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Abstract

Due to the subjective annotation and the inherent inter-

class similarity of facial expressions, one of key challenges

in Facial Expression Recognition (FER) is the annotation

ambiguity. In this paper, we proposes a solution, named

DMUE, to address the problem of annotation ambiguity

from two perspectives: the latent Distribution Mining and

the pairwise Uncertainty Estimation. For the former, an

auxiliary multi-branch learning framework is introduced to

better mine and describe the latent distribution in the label

space. For the latter, the pairwise relationship of seman-

tic feature between instances are fully exploited to estimate

the ambiguity extent in the instance space. The proposed

method is independent to the backbone architectures, and

brings no extra burden for inference. The experiments are

conducted on the popular real-world benchmarks and the

synthetic noisy datasets. Either way, the proposed DMUE

stably achieves leading performance.

1. Introduction

Facial expression plays an essential role in human’s daily

life. Automatic Facial Expression Recognition (FER) is

crucial in real world applications, such as service robots,

driver fragile detection and human computer interaction. In

recent years, with the emerge of large-scale datasets, e.g.

AffectNet [28], RAF-DB [24] and EmotioNet [6], many

deep learning based FER approaches [11, 38, 49] have been

proposed and achieved promising performance.

However, the ambiguity problem remains an obstacle

that hinders the FER performance. Usually, facial images

are annotated to one of several basic expressions for train-

ing the FER model. Yet the definition with respect to the

expression category may be inconsistent among different

people. For better understanding, we randomly pick two

images from AffectNet [28] and conduct a user study. As
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Figure 1: User study results by 50 volunteers on two ran-

domly picked images. The red (purple) bar represents the

most (secondary) possible class given by the volunteers.

The results provide insights that the annotations may be in-

consistent among the users.

shown in Fig. 1, for the image annotated with Anger, the

most possible class decided by volunteers is Neutral. For

the other image, the confidence gap between the most and

secondary possible classes is only 20%, which means anno-

tating it to a specific class is not suitable. In other words,

a label distribution that depicts the possibility belonging to

each class can better describe the visual feature. There are

two reasons leading to the above phenomenon: (1) It is sub-

jective for people to define which type of expression a facial

image is. (2) With a large amount of images in large-scale

FER datasets, it is expensive and time-consuming to pro-

vide label distribution of images. As there exists a consider-

able portion of ambiguous samples in large-scale datasets,

the models are prevented from learning the robust visual

features with respect to a certain type of expression, thus

the performance has reached a bottleneck. The previous

approaches tried to address this issue by introducing la-

bel distribution learning [11] or suppressing uncertain sam-

ples [38]. However, they still suffer from the ambiguity

problem revealed in data that cannot be directly solved from

the single instance perspective.

In this paper, we propose a solution to address the am-

biguity problem in FER from two perspectives, i.e. the

latent Distribution Mining and the pairwise Uncertainty
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Estimation (DMUE). For the former, several temporary

auxiliary branches are introduced to discover the label dis-

tributions of samples in an online manner. The iteratively

updated distributions can better describe the visual features

of expression images in the label space. Thus, it can provide

the model informative semantic features to flexibly handle

ambiguous images. For the latter, we design an elaborate

uncertainty estimation module based on pairwise relation-

ships between samples. It jointly utilizes the original anno-

tations and the statistics of relationships to reflect the am-

biguity extent of samples. The estimated uncertain level

encourages the model to dynamically adjust learning fo-

cus between the mined label distribution and original an-

notations. Note that our proposed framework is end-to-end

training and has no extra cost for inference. All the auxiliary

branches and the uncertainty estimation module will be re-

moved during deployment. Overall, the main contributions

can be summarized as follows:

• We propose a novel end-to-end solution to investigate

the ambiguity problem in FER by exploring the latent

label distribution of the given sample, without intro-

ducing extra burden on inference.

• An elaborate uncertainty estimation module is de-

signed based on the statistics of relationships, which

provides guidance for the model to dynamically ad-

just learning focus between the mined label distribu-

tion and annotations from sample level.

