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Abstract

Domain adaptation deals with training models using

large scale labeled data from a specific source domain

and then adapting the knowledge to certain target domains

that have few or no labels. Many prior works learn do-

main agnostic feature representations for this purpose us-

ing a global distribution alignment objective which does

not take into account the finer class specific structure in

the source and target domains. We address this issue in

our work and propose an instance affinity based criterion

for source to target transfer during adaptation, called ILA-

DA. We first propose a reliable and efficient method to ex-

tract similar and dissimilar samples across source and tar-

get, and utilize a multi-sample contrastive loss to drive

the domain alignment process. ILA-DA simultaneously ac-

counts for intra-class clustering as well as inter-class sepa-

ration among the categories, resulting in less noisy clas-

sifier boundaries, improved transferability and increased

accuracy. We verify the effectiveness of ILA-DA by ob-

serving consistent improvements in accuracy over popu-

lar domain adaptation approaches on a variety of bench-

mark datasets and provide insights into the proposed align-

ment approach. Code will be made publicly available at

https://github.com/astuti/ILA-DA.

1. Introduction

In this work, we propose a method to leverage instance

wise similarities across datasets, called ILA-DA, to im-

prove unsupervised domain adaptation. It is well known

that models trained on a large-scale labeled dataset are

generally sensitive to domain shifts and do not generalize

well to data that lies outside the training distribution [65].

Unsupervised domain adaptation [5, 4, 53] emerged as a

feasible alternative to transfer knowledge from a labeled

source domain to one or more unlabeled target domains

by minimizing some notion of divergence between the do-

mains [39, 35, 63, 17, 66, 8]. A majority of successful ap-

proaches rely on global distribution alignment using adver-

(a) (b)

Domain Separation Source Pull similar samples closer

Classifier Boundary Target Push away dissimilar samples

(c)

Before Adaptation

Proposed Method

Adversarial Adaptation

Noisy pseudo-labels

Figure 1: Motivation for the proposed approach (a), (b) Most

adversarial learning based adaptation approaches achieve global

domain alignment which often leads to misalignment near the clas-

sifier boundaries. (c) Using our affinity matrix based approach in

combination with the proposed MSC loss, we achieve better dis-

crimination between target samples and improve the adaptation.

sarial learning [17, 66, 8, 7, 58], where the objective is to

learn features that are good enough to fool a discriminator

into classifying source samples as target and vice versa. A

major limitation with these methods is that while learning

domain agnostic feature representations, they do not con-

sider the finer class specific structure of the samples during

the alignment resulting in noisy predictions near classifier

boundaries. They do not take into account, for example,

the fact that the affinity of different categories across source

and target towards alignment can be different, which might

lead to misalignment of few categories as shown in Fig. 1.

This problem is alleviated to an extent by many follow-up

works that make use of target pseudo labels to guide class

specific alignment [27, 21, 37, 50, 40, 75, 49]. However,

the performance of these approaches is in most cases tied

to the reliability of predicted pseudo labels which can be

noisy without adequate filtering measures, leading to nega-

tive alignment between unrelated categories.

In this work, we address these limitations by proposing a

novel adaptation approach called ILA-DA (Instance Level

Affinity-based Domain Adaptation). We combine ideas
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from metric learning literature [73, 70, 34, 15, 15, 52, 20] to

perform cross domain transfer by using instance affinity re-

lations between the source and target samples. As opposed

to prior works that perform domain level or class level align-

ment, we show that a much finer knowledge in the form of

sample level similarity can be successfully exploited to im-

prove the adaptation process. The main challenge with this

approach is that the target domain is completely unlabeled

to extract similarity. To overcome this, we propose a near-

est neighbor based technique to first construct a pairwise

affinity matrix. We then use this knowledge of cross do-

main positive and negative relations in a multi-sample con-

trastive learning (MSC) loss that uses multiple positives and

negatives across domains in a contrastive learning frame-

work [20, 47].

We identify two advantages using ILA-DA. Firstly, the

pairwise similarities provide a relatively stronger signal

during training and are shown to be more robust to la-

bel corruptions compared to category predictions in many

cases [25, 26]. Secondly, our multi-sample contrastive

loss aims to cluster similar samples from across domain

closer together while pushing dissimilar samples away to

avoid negative transfer. This is especially useful in adapta-

tion across fine-grained datasets, where the challenge, apart

from domain shift, is to additionally acknowledge the large

intra-class variation within the categories.

