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Abstract

Recent deep learning models have shown remarkable

performance in image classification. While these deep

learning systems are getting closer to practical deploy-

ment, the common assumption made about data is that it

does not carry any sensitive information. This assump-

tion may not hold for many practical cases, especially in

the domain where an individual’s personal information is

involved, like healthcare and facial recognition systems.

We posit that selectively removing features in this latent

space can protect the sensitive information and provide

better privacy-utility trade-off. Consequently, we propose

DISCO which learns a dynamic and data driven pruning

filter to selectively obfuscate sensitive information in the

feature space. We propose diverse attack schemes for sensi-

tive inputs & attributes and demonstrate the effectiveness of

DISCO against state-of-the-art methods through quantita-

tive and qualitative evaluation. Finally, we also release an

evaluation benchmark dataset of 1 million sensitive repre-

sentations to encourage rigorous exploration of novel at-

tack and defense schemes at https://github.com/

splitlearning/InferenceBenchmark.

1. Introduction

Large deep neural network have resulted in break-

throughs across computer vision [1], speech recognition [2]

and reinforcement learning [3] with their success largely

attributed to their ability to efficiently learn complex pat-

terns from data. The deployment of these algorithms in

critical application domains such as healthcare and face-

recognition has motivated a research focus on learning cen-

sored, unbiased and fair data representations to mitigate

misuse by adversarial agents. Alternately, there can also

be sensitive information in data which the user would like

to keep private but the learned representations may inadver-

tently encode. This sensitive information may manifest as

sensitive inputs or attributes. Consider a setup where citi-

zens consent to usage of face recognition in public spaces

for identifying criminals. During inference, feature repre-

sentations are extracted for faces and identification is per-

formed by matching in the feature space over an indexed

database. While this may be a well-intended initiative, a

malicious adversary may seek to intercept the feature repre-

sentations to i) reconstruct the input face image or ii) extract

personal attributes such as race, age, gender etc. The citi-

zens did not consent to sharing this sensitive information

which could be used to compromise their privacy and in a

way that is biased or unfair to them. Exploring methods

of improving privacy of the sensitive information (image,

race, age, gender etc.) while preserving utility (identifying

criminals) is the focus of this work.

Conventionally, research in privacy-aware machine

learning has primarily focused on protecting training data

from membership inference [4] and model inversion at-

tacks [5], when i) training data is distributed over clients and

ii) computation of training the model is out-sourced. For

the former, distributed learning techniques such as feder-

ated learning [6, 7] and split learning [8, 9] are used, where

clients communicate with a centralized server using weights

and activations and the latter relies on homomorphic en-

cryption [10, 11] and secure enclaves [12, 13]. Additionally,

techniques such as multi-party computation [14, 15] and

differential privacy [16, 17, 18, 19] have been employed to

improve the privacy in federated-learning. While effective

for training, scaling these methods for deployment at infer-

ence is a challenge for a variety of reasons. First, in several

cases computational limitations and intellectual property

considerations limit keeping the entire model on a client

device. Secondly, cryptographic methods for training deep

networks [20, 21, 22] are computationally very expensive

operations which makes deploying models on the server in-

feasible when working with sensitive data. We posit that

collaborative inference, where the inference network is
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distributed between client devices (client network) and a

server (server network) which communicate via the split ac-

tivations, presents a viable alternative. While amenable to

scalability, it is important to encode explicit measures of se-

curity in the intermediate activations to protect privacy of

the sensitive inputs and attributes.

While not motivating private collaborative inference, a

few recent works [23, 24] have attempted the related prob-

lem of attribute leakage [24, 25, 26, 27, 28] by focusing on

adversarial representation learning (ARL). This couples to-

gether two entities, i) an adversarial network that seeks to

extract a sensitive attribute from a given activation and, ii)

a predictor network that intends to extract compact activa-

tions for accurate prediction of a task attribute (utility) while

preventing the adversary from leaking the sensitive attribute

(privacy). To balance this privacy-utility, [24] designed an

objective to maximize entropy of the adversary network and

[29, 23] to minimize likelihood of the predictor on the sen-

sitive attributes.