• Our approach is evaluated on the popular real-world

benchmarks and synthetic noisy datasets. Particularly,

it achieves the best performance by 89.42% on RAF-

DB and 63.11% on AffectNet, setting new records.

2. Related Work

2.1. Facial Expression Recognition

Numerous FER algorithms [2, 25, 29, 37] have been pro-

posed, which can be grouped into handcraft and learning-

based methods. Early attempts [5, 29, 31] rely on hand-

craft features that reflect folds and geometry changes caused

by expression. With the development of deep learning,

learning-based methods [36, 37, 46] become the majority,

such as decoupling the identity information [37] or exploit-

ing the difference between expressive images [46].

In recent years, several attempts try to address ambigu-

ity problem in FER. Zeng et al. [49] consider annotation

inconsistency and introduce multiple training phases. Chen

et al. [11] build nearest neighbor graphs for training data

in advance and investigate label distribution of samples in

a semi-online way. Previous leading performance has been

achieved by Wang et al. [38]. They focus on finding the

confidence weight and the latent truth of each sample to

suppress harmful influence from ambiguous data. However,

the compound expressions [24] and the original annotations

could be jointly considered in estimating ambiguity.

2.2. Learning with Ambiguity Label

Mislabelled annotations and low data quality may re-

sult in ambiguity problem. For the former, learning with

noisy label [3] is one of the most popular directions. An-

other direction is the uncertainty estimation [33, 41], such

as MentorNet [19] and CleanLab [30]. In recent years,

a promising way to handle mislabelled annotations is to

find the latent truth [13], such as utilizing the prediction of

model [7, 13, 15, 23, 43] or introducing auxiliary embed-

dings [17, 47]. For the latter, an universal way is to enhance

the label [44, 45] of low quality images by the temperature

softmax [7] or inject the artificial uncertainty [9, 32, 34].

Unlike prior methods [44, 45], the ambiguity problem in

FER, i.e. compound expressions [24] exists in a more sub-

jective way. The label description of a compound expres-

sion image is various among the users.

3. Method

Notation. Given a FER dataset (X ,Y) in which each

image x belongs to one of C classes, we denote yx ∈
{1, 2, · · · , C} as its annotated deterministic class. How-

ever, as shown in Fig. 1, the exact type of x is inapparent

or uncertain. We employ latent distribution ỹx to represent

the probability distribution for x belonging to all possible

classes except yx. That is, ỹx ∈ R
C−1 is a distribution

vector, ‖ỹx‖1 = 1.

3.1. Overview of DMUE

To address the annotation ambiguity, we mine ỹx for

each x and regularize the model to learn jointly from ỹx

and yx. Benefited from the semantic features of ambigu-

ous samples, the performance of the model can be greatly

improved.

For a toy experiment, we train a ResNet-18 on Affect-

Net [28] and present its prediction for a mislabelled train-

ing sample in Fig. 5, where a crying baby (Sad) is labelled

with Neutral. We can observe that the predicted distribution

reflects the truth class of the mislabelled sample. It inspires

us to employ the predictions from a trained model to help

a new model in training phase, where such mislabelled im-

age may be tagged by a distribution reflecting its true class.

By imposing the latent distribution ỹx as the additional su-

pervision, model can utilize the latent semantic features to

better deal with ambiguity samples, thus improve the per-

formance. We employ the classifier trained by samples from

negative classes of x, i.e. samples from other C − 1 classes

except for yx, to find its ỹx, based on qualitative and quan-

titative analyses in Section 4.7. Moreover, to balance the
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Figure 2: Overview of the DMUE. y denotes the set of annotations of images in a batch. ỹ denotes the set of mined latent

distributions of images in a batch.

learning between the annotation and the mined ỹx, an un-

certainty estimation module is elaborately designed to guide

the model to learn more from ỹx than yx for those ambigu-

ous samples.