The effectiveness of ILA-DA is reflected by improved

adaptation accuracy on popular benchmarks like Digits and

Office-31 datasets. We also achieve state-of-the-art results

on a challenging adaptation dataset Birds-31 [71] without

using complementary information such as label-hierarchies

and class structure unlike [71], which indicates the useful-

ness of our MSC loss in handling wide variety of scenarios.

We further perform extensive ablations and analysis on our

methodological choices. All code and data for our method

and baselines will be publicly released.

In summary, the key highlights of the paper are:

• We propose a novel adaptation frame work ILA-DA. It

uses Multi-Sample Contrastive (MSC) loss to perform

instance affinity aware transfer by identifying pairwise

similarity relations across source and target domains.

• ILA-DA is designed to be general and can be applied to

enhance any existing adversarial adaptation approach.

We show experimental results while using it in com-

bination with two popular methods, DANN [17] and

CDAN [36], and observe consistent improvements over

both the baselines.

• We validate the effectiveness of the proposed approach

numerically by applying it on multiple tasks from var-

ious challenging benchmark datasets used for domain

adaptation like Digits, Office-31 and Birds-31 and ob-

serve improved accuracies in all the cases, sometimes

outperforming the state-of-the-art by a large margin.

2. Related Work

Domain Adaptation Unsupervised domain adaptation

enables training networks on completely unlabeled data by

transferring knowledge from a model trained on a different

labeled source domain. This is done by minimizing some

notion of distance or divergence between the domains [5, 4].

The various notions of divergence include Maximum Mean

Discrepancy (also known as MMD) [35, 39, 42, 77, 3,

48, 37, 67, 80, 27] between the feature embeddings of the

source and target domains in a RKHS, higher order corre-

lations between the domains [62, 63, 44], optimal transport

distance between the source and target [12, 6] and distri-

bution matching using generative [64, 56, 24] or discrimi-

native [17, 66, 8, 7, 58, 36] adversarial learning between a

feature generator and a discriminator. In this paper, we pro-

pose complementary improvements to adversarial methods.

Class-Specific Adaptation Most of the above works aim

to learn domain agnostic feature representations from the

source and target data by aligning their global distributions,

so that a source classifier can be used on the target. How-

ever this does not guarantee alignment between the respec-

tive categories which might lead to negative transfer. Recent

works alleviated this problem by taking into account class

specific properties during adaptation between the domains

[9, 54, 37, 58, 79, 40, 27, 75, 49]. Since the target domain

is completely unlabeled, these works rely on training co-

regularization networks [54, 31], predicting psuedo-labels

[40, 27, 10] or computing prototypical [59] representations

of source and target categories [75, 49, 51] to assign tar-

get classes during training. This makes the performance of

these methods dependent on the pseudo-labeling hypothe-

sis, leading to noisy predictions near the classifier bound-

aries. This is problematic, for example, in fine grained clas-

sification setting where the variation within a class is often

large. In contrast, we propose a novel sample level trans-

fer criterion which is robust to noisy psuedo-labeling and

improves adaptation. A related work is Contrastive Adap-

tation Network [27], but it is based on MMD and requires

k-means clustering after each iteration to update pseudo la-

bels, whereas our ILA-DA is an adversarial approach that

uses the proposed affinity matrix combined with a new

MSC loss to explicitly model pairwise interactions.

Metric Learning There have been a number of ap-

proaches proposed to learn discriminative boundaries be-

tween categories using sample-wise [73, 57, 46, 60, 72, 30,

78] or proxy-based [2, 52, 45, 29] metric losses for tasks

like face recognition [34, 70, 15], where the challenge is

to concurrently address large intra-class variation as well as

small inter-class differences. Our multi-sample contrastive

(MSC) loss is built on top of the noise contrastive loss [43]

and softmax constrastive loss [47, 23], where we extend it to

handle multiple positives and negatives at once to leverage
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Figure 2: Illustration of proposed ILA-DA approach with MSC Loss. Our architecture consists of a feature extractor G(.) that is shared

across source and target domains. The classifier C(.) is trained to classify the source images using cross entropy loss Lsup, while the

domain discriminator D(.) performs domain alignment using adversarial loss Ladv . Additionally, we use source and target features to

construct an affinity matrix A that holds similarity and dissimilarity relations between the samples (Sec. 3.3). We then use this information

to cluster categories closer to each other using our proposed multi-sample contrastive loss (Sec. 3.2).

sample level relationships useful for adaptation.

