rule converge to a local nash equilibrium.
In NIPS, 2017.

[16] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In ICCV,
2017.

[17] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz.
Multimodal unsupervised image-to-image translation. In
ECCV, 2018.

[18] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros.
Image-to-image translation with conditional adversarial net-
works. In CVPR, 2017.

[19] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V
Gool. Dynamic filter networks. In NeurIPS, 2016.

[20] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
ECCV, 2016.

[21] Idan Kligvasser, Tamar Rott Shaham, and Tomer Michaeli.
xunit: Learning a spatial activation function for efficient im-
age restoration. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 2433–2442,
2018.

[22] Sylwester Klocek, Łukasz Maziarka, Maciej Wołczyk, Jacek
Tabor, Jakub Nowak, and Marek Śmieja. Hypernetwork func-
tional image representation. In ICANN. Springer, 2019.

[23] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Os-
eledets, and Victor Lempitsky. Speeding-up convolutional
neural networks using fine-tuned cp-decomposition. arXiv

preprint arXiv:1412.6553, 2014.
[24] Muyang Li, Ji Lin, Yaoyao Ding, Zhijian Liu, Jun-Yan Zhu,

and Song Han. Gan compression: Efficient architectures for
interactive conditional gans. In CVPR, 2020.

[25] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised
image-to-image translation networks. In NIPS, 2017.

[26] Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski
Such, Eric Frank, Alex Sergeev, and Jason Yosinski. An
intriguing failing of convolutional neural networks and the
coordconv solution. In NeurIPS, 2018.

[27] Xihui Liu, Guojun Yin, Jing Shao, Xiaogang Wang, and Hong-
sheng Li. Learning to predict layout-to-image conditional
convolutions for semantic image synthesis. In Advances in

Neural Information Processing Systems, 2019.
[28] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter

level pruning method for deep neural network compression.
In ICCV, 2017.

[29] Ben Mildenhall, Jonathan T Barron, Jiawen Chen, Dillon
Sharlet, Ren Ng, and Robert Carroll. Burst denoising with
kernel prediction networks. In CVPR, 2018.

[30] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. arXiv preprint arXiv:2003.08934, 2020.

[31] Sylvain Paris, Samuel W Hasinoff, and Jan Kautz. Local lapla-
cian filters: Edge-aware image processing with a laplacian
pyramid. TOG, 2011.

[32] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In CVPR, 2019.

[33] Ethan Perez, Florian Strub, Harm De Vries, Vincent Du-
moulin, and Aaron Courville. Film: Visual reasoning with a
general conditioning layer. In AAAI, 2018.

[34] Xiaojuan Qi, Qifeng Chen, Jiaya Jia, and Vladlen Koltun.
Semi-parametric image synthesis. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,
pages 8808–8816, 2018.

[35] Sheng Qian, Hua Liu, Cheng Liu, Si Wu, and Hau San Wong.
Adaptive activation functions in convolutional neural net-
works. Neurocomputing, 272:204–212, 2018.

[36] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix
Draxler, Min Lin, Fred A Hamprecht, Yoshua Bengio, and
Aaron Courville. On the spectral bias of neural networks.
PMLR, 2019.

14890

[37] Basri Ronen, David Jacobs, Yoni Kasten, and Shira Kritch-
man. The convergence rate of neural networks for learned
functions of different frequencies. In NeurIPS, 2019.

[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI, 2015.

[39] Evan Shelhamer, Dequan Wang, and Trevor Darrell. Blurring
the line between structure and learning to optimize and adapt
receptive fields. arXiv preprint arXiv:1904.11487, 2019.

[40] Irina Shevlev and Shai Avidan. Co-occurrence neural network.
In CVPR, 2019.

[41] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from rgbd
images. In European conference on computer vision, pages
746–760. Springer, 2012.

[42] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein.
Scene representation networks: Continuous 3d-structure-
aware neural scene representations. In NeurIPS, 2019.

[43] Kenneth O Stanley. Compositional pattern producing net-
works: A novel abstraction of development. Genetic program-

ming and evolvable machines, 2007.
[44] Mattie Tesfaldet, Xavier Snelgrove, and David Vazquez.

Fourier-cppns for image synthesis. In ICCV Workshops, 2019.
[45] Radim Tyleček and Radim Šára. Spatial pattern templates

for recognition of objects with regular structure. In German

Conference on Pattern Recognition. Springer, 2013.
[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural

information processing systems, pages 5998–6008, 2017.
[47] Ruohan Wang, Antoine Cully, Hyung Jin Chang, and Yiannis

Demiris. Magan: Margin adaptation for generative adversarial
networks. arXiv preprint arXiv:1704.03817, 2017.

[48] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image
synthesis and semantic manipulation with conditional gans.
In CVPR, 2018.

[49] Zhihao Xia, Federico Perazzi, Michaël Gharbi, Kalyan
Sunkavalli, and Ayan Chakrabarti. Basis prediction networks
for effective burst denoising with large kernels. CVPR, 2020.

[50] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated
residual networks. In CVPR, 2017.

[51] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
image colorization. In ECCV, 2016.

[52] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong
Chen. Incremental network quantization: Towards loss-
less cnns with low-precision weights. arXiv preprint

arXiv:1702.03044, 2017.
[53] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros.

Unpaired image-to-image translation using cycle-consistent
adversarial networks. In ICCV, 2017.

[54] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. ICLR, 2017.

14891