An overview of DMUE is depicted in Fig. 2. The DMUE

contains: (1) latent distribution mining with C auxiliary

branches and one target branch that have the same archi-

tecture (e.g. the last stage of ResNet), and (2) pairwise un-

certainty estimation, where an uncertainty estimation mod-

ule is established by two fully connected (FC) layers. Each

auxiliary branch is served as an individual (C − 1)-class

classifier aiming to find ỹx for the corresponding x. ỹx

and yx are joint together to guide the target branch. Fur-

thermore, we regularize the branches to predict consistent

relationships of images by their similarity matrices. Note

that all auxiliary branches and the uncertainty estimation

module will be removed, and only the target branch will be

reserved for deployment. Therefore, our framework is end-

to-end and can be flexibly integrated into existing network

architectures without extra cost on inference.

3.2. Latent Distribution Mining

As ỹx is predicted by the classifier trained with samples

from negative classes of x, If there are total C classes, then

C classifiers need to be trained to predict the latent distri-

bution of each sample. Considering the computational ef-

ficiency and the shared low-level features [10, 22], we pro-

pose a multi-branch architecture to construct these classi-

fiers. As shown in Fig. 2, C auxiliary branches are intro-

duced to predict the latent distributions and a target branch

is employed for final prediction. Given a batch, the j-

th branch predicts ỹx for x annotated to the j-th class.

Thus, we can obtain ỹx for each x in batch by C aux-

iliary branches. Note all branches have the same struc-

ture (e.g. the last stage of ResNet) and share the common

lower layers (e.g. the first three stages of ResNet). Classi-

fier j, j ∈ {1, · · · , C} is (C − 1)-class and Classifier 0 (the

target classifier) is C-class for final deployment.

A comprehensive description of mini-batch training is

presented in Algorithm 1. Given a batch, we use images

not annotated to the j-th category to train the j-th auxiliary

branch. In other words, each image x is utilized to train

other C − 1 auxiliary branches than the yx-th branch. The

Cross-Entropy(CE) loss Laux
CE is employed for optimization:

Laux
CE =

1

C

C∑

j=1

L
auxj

CE , (1)

L
auxj

CE = −
1

Nj

Nj∑

p=1

C∑

k=1,k �=j

yxp,k log fj(xp; θ)k, (2)

where L
auxj

CE is the CE loss for training the j-th branch, Nj

is the number of x not annotated to j in the batch and p is

index. yxp,k is the label of xp belonging to the k-th class

and fj(xp; θ)k is the possibility of xp belonging to the k-th

class predicted by the j-th branch.

As described above, the prediction of the j-th auxil-

iary branch for x with annotation j, is used as its la-

tent distribution ỹx ∈ R
C−1. One additional step, called

Sharpen [7, 23, 42], is adopted before regularizing the tar-

get branch:

Sharpen(ỹx, T )i = ỹ
1

T

x,i/
∑C−1

j
ỹ

1

T

x,j , (3)
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Figure 3: Uncertainty estimation module. ya is the one-hot

form of anchor image’s annotation. Sa and ya are concate-

nated to reflect how ambiguous the anchor image is.

where ỹx,i the i-th element of ỹx and T is the tempera-

ture. Sharpen function provides the flexibility to slightly

adjust the entropy of ỹx. When T > 1, the output

Sharpen(ỹx, T ) will be more flatten than the original ỹx.

After sharpening, we utilize L2 loss to minimize the

deviation between the prediction of target branch and the

sharpened ỹx, which is defined as:

Lsoft =
1

N(C − 1)

N∑

p=1

C∑

k=1,k �=i

(ỹxp,k − ftarget(xp; θ)k)
2
,

(4)

where N is the batch size. ỹxp,k is the possibility of xp be-

longing to the k-th class in the latent distribution ỹxp
, and

ftarget(xk; θ)j is the prediction of target branch. The rea-

son employing L2 loss is that unlike Cross-Entropy, the L2

loss is bounded and less sensitive to inaccurate predictions.

We do not back propagate gradients through computing ỹ.