Metric Learning for UDA While there have been prior

works that propose adaptation algorithms for metric learn-

ing [61, 18, 16] , there have been very few prior works that

study the complementary problem of leveraging principles

from metric learning to improve regular domain adaptation.

Prior works either use triplet loss [32] requiring complex

sampling strategy or do not leverage instance level rela-

tions [51]. In our work, we acknowledge the need to ad-

dress intra-class variance within aligned source and target

categories for adaptation, which we achieve by proposing a

sample level cross dataset transfer mechanism.

3. Proposed Method: ILA-DA

In this section, we first give a brief overview of adversar-

ial adaptation methods, and then introduce our multi sample

contrastive (MSC) loss for adaptation followed by construc-

tion of affinity matrix.

3.1. Overview of Adversarial Domain Adaptation

In the problem of unsupervised domain adaptation,

we have a labeled source dataset Ds:{xs
i , yi}

|Ds|
i=1 , where

Ds∼Ps along with an unlabeled target domain Dt:{xt
i}

|Dt|
i=1

where Dt∼Pt, and Ps 6= Pt. The task is to train a model

using these data to make predictions on Dt. We present

the overview of the architecture used for training in Fig. 2.

The feature extractor G, which is shared between the source

and the target images, extracts the lower dimensional fea-

ture representations corresponding to the inputs, given by

f = G(x). The classifier C then outputs a softmax predic-

tion distribution over the classes, and it is trained using a

cross entropy (CE) loss on the labeled source data given by

Lsup = E(x,y)∼Ds [− log[C(G(x))]y], (1)

where y is the ground truth label corresponding to the

source input x and the expectation is taken over all the

source data Ds. However, since Ps 6= Pt, the classifier

trained on source data does not transfer well to target sam-

ples, and an adversarial learning strategy [17, 66] is used

to alleviate this issue. A domain discriminator D is trained

using LD to classify between source and target, while G is

simultaneously trained using Ladv to generate features that

confuse the discriminator:

Ladv = Ex∼Dt [− logD(G(x))], (2)

LD = −Ex∼Ds [logD(G(x))]

−Ex∼Dt [log(1−D(G(x)))]. (3)

Min-max training between LD and Ladv then yields do-

main invariant features. However, this is not enough to

guarantee class specific alignment between source and tar-

get, so we present our proposed affinity matrix based adap-

tation next.

3.2. Multi­Sample Contrastive (MSC) Loss

To enforce the class-level alignment constraint, we first

find the sample level similarity scores among the source and

target samples in a mini-batch and use them in our multi-

sample contrastive (MSC) loss. However, we do not have

labels for the target domain, so we follow a kNN based ap-

proach to assign each target sample in a mini-batch with a

label belonging to nearby source samples. We then con-

struct an affinity matrix A, in which Aij = 1 if the ith
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Figure 3: Illustration of our MSC loss. ith row of affinity matrix

Ai contains similarity information of ith source sample with every

target sample. MSC loss uses these relations to attract positive

sample from target while separating negative ones.

source sample from the mini-batch is similar to jth target

sample from the mini-batch, Aij = −1 if it is not. This

is explained in detail in Sec. 3.3. Assuming we have con-

structed such an affinity matrix A, we use this information

to construct positive and negative samples corresponding

to a source sample xi. Specifically, let BS and BT be

the source and target batches respectively. Then, for each

source sample xi ∈ Bs, we identify the set of positive tar-

get pairs as Bi+
T = {xj ∈ BT |Aij = 1}, and negative pairs

as Bi−
T = {xj ∈ BT |Aij = −1}. We then use this in-

formation to pull similar samples across source and target

closer to each other, while pushing away dissimilar samples

using our MSC loss given by:

Li
MSC = − log

∑

j∈B
i+
T

eφ(fi,fj)

∑

j∈B
i+
T

eφ(fi,fj) +
∑

j∈B
i−
T

eφ(fi,fj)
, (4)

where BS and BT denote the source and target batches re-

spectively, f are the features computed as the output of G(x)
and φ(., .) is any metric that takes the features and outputs a

similarity score. The overall loss is computed as the average

across all the source samples from the mini-batch BS :

LMSC =
1

|BS |

∑

i∈BS

Li
MSC . (5)

Empirically, we observe best results when using normalized

inverse Euclidean distance [41] as the similarity metric φ:

φ(fi, fj) =
1

1 + ||fi − fj ||2
. (6)

This process is illustrated in Fig. 3. Similar kind of con-

trastive loss is used for learning representations from un-

labeled image and video in [47, 19, 22, 11] where posi-

tives come from transformed versions of inputs unlike ILA-

DA. Furthermore, contrastive loss is shown to work well

for large intra-class variations empirically in [22, 74] and

theoretically in [1]. ILA-DA demonstrates similar benefits,

while additionally accounting for possible domain gap be-

tween the positive and negative pairs. From (4), we can

observe that if Aij = 1, indicating similar pairs, then the

similarity metric needs to be higher to minimize the loss.