Similarity Preserving. Inspired by [35], we find it is

beneficial to regularize all the branches to predict consis-

tent relationship when given a pair of images. This is be-

cause CE loss only utilizes samples individually from the

label space. However, the relationship between samples is

another knowledge paradigm. For instance, given a pair

of smiling images, besides telling network their annotations

Happy, the similarities of their semantic features extracted

by different branches should be consistent. Thus, we gen-

eralize [35] to the context of multi-branch architecture as

multi-branch similarity preserving (MSP ), defined as:

Lsp = MSP (G1
aux, · · · , G

C
aux, Gtar), (5)

where Gi
aux ∈ R

Bi×Bi and Gtar ∈ R
B×B are the similar-

ity matrices calculated by the semantic features in auxiliary

and target branches, respectively. Their elements reflect the

pairwise relationships between samples. Lsp aims at shar-

ing the relation information across branches. Specific com-

putation is provided in the supplementary material.

3.3. Pairwise Uncertainty Estimation

To handle the ambiguous samples, we introduce latent

distribution mining. However, the target branch should also

be benefitted from clean samples. Directly employing CE

loss may lead to improvement degradation due to the exist-

ing of ambiguous samples. Accordingly, we impose a mod-

ulator term into the standard CE loss to trade-off between

the latent distribution and annotation in the sample space.

Specifically, we estimate the confidence scores of the sam-

ples based on the statistics of their relationships. Lower

score will be assigned to more ambiguous samples, further

reducing the CE loss. Thus, the latent distribution will pro-

vide more guidance.

For better understanding, we choose an anchor image in

a given batch to illustrate the uncertainty estimation mod-

ule. As shown in Fig. 3, we denote the semantic feature and

one-hot label of the anchor image as (fa,ya), while others

in the batch as (fi,yi), where f is the feature before classi-

fier in the target branch, i is the index. We calculate the av-

erage cosine similarity of fa with each of fi annotated with

j-th category as Sa,j , and vector Sa = [Sa,1, · · · , Sa,C ].
After that, Sa is concatenated with ya ∈ R

C to form

SVa ∈ R
2C , which reflects how ambiguous the anchor

sample is:

SVa = concat(Sa,ya), (6)

Sa,j =
1

Nj

Nj∑

i=1

〈fa,fi〉

‖fa‖ ‖fi‖
, (7)

where < fa,fi > is the dot product of fa and fi. Nj is

the number of samples whose annotation is j-th class in the

batch and i is the index.

Here, We provide two perspectives to understand this

delicate design: (1) For a mislabelled sample (x, yx) in the

given batch (e.g. the semantic feature of x belongs to i-th
class but yx = j), the average similarity of semantic fea-

tures between x and the images in i-th class should be high.

However, the concatenated yx indicates x is annotated with

i-th class. (2) A clear x(yx = i) should only capture the

typical semantic feature of i-th class. The average similarity

of its semantic feature with other types of images should be

discriminatively lower than with i-th class samples. Thus,

SVx can reveal the ambiguity information of x.

Let SV = [SV1,SV2, · · · ,SVN ] ∈ R
2C×N denotes

the ambiguity information feature of a batch, the uncer-

tainty estimation module takes SV as the input and outputs

a confidence scalar αi ∈ (0, 1) for each image. The module

consists of two FC layers with a PRelu non-linear function

and a sigmoid activation:

α = Sigmoid(W T
2 σ(W T

1 SV ), (8)

where W1 ∈ R
2C×C and W2 ∈ R

C×1 are the parameters

of two FC layers,σ is the PReLU activation.

With the estimated confidence score, we perform

weighted training in the target branch. Directly multiply-

ing the score with CE loss may obstruct the uncertainty
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estimation, because it will make the estimated score to be

zero [38]. Therefore, we alternatively multiply the score

with the output logit of the classifier in the target branch.

The weighted CE loss [16, 38] is formulated as:

Lt arg et
WCE = −

1

N

N∑

i=1

log
eαiW

T
yi

fi

∑C

j=1 e
αiW

T
j
fi
. (9)

Obviously, Ltarget
WCE has positive correlation with the score

α [26]. Thus, for ambiguous samples, the estimated scores

are small, reducing the impact of CE loss, and the target

branch learns more from the mined latent distributions.

3.4. Overall Loss function

The overall objective of DMUE is:

Ltotal = wu(e)(L
target
WCE + ωLsoft + γLsp) + wd(e)L

aux
CE ,
(10)

where ω, γ are the hyperparameters. wu and wd are the

weighted ramp functions [21] w.r.t. the epoch e, which is

formulated as:

wu(e) =

{
exp(−(1− e

β
)
2
) e ≤ β

1 e > β
, (11)

wd(e) =

{
1 e ≤ β

exp(−(1− β
e
)
2
) e > β

, (12)

where β is the epoch threshold for functions. where β is the

epoch threshold. The Eq. 11 and 12 are introduced to bene-

fit training from two aspects: (1) At the beginning of train-

ing, the latent distributions mined by auxiliary branches are

not stable enough. Thus, we focus on training the auxiliary

branches. (2) When the auxiliary branches are well trained,

we then divert our attention to train the target branch.

It worth noting that we remove all the auxiliary branches

and the uncertainty estimation module for deployment. Our

framework is end-to-end and can be flexibly integrated with

existing network architectures, without extra cost on infer-

ence.

4. Experiments

We verify the effectiveness of DMUE on synthetic noisy

datasets and 4 popular in-the-wild benchmarks, and further

validate the contribution of each component of DMUE. Ex-

tensive ablation studies with respect to the hyperparameters

and the different backbone architectures are carried out to

confirm the advantage of our method.

4.1. Datasets and Metrics

RAF-DB [24] is constructed by 30,000 facial images

with basic or compound annotations. In the experiment, we

Algorithm 1: DMUE.

Input: Training Images X and annotations Y with

C classes, MaxEpoch, num iters
Output: Trained model with target branch θ0 and C

auxiliary branches θj , j ∈ {1, · · · , C}
/* Training */

1 Initialize θ0 and θj with random values,

j ∈ {1, 2, · · · , C}, e = 1
2 while e < MaxEpoch do

3 for k = 0 to num iters do

4 From (X ,Y), sample a batch setbatch;

// Note samples in j-th class as setj
5 Compute Laux

ce ; // use setbatch\setj to

compute L
auxj

ce for θj , j ∈ {1, · · · , C}
6 Compute latent distribution for setbatch ;

// Use θj predict for setj , j ∈ {1, · · · , C}
7 Compute Lsoft and Lsp

8 Compute Ltarget
wce in θ0 ; // use setbatch

9 Update all branches θj , j ∈ {0, 1, 2, · · · , C}

10 e = e+ 1;

/* Testing */

11 Deploy model only with the target branch θ0

choose the images with seven basic expressions (i.e. neu-

tral, happiness, surprise, sadness, anger, disgust and fear),

of which 12,271 are used for training, and the remaining

3,068 for testing. AffectNet [28] is currently the largest

FER dataset, including 440,000 images. The images are

collected from the Internet by querying the major search en-

gines with 1,250 emotion-related keywords. Half of the im-

ages are annotated with eight basic expressions, providing

280K training images and 4K testing images. FERPlus [4]

is an extension of FER2013 [14], including 28,709 training

images and 3,589 testing images resized to 48×48 gray-

scale pixels. Each image is labelled by 10 crowd-sourced

annotators to one of eight categories. For a fair comparison,

the most voting category is picked as the annotation for each

image following [4, 18, 38, 39]. SFEW [12] contains the

images from movies with seven basic emotions, including

958 images for training and 436 images for testing. For

each dataset, we report the overall accuracy on the testing

set.

4.2. Implementation Details

By default, we use ResNet-18 as the backbone net-

work pretrained on MS-Celeb-1M with the standard rou-

tine [38, 39] for a fair comparison. The last stage and

the classifier of ResNet-18 are separated tor form auxiliary

branches, while the remaining low-level layers are shared

across auxiliary and target branches. The facial images

are aligned and cropped with three landmarks [40], re-

sized to 256×256 pixels, augmented by random cropping
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to 224×224 pixels and horizontal flipped with a probabil-

ity of 0.5. During training, the batch size is 72, and each

batch is constructed to ensure every class is included. We

use Adam with weight decay of 10−4. The initial learning

rate is 10−3, which is further divided by 10 at epoch 10 and

20. The training ends at epoch 40. Only the target branch

is kept during testing. By default, the hyperparameters are

set as T = 1.2, ω = 0.5, β = 6 and γ = 103, according

to the ablation studies. All experiments are carried out on a

single Nvidia Tesla P40 GPU which takes 12 hours to train

AffectNet with 40 epochs.