Likewise, if Aij = −1, then the similarity score would be

driven down to zero, as we require it to be. We now explain

in detail the method to construct the affinity matrix A.

ALGORITHM 1 Instance Affinity Based Adaptation during

each iteration.

Require: Class balanced mini-batches for source BS∈D
s

and randomly sampled target mini-batches BT∈D
t

Require: Feature extractor G(.)
Require: Similarity metric φ(., .)

1: Aij = 0 ∀i ∈ {1, 2.., |BS |}, j ∈ {1, 2.., |BT |}
2: for xj in BT do ⊲ Construct affinity matrix

3: ŷj= kNN(BS , xj) (Sec. 3.3)

4: for xi in BS do

5: Aij = 1 if yi = ŷj else Aij = −1

6: for xj in BT do

7: Γj(xj) (Eq (7)) ⊲ Compute Similarity Ratio

8: BF
T = Filter(BT ,Γ, µ) ⊲ Select confident

pseudo-labels using similarity ratio test.

9: Loss = MSC(BS , B
F
T ) (Eq (4)) ⊲ Compute MSC

loss.

3.3. Constructing the Affinity Matrix

Recall that the target dataset is completely unlabeled, so

obtaining similarity scores is not trivial. Using source clas-

sifier to assign pseudo labels is an option, but it would be

noisy during initial stages of training and empirically sub-

optimal (Sec. 4.3, Tab. 4b). Instead, we rely on a k-nearest

neighbor approach followed by a ratio test to assign confi-

dent target labels. For every target sample xj ∈ BT , we

take the k nearest neighbors ranked using the same similar-

ity metric φ(fj , .) from the source mini-batch. Then, the

target sample is assigned to the class that is most common

among its source neighbors and we populate the jth column

of the affinity matrix A using this assignment. That is,

Aij =

{

1, if yi = ŷj

−1, if yi 6= ŷj .

Although the similarity and dissimilarity relations can now

be directly read off the affinity matrix A, we did not yet
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account for the fact that some of the psuedo labels can be

noisy. After constructing the affinity matrix A, we filter out

possible noisy pseudo-labels. For this, we use a rejection

based confidence measure commonly used in kNN litera-

ture based on a neighborhood similarity ratio test [14, 13].

Denote using N l
j the set of like samples from source in

the neighborhood of a target sample xj ∈ BT , given by

N l
j : {xi ∈ BS |yi = ŷj}. Similarly, the set of unlike

samples from source in the neighborhood is given by Nu
j ,

where Nu
j : {xi ∈ BS |yi 6= ŷj}. We calculate the confi-

dence score of a particular pseudo label prediction Γj using

the ratio of aggregate similarity between the sample and the

like and unlike sets. That is,

Γj =

∑

xi∈N l
j
φ(fj , fi)

∑

xi∈Nu
j
φ(fj , fi)

. (7)

We then choose a sampling factor µ, and select the top µ

fraction of target samples and declare them to be confident,

and for the rest of target samples, we put Aij = 0 and do

not use them anymore in the MSC loss (4). For example,

if sampling factor µ = .75 with a batch size of 128, we se-

lect the top 96 target samples ranked based on their predic-

tion confidence Γ. Since the number of unlike samples are

generally much higher than the number of like samples, we

only take the top m samples in the summations in Eq (7) to

balance the aggregate between the like and unlike sets. We

chose m to be the maximum possible similar samples across

datasets. In our case m is equal to the size of each class in

source mini-batch. This way, we will be left with pairwise

similarity scores between pairs of source and target samples

which pass the similarity ratio test. Further analysis of such

a psuedo labeling procedure, including the sensitivity to the

sampling factor µ, is presented in Sec. 4.3. The complete

algorithm is summarized in Algorithm 1. Although many

prior works have considered a psuedo-labeling criterion for

assigning target labels during training [10, 75], the advan-

tage we provide lies in the fact that our MSC loss takes

sample level similarities with an explicit push-pull objective

which is greatly useful to model finer category separation.