4.3. Evaluation on Synthetic Ambiguity

The annotation ambiguity in FER mainly lies in two as-

pects: mislabelled annotations and uncertain visual repre-

sentation. We quantitatively evaluate the improvement of

DMUE against the mislabelled annotations on RAF-DB and

AffectNet. Specifically, a portion (e.g. 10%, 20% and 30%)

of the training samples are randomly chosen, of which the

labels are flipped to other random categories. We choose

ResNet-18 as the baseline and the backbone of DMUE, and

compare the performance with SCN [38], which is the state-

of-the-art noise-tolerant FER method. SCN reckons uncer-

tainty in each sample by its visual feature, and aims to find

their deterministic latent truth. Each experiment is repeated

three times, then the mean accuracy and standard deviation

on the testing set are reported. To make fair comparison,

SCN is pretrained on MS-Celeb-1M with the backbone of

ResNet-18.

As shown in Table 1, the DMUE outperforms each base-

line and SCN [38] consistently. With noise ratio of 30%,

DMUE improves the accuracy by 4.29% and 4.21% on

RAF-DB and AffectNet, respectively. This attributes to the

mined latent distribution that can flexibly describe both syn-

thetic noisy samples and compound expressions in the label

space. Thus, it guides the model to overcome the harmful

influence from noisy annotations.

Visualization of ỹ. Qualitative results are presented

in the supplementary material to demonstrate that our ap-

proach can obtain the latent truth for mislabelled samples,

and thereby achieve performance improvement.

4.4. Component Analysis

We conduct experiments on RAF-DB and AffectNet to

analyse the contribution of latent distribution mining, un-

certainty estimation and similarity preserving. As shown in

Table 2, some observations can be found: (1) Latent dis-

tribution mining plays a more important role than others.

When only one component employed, it outperforms simi-

larity preserving and uncertainty estimation by 2.09% and

0.4% on AffectNet, 1.19% and 0.13% on RAF-DB, respec-

tively. It proves the benefits provided by the latent distri-

bution, as the semantic features of ambiguous images are

Table 1: Mean Accuracy and standard deviation (%) on

RAF-DB and AffectNet with synthetic noisy annotations.

Method Noisy(%) RAF-DB AffectNet

Baseline 10 80.43±0.72 57.21±0.31

SCN [38] 10 81.92±0.69 58.48±0.62

DMUE 10 83.19±0.83 61.21±0.36

Baseline 20 78.01±0.29 56.21±0.31

SCN [38] 20 80.02±0.32 56.98±0.28

DMUE 20 81.02±0.69 59.06±0.34

Baseline 30 75.12±0.78 52.67±0.45

SCN [38] 30 77.46±0.64 55.04±0.54

DMUE 30 79.41±0.74 56.88±0.56

Table 2: Accuracy (%) comparison of the different com-

ponents. SP denotes the similarity preserving. Confidence

denotes involving the uncertainty estimation module for the

weighted training in target branch.

Latent distribution SP Confidence AffectNet RAF-DB

- - - 58.85 86.33

� - - 61.76 87.84

- � - 59.67 86.65

- - � 61.36 87.71

� � - 62.34 88.23

- � � 61.65 87.98

� - � 62.50 88.45

� � � 62.84 88.76

well utilized. (2) When combining uncertainty estimation

and latent distribution, we achieve performance improve-

ment by 0.74% and 0.91% over only using the latent distri-

bution on AffectNet and RAF-DB, respectively. It attributes

to the uncertainty estimation module providing guidance for

the target branch. Thus, the target branch can flexibly ad-

just the learning focus between the annotation and the latent

distribution, according to the ambiguous extent of samples.

(3) Similarity preserving also brings some improvements,

while its contribution is relatively small than others. As it

benefits the learning mainly by making different branches

predict consistent relationships for image pairs, speeding up

the training convergence. We present more results of simi-

larity preserving in the supplementary material.