Also, we have O(n2) psuedo-labels in each mini-batch of

size n, so we will be left with a strong signal even after re-

moving lesser confident predictions. In contrast to [33], we

extract kNN neighbors across source and target, calculate

sample-sample as opposed to sample prototype relations for

use in our MSC loss.

Finally, when we randomly sample mini batches from

source and target, it might so happen that some classes

might not get picked in source, which is problematic. For

example, some target samples might not have a correspond-

ing true source sample leading to incorrect psuedo labels, or

some source sample might get paired with a dissimilar tar-

get sample in our MSC loss in Eq (4). To avoid this issue,

we perform class balanced mini batch sampling only on the

Method M −→ U U −→ M S −→ M Avg.

Source Only 76.7 63.4 67.1 69.1
DANN [17] 90.8 93.95 83.11 89.29
ADDA [66] 89.4 90.1 76.0 85.2

DSN [8] 91.3 - 82.7 -
ATT [54] - - 85.0 -

ILA-DA (with DANN) 92.43 97.32 91.84 93.83

CDAN [36] 93.9 96.9 88.5 93.1
ILA-DA (with CDAN) 94.87 97.47 92.30 94.88

Table 1: Accuracy (%) on Digits for unsupervised domain adapta-

tion. Results shown for a value of k = 3 and µ = 0.75.

source dataset, in which we make sure that all classes have

equal representation in all the sampled source mini batches

BS . Unlabeled target mini-batches are sampled randomly.

4. Results and Analysis

In this section, we conduct extensive experiments on

multiple domain adaptation benchmarks to verify the effec-

tiveness of ILA-DA approach. We next present the datasets

used to evaluate our results, baselines methods we com-

pared against, followed by results and discussion.

4.1. Experimental Details

Datasets We investigate the performance of our model on

three different kinds of benchmark datasets used for domain

adaptation, namely Digits, Office-31 and Birds-31.

Digits. We use SVHN, MNIST and USPS consisting of im-

ages of digits 0 − 9. We explore the adaptation tasks be-

tween MNIST → USPS, USPS → MNIST and SVHN →
MNIST.

Office-31. This setting consists of images from 31 cate-

gories from three different domains, namely Amazon (A),

Webcam (W) and DSLR (D). We show results for all the 6

task pairs A → W, D → W, W → D, A → D, D → A and

W → A. Following prior works, we report results on the

complete unlabeled examples of the target domain.

Birds-31. This dataset is recently proposed by [71] for fine

grained adaptation consisting of different types of birds. We

use it to verify our argument that our MSC loss performs

efficiently even with datasets that possess large intra-class

and small inter-class variation. It consists of three domains,

namely, 1848 images from CUB-200-2011 (C) [69], 2988

images from NABirds (N) [68] and 2857 images from iNat-

uralist2017 (I) datasets from the 31 common classes among

the three. We show the adaptation results on six transfer

tasks formed from three domains: C → I, I → C, I → N, N

→ I, C → N and N → C.

Training details. Following prior works [36, 51], we use

LeNet architecture for digits and use ResNet-50 (pretrained

on Imagenet) as the feature extractor G for the Office-31 and

Birds-31 datasets, while the classifier C is made up of fully
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Method A → W D → W W → D A → D D → A W → A Avg.

ResNet-50 68.4 96.7 99.3 68.90 62.50 60.70 76.1

DAN [35] 80.5 97.1 99.6 78.6 63.6 62.8 80.4

RTN [38] 84.5 96.8 99.4 77.5 66.2 64.8 81.6

DANN [17] 82.0 96.9 99.1 79.7 68.2 67.4 82.2

ADDA [66] 86.2 96.2 98.4 77.8 69.5 68.9 82.9

MCD [55] 88.6 98.5 100.0 92.2 69.5 69.7 86.5

SimNet [51] 88.6 98.2 99.7 85.3 73.4 71.8 86.2

GTA [56] 89.5 97.9 99.8 87.7 72.8 71.4 86.5

CDAN [36] 93.1 98.2 100.0 89.8 70.1 68.0 86.6

CDAN+E [36] 94.1 98.6 100.0 92.9 71.0 69.3 87.7

DAA [28] 86.8 99.3 100.0 88.8 74.3 73.9 87.2

SAFN [76] 88.8 98.4 99.8 87.7 69.8 69.7 85.7

MADA [50] 90.0 97.4 99.6 87.8 70.3 66.4 85.2

ILA-DA (with DANN) 89.05 98.49 100.0 86.55 69.47 69.72 85.54

ILA-DA (with CDAN) 95.72 99.25 100.0 93.37 72.10 75.40 89.30

Table 2: Office-31 dataset Results for domain adaptation on Office-31 adaptation setting using Resnet-50 for 6 transfer tasks among three

domains: Amazon (A), Webcam (W) and Dslr (D). Our method shows consistent improvements. All the baselines as well as ours use

ResNet-50 as the backbone architecture. Results shown for k = 5 and µ = 0.67.

connected layers. For achieving training stability, we ob-

serve that it is essential to pretrain the model on the labeled

source dataset for a few iterations before introducing our

constrastive loss. We use mini-batch SGD with a learning

rate of 0.001 for Office and 0.03 for birds. For the classi-

fier we multiply the learning rate by 10. We use a similar

annealing strategy as used in [17]. Further details on the

hyperparameter settings are presented in the supplementary

material.

To illustrate the benefits of the proposed MSC loss, we

employ it on top of two competing adaptation benchmarks

in DANN [17] and CDAN [36], while noting that our loss

is general and applicable in combination with any adversar-

ial adaptation approach. For experiments with DANN, we

replace the adversarial loss with a gradient reversal layer.

Baselines. We focus our comparison against works which

use adversarial learning strategy to perform global domain

level alignment such as DAN [35], RTN [38], ADDA [66],

GTA [56], DAA [28] and CDAN [36] as well as works

which perform class aware alignment such as MCD [55],

SimNet [51], MADA [50]. For Birds-31, we additionally

verify our result with prior fine grained adaptation work,

PAN [71]. Finally, we have ILA + DANN, which is us-

ing ILA-DA approach on top of DANN and ILA + CDAN

which uses ILA-DA in combination with CDAN. We com-

pare the task-wise accuracies and also report the average

accuracies across all the transfer tasks. Our training and

evaluation scripts are publicly released.

4.2. Comparison with State­of­the­art

Digits In Tab. 1, we show the results for adaptation using

our method with MSC loss. We observe that we outper-

form prior methods by a significant margin when we use

CDAN in combination with ILA-DA. On MNIST → USPS

we observe an improvement from 90.8 to 92.43 while us-

ing ILA-DA + DANN and 93.9 to 94.87 with ILA-DA +

CDAN, indicating the usefulness of our MSC loss for im-

proving existing methods for domain adaptation. Similar

improvements can be observed for all other dataset settings

as well, for instance, accuracy goes up from 88.5 to 92.30 in

the case of SVHN → MNIST using ILA-DA with CDAN.

Office-31 We present results on the 6 transfer tasks on

Office-31, including their average, in Tab. 2. We observe

that we achieve an accuracy of 89.30% on the average,

outperforming all the competing baselines, which includes

prior works that perform global domain alignment [38, 66],

as well as those that model finer class separation [55, 51, 50]

like us, highlighting the advantages of our MSC loss in

comparison to competing approaches. Finally, to testify

that our loss is generally applicable, we show that it im-

proves accuracy over both the approaches DANN [17] and

CDAN [36], consistently over all the tasks (by 3.3% and

2.7% on average, respectively). This result underlines the

necessity for our sample aware class-specific transfer in ad-

dition to global domain alignment.

Birds-31 The difficulty in this setting lies in the fact that

birds from same class but different domains look quite

distinct, sometimes more different than images from an-

other class. We verify the results on all 6 transfer tasks
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Method C → I I → C I → N N → I C → N N → C Avg.

ResNet-50 64.25 87.19 82.46 71.08 79.92 89.96 79.14

DAN [35] 63.9 85.86 82.91 70.67 80.64 89.40 78.90

DANN [17] 64.59 85.64 80.53 71.00 79.37 89.53 78.44

JAN [39] 63.69 86.29 83.34 71.09 81.06 89.55 79.17

ADDA [66] 63.03 87.26 84.36 72.39 79.69 89.28 79.33

MADA [50] 62.03 89.99 87.05 70.99 81.36 92.09 80.50

MCD [55] 66.43 88.02 85.57 73.06 82.37 90.99 81.07

CDAN [36] 68.67 89.74 86.17 73.80 83.18 91.56 82.18

SAFN [76] 65.23 90.18 84.71 73.00 81.65 91.47 81.08

PAN [71] 69.79 90.46 88.10 75.03 84.19 92.51 83.34

ILA-DA (with DANN) 69.55 93.13 87.15 74.69 83.40 93.89 83.63

ILA-DA (with CDAN) 72.77 93.83 90.36 78.09 86.58 94.53 86.03

Table 3: Results for domain adaptation on fine-frained adaptation setting, shown for 3 challenging datasets, namely CUB-200-2011 (C),