4.5. Comparison with the State-of-the-art

We compare DMUE with existing state-of-the-art meth-

ods on 4 popular in-the-wild benchmarks in Table 3.

Results. In Table 3, both CAKE [20], SCN [38] and

RAN [28] utilize ResNet-18 as the backbone. SCN and

RAN are pretrained on MS-Celeb-1M according to their

original papers. RAN mainly deals with the occlusion

and head pose problem in FER. As shown in Tabel 3,

DMUE achieves current leading performance on AffectNet.

For RAF-DB, all three LDL-ALSG, IPA2LT and SCN are

noise-tolerant FER methods considering ambiguity, among
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Figure 4: The mined latent distribution is compared with the subjective results. Each image is tagged with annotation and the

KL-divergence between two distributions. The generated latent distribution is consistent with intuition. Best viewed in color.

Zoom in for better view. (Ne=Neutral,Ha=Happy,Sa=Sad,Su=Surprise,Fe=Fear,Di=Disgust,An=Anger,Co=Contempt).
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Figure 5: (a) A Sad training image mislabelled with Neu-

tral in AffectNet. (b) The prediction from model trained on

AffectNet can show the right class. (c) The prediction from

model trained on all classes except for the Neutral better re-

flects the truth discriminatively. Best viewed in color. Zoom

in for better view.

which SCN achieves state-of-the-art results. We further im-

prove the performance of ambiguous FER by mining latent

distribution and considering annotations in uncertainty es-

timation. Table 3 also shows the results on FERPlus and

SFEW, respectively. Without bells and whistles, our method

achieves better performance than the counterparts.

4.6. Visualization Analysis

To further diagnose our method, we conduct visualiza-

tions of the discovered latent distribution and the estimated

confidence score.

Latent Distribution. In Section 4.3, we quantitatively

demonstrate the effectiveness of DUME to deal with mis-

labelled images. In this section, we further conduct user

study for qualitative analysis of how latent distribution cope

with uncertain expressions. Specifically, 20 images are ran-

domly picked from RAF-DB and AffectNet, and labelled by

50 voters. As latent distribution reflects the sample’s prob-

ability distribution among its negative classes, we set the

number of votes on sample’s positive class to be zero. The

normalized subjective results are compared with the mined

latent distribution.

In Fig. 4, KL-divergence between the subjective result

and the latent distribution is reported for reference. It is

interesting to see people have different views of the spe-

cific type of expressions. Furthermore, our approach ob-

tains qualitatively consistent results with human intuition.

Although there exists differences in details, it is worth not-

ing that the results can already qualitatively explain that the

latent distribution benefits the model by reinforcing the su-

pervision information.

Confidence Score. To corporate with latent distribution

Figure 6: From top to bottom: images from three different

batches with their annotations. Red (Green) bounding box

denotes bad (good) anchor image. The upper left (right)

corner of each picture is tagged with its confidence score

(rank) in the batch. The estimated score is robust and con-

sistent with intuition. Best viewed in color. Zoom in for

better view.

mining, a confidence score is estimated by the uncertainty

estimation module for each image given a batch. The more

ambiguous a sample is, the lower its confidence score will

be. Thus, the target branch will learn more from its la-

tent distribution. We qualitatively analyse the uncertainty

estimation module by visualizing images with the origi-

nal annotation and the scaled confidence score. Moreover,

we rank images by their confidence scores and report their

ranks in a batch of 72 images.

In Fig. 6, we choose two typical anchor images and re-

port their results in three different batches. The confident

samples are assigned with higher score, while the ambigu-

ous ones are the opposite. Furthermore, both the scores and

ranks of anchor images are consistent within three different

batches. It shows the robustness of our pairwise uncertainty

estimation module. More analyses are provided in the sup-

plementary material.

4.7. Ablation Study

We conduct extensive ablation studies on AffectNet, as

it is the largest dataset. Some of them are provided in the

supplementary material, due to the page limitation.