iNaturalist2017 (I) and NABirds (N). We perform consistently better than all other methods by explicitly modeling the finegrained nature

of the adaptation process. All the methods use ResNet-50 pretrained on ImageNet. All the baseline numbers taken from [71]. Results

shown for k = 3 and µ = 0.33.

on Birds-31 dataset in Tab. 3, and show that ILA-DA out-

performs prior works across all the tasks. Due to the

intra-class variation in the dataset and small inter-class dis-

tances, prior works that rely on global alignment objec-

tives [35, 39, 66] do not perform any better than a source-

only model (ResNet-50 baseline), possibly because they

suffer from negative alignment. However, our MSC loss

explicitly accounts for the instance level relations to model

category separation, which pulls similar samples from both

datasets closer while pushing away dissimilar ones. As a re-

sult, we improve the accuracy over DANN on all the tasks,

and average accuracy from 78.44% to 83.63%. In fact,

with an average accuracy of 86.03% we achieve the new

state-of-the-art result using ILA-DA in combination with

CDAN. More remarkably, ILA-DA+CDAN even outper-

form PAN [71], that is specifically designed for fine-grained

adaptation by roughly 3% without demanding access to any

label structure and class hierarchy during training unlike

[71], which highlights the usefulness of modeling instance

level loss for challenging adaptation problems.

4.3. Ablations and Analysis

Importance of MSC Loss We testify the effectiveness of

the proposed multisample contrastive loss in modeling the

instance level relations by comparing it to another com-

monly used metric loss, namely triplet loss. We replace the

loss used in Eq (4) by triplet loss, by deriving positives and

negatives from the affinity matrix. We use similarity metric

φ(.), and choose the nearest negative sample and farthest

positive sample as hard negative and hard positive respec-

tively. From Tab. 4a, we first observe that both triplet loss as

well as MSC loss improve over CDAN baseline, which in-

dicates the usefulness of adding metric learning losses over

adversarial methods for better alignment. Further, we also

observe that replacing MSC loss by triplet loss leads to drop

in accuracy from 93.37% to 90.20% on A→D and from

75.40% to 73.94% on W→A settings on Office-31 dataset.

From this, we conclude that for improving domain adap-

tation, modeling multiple instance relations at once using

MSC loss is simpler and more powerful than triplet loss.

Choice of psuedo-labeling In proposed ILA-DA, the

psuedo labeling process for the target examples is driven by

finding the k nearest source neighbors in the feature space.

Alternatively, we can directly use the source classifier pre-

dictions as psuedo labels [75, 50]. To tease out the differ-

ences between these alternatives, we compare against such

a classifier based psuedo labeling method which filters the

target samples using softmax scores as an indicator for the

prediction confidence, in Tab. 4b . We observe that our kNN

based approach provides significant benefit over the classi-

fier based counterpart on all the tasks, with a 2.62% boost

in accuracy on average.

Effect of sampling factor We investigate the effect of the

sampling parameter µ, used to threshold the similarity ra-

tio Γ in Eq (7). Intuitively, a very high value of µ would

lead to many noisy psuedo labels being accepted leading to

poor optimization, while a low value would eliminate even

moderately confident positives which could be useful train-

ing signal. In fact, from Tab. 4c we observe that a value of

µ = 0.67 is optimal, which corresponds to accepting the

top two-thirds of the psuedo-label predictions.

Effect of k We show the effect of k in the kNN process in

Tab. 4d. We observe that the average accuracy on Office-31

dataset is highest for k = 5. We provide further analysis

on the influence of k in supplementary material. In gen-

eral, we find that a value of k > 1 is beneficial for reliable

psuedo-labeling, as it helps handle noisy predictions around
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Method A−→D W−→A Avg.

CDAN[36] 89.8 68.0 86.6

Triplet + CDAN 90.20 73.94 87.63

MSC + CDAN 93.37 75.40 89.30

(a) Comparison of triplet Loss

vs. MSC Loss for metric learn-

ing. Results shown for A−→D

and W−→A tasks and avg. of all

6 tasks from Office-31 dataset.

Method A−→D W−→A Avg.

CDAN[36] 89.8 68.0 86.6

classifier based 88.35 70.11 86.68

kNN based 93.37 75.40 89.30

(b) Comparison of kNN vs.

Classifier based psuedo-labeling

schemes. Results shown for

A−→D and W−→A tasks and avg.

of all 6 tasks from Office-31

dataset for k = 5, µ=0.67.

Method A−→D W−→A Avg.

CDAN[36] 89.8 68.0 86.6

ILA-DA , µ=0.33 90.75 71.95 87.91

ILA-DA , µ=0.50 91.95 74.33 88.53

ILA-DA , µ=0.67 93.37 75.40 89.30

ILA-DA, µ=1.00 92.33 70.39 87.92

(c) Effect of sampling fraction

µ. Results shown for A−→D and

W−→A tasks and avg. of all 6

tasks from Office-31 dataset for

k = 5.

Method A−→D W−→A Avg.

CDAN[36] 89.8 68.0 86.6

ILA-DA, k=1 91.96 69.93 87.46

ILA-DA, k=3 91.16 75.15 88.87

ILA-DA, k=5 93.37 75.40 89.30

(d) Effect of number of neigh-

bors k used in psuedo-labeling.

Results are shown for A−→D and

W−→A tasks and avg. of all 6

tasks from Office-31 dataset.

Table 4: Ablations into the proposed ILA-DA. Tab. 4a shows comparison between triplet loss and proposed MSC loss. Tab. 4b shows

comparison between kNN and classifier based psuedo labeling schemes. Tab. 4c and Tab. 4d summarize the effect of µ and k respectively.

(a) No Adapt (b) DANN (c) ILA-DA

Figure 4: tSNE visualizations of source and target features belong-

ing to 10 classes from Digits (S−→M ) (top row) and 31 classes

from birds (N−→I) (bottom row). Here, 4a shows tSNE with no

adaptation. While DANN [17] (4b) is only successful in domain

alignment, our proposed ILA-DA approach additionally improves

category separation on target domain (4c).

classifier boundaries.

Visualizing the Affinity Matrix We visualize the affinity

matrix A in Sec. 3.3 to get an idea of the reliability of pre-

dicted pseudo-labels. For a mini-batch of size 120, we plot

the 120×120 affinity matrix A in Fig. 5, grouped by the

class ordering. Here, (a) is the affinity matrix constructed

using the ground truth similarities. We observe that the un-

filtered affinity matrix in (b) already does a good job in ac-

curately predicting the similarity (red , +1) and dissimilar-

ity(yellow , -1) relations between source and target. Fur-

thermore, we filter out noisy pseudo labels using our filter-

ing approach discussed in Sec. 3.3, and find that the affinity

matrix after filtering (shown in (d)) is much more closer to

ground truth affinity matrix, in (c), which verifies the ro-

bustness of our pseudo labeling approach.

Feature visualization We provide the tSNE visualization

of the learned features for two different dataset settings in

Fig. 4. On both these settings, we observe better domain

alignment as well as target category separation using ILA-

DA. Note that although DANN does succeed in aligning the

source and target domains, it does not necessarily produce

discriminative features, which is addressed by ILA-DA.
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Figure 5: Visualization of Affinity matrix A consisting of similar-

ity relations between the source and target for a subset of samples.

The computed affinity matrix (b) is close to the ground truth affin-

ity matrix (a), and we further close the gap by efficiently filtering

wrong predictions (ground truth in (c) and (d)). Results shown for

task M−→U from Digits at 40-th epoch during training.

5. Conclusion

In this work, we leverage principles from metric learn-

ing to improve domain adaptation. We propose an affin-

ity matrix based approach, ILA-DA, that uses a multi sam-

ple contrastive loss to explicitly model instance level inter-

actions across source and target. We show that this helps

in improving category separation while preventing negative

alignment. The proposed approach is general, and can be

easily applied on top of any existing adversarial adaptation

method. We show numerical results on various challenging

benchmark datasets and perform favorably against many ex-

isting adaptation methods.

Limitations and Future Work. As with any method that

extracts pairwise similarities, the process of constructing

the affinity matrix at each iteration is memory intensive.

Given current limits on memory, our model may handle a

reasonable number of categories across source and target.

In future work, we aim to devise newer sampling strategies

for affinity matrix construction that allow handling much

larger number of classes.
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