Mining latent distribution. Quantitative and qualitative

experiments on AffectNet are conducted to analyze the way

of mining latent distribution. For the former, given a batch,
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Table 3: Comparison with the state-of-the-art results. Res denotes ResNet. + denotes both AffectNet and RAF-DB are used

as the training set. ∗ means using extra distribution data instead of single category annotation. † denotes the method is trained

and tested with 7 classes on AffectNet.

(a) Comparison on AffectNet

Method Acc.

Upsample [28] 47.01

IPA2LT+ [49] 55.71

RAN [28] 59.50

CAKE† [20] 61.70

SCN [38] 60.23

Ours(Res-18) 62.84

Ours(Res-50IBN) 63.11

(b) Comparison on RAF-DB

Method Acc.

gaCNN [25] 85.07

LDL-ALSG+ [11] 85.53

IPA2LT+ [49] 86.77

SCN [38] 87.03

SCN+ [38] 88.14

Ours(Res-18) 88.76

Ours(Res-50IBN) 89.42

(c) Comparison on FERPlus

Method Acc.

PLD∗ [4] 85.10

Res+VGG [18] 87.40

SCN 88.01

SeNet50∗ [2] 88.80

RAN [39] 88.55

Ours(Res-18) 88.64

Ours(Res-50IBN) 89.51

(d) Comparison on SFEW

Method Acc.

IdentityCNN [27] 50.98

Island loss [8] 52.52

Incept-ResV1 [1] 51.90

MultiCNNs [48] 55.96

RAN [39] 56.40

Ours(Res-18) 57.12

Ours(Res-50IBN) 58.34

Table 4: Ablation study of ways to mine latent distribution.

Methods Baseline LD-A LD-N

Acc. (%) 58.85 60.03 61.32

Ac
c.

 (%
)

(a)

Ac
c.

 (%
)

(b)

Figure 7: (a) The accuracy (%) with different ω. (b) The

accuracy (%) with different T .

we train each auxiliary branch with all the samples, where

the (C − 1)-class classifier is switched to C-class. To make

the latent distribution, their predictions are averaged to in-

crease the robustness. For simplification, we denote latent

distribution mined in this way as LD-A, while the original

in DUME as LD-N.

As shown in Table 4, LD-N guides the target branch bet-

ter. Because it can reflect more discriminative latent truth.

More analyses are provided in supplementary material.

Trade-off Weight ω. ω balances the learning of target

branch between ỹx and annotation. Fig. 7 shows that too

small ω causes trouble for target branch to learn ỹx. When

ω is too large, it is hard for uncertain estimation module to

adjust learning focus, as the sensitivity to ỹx is enlarged.

Sharpen Temperature T . T provides the flexibility to

slightly modify the entropy of ỹx. Fig. 7 shows the effect

with different T . When T < 1, the distribution becomes

steep quickly, damaging the fine-grained label information.

Using T > 1 flattens ỹx, relieving model’s sensitivity to

incorrect predictions. Yet, the performance will be degraded

if T is too large, as the pattern of ỹx is suppressed.

Epoch Threshold β. The first β-th epoch is dedicated

to pretraining the auxiliary branches in prior, to make them

provide stable latent distribution. After the β-th epoch, at-

tention is paid more on optimizing the target branch. Table 5

Table 5: The accuracy (%) with different β.

β 2 3 6 10 14

Acc. (%) 62.28 62.54 62.84 62.50 62.41

Ac
c.

(%
)

Figure 8: Accuracy(%) sensitivity to γ.

shows the accuracy with different β.

Similarity Preserving factor γ. We generalized the

similarity preserving to the context of multi-branch archi-

tecture. γ adjusts the contribution ratio of the mechanism.

Fig. 8 reflects the performance of model with different γ.

5. Conclusion

In order to address the ambiguity problem in FER, we

propose DMUE, with the design of latent distribution min-

ing and pairwise uncertainty estimation. On one hand, the

mined latent distribution describes the ambiguous instance

in a fine-grained way to guide the model. On the other

hand, pairwise relationships between samples are fully ex-

ploited to estimate the ambiguity degree. Our framework

imposes no extra burden on inference, and can be flexi-

bly integrated with the existing network architectures. Ex-

periments on popular benchmarks and synthetic ambiguous

datasets show the effectiveness of DMUE.
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