Motivated by the above observations, in this work, we

first examine existing ARL methods which reveals the pres-

ence of high redundancy in learned representations. We

posit that selectively removing features in this latent space

can protect the sensitive information and provide better

privacy-utility trade-off. Consequently, we propose DISCO

which learns a dynamic and data driven pruning filter to

selectively to obfuscate sensitive information in the fea-

ture space. We validate DISCO and other baseline with

multiple attacks on inputs and attributes. We observe that

DISCO consistently achieves superior performance by dis-

entangling representation learning from privacy using the

pruning filter.

To this end, the contributions of this work can be sum-

marized as follows:

• We introduce DISCO, a dynamic scheme for obfus-

cation of sensitive channels to protect sensitive infor-

mation in collaborative inference. DISCO provides a

steerable and transferable privacy-utility trade-off at

inference.

• We propose diverse attack schemes for sensitive inputs

and attributes and achieve significant performance gain

over existing state-of-the-art methods across multiple

datasets.

• To encourage rigorous exploration of attack schemes

for private collaborative inference, we release a bench-

mark dataset of 1 million sensitive representations.

2. Related Work

Private Representation Learning [7, 8] propose mech-

anisms which allow for learning on data distributed across

multiple agents with raw training data never leaving the

corresponding client device. [30] further improves [7] by

adding differentially private noise to weights of the trained

model to prevent reconstruction of training data by inver-

sion attacks. That said, techniques such as [30] are largely

optimized to protect training data. In contrast, there is lim-

ited research on methods for privacy during inference via

privatized activations. Majority of the works in private in-

ference use ARL [24, 28, 29, 27, 23, 31] to learn a fea-

ture extractor that minimizes sensitive information leakage.

Bertran et al. [27] apply transformation in the image space

to ensure server’s input remains an image. [31] introduced a

distance correlation based regularization to decouple inter-

mediate activations from input data while preserving per-

formance on task attribute. While efficacy of these methods

depend upon the convergence of min-max optimization, our

work separates the feature extraction and privatization mod-

ule giving guaranteed reduction in mutual information. In

this work, we explore methods that seek to reduce redun-

dancy and semantic integrity of activations to mitigate at-

tacks on sensitive information.

Natural Pre-Image is a class of diagnostic techniques

which are designed to reconstruct input image from inter-

mediate activation and find utilization in computer vision

tasks such as denoising, super-resolution etc. [32] leverages

a randomly-initialized neural network and a hand crafted

prior to invert deep neural representations and reconstruct

the input. [33] seeks to train a decoder offline to learn to

predict the input distribution. We leverage expected pre-

image methods to formalize diverse attack schemes on sen-

sitive inputs.

Bias in Machine Learning is a recent direction of ML

research focused on two key problems: identifying and

quantifying bias in datasets, and mitigating its harmful ef-

fects. The bias routinely manifests as some attributes of

the input (eg. age, race, gender for faces). A popular cate-

gory of techniques involve adversarial representation learn-

ing [34, 29, 35] to mitigate the impact of the bias attribute

on the task attribute. This family of adversarial mitigation

techniques aligns with this work on selective privacy, with

the private attribute analogous to the bias attribute, and a

corresponding state-of-the-art [29] forms one baseline for

our study.

Part-based Representation Learning involves splitting

the image into several stripes to learn local representations

and has achieved promising performance on computer vi-

sion tasks such as person re-identification which involves

image retrieval under occlusions and partial observabil-

ity. While sophisticated learning based partitioning meth-

ods have been explored [36, 37, 38, 39], methods such

as [40] have achieved outstanding performance with triv-

ial deterministic splitting. In this work, we adapt the static

part-based techniques to decouple the intra-channel seman-

tic consistency of convolutional activations for improving

privacy-utility trade-offs in collaborative inference.

Channel Pruning is a prevalent technique for deep net-
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Figure 1: DISCO for Privacy. Input to the network is an image, as well as task labels and attribute labels to hide. The

network is jointly optimized with a task objective to adaptively hide a given attribute without drop in performance of the

target task.

work compression to minimize computational complexity

and accelerate inference [41]. While most methods inter-

leave pruning with the training phase [42, 43, 44], there has

been recent focus on pruning at inference [45]. [42] gradu-

ally prunes channels at fixed intervals during training using

a feature relevance score to minimize compute cost. [45]

propose dynamic feature boosting and suppression (FBS) to

predictively amplify salient convolutional channels and skip

unimportant ones at run-time for accelerated inference. In

this work, our proposed method can be aligned with channel

pruning but optimizes for a different objective of preventing

leakage of sensitive information.

Filter Generating Networks (FGN) [46, 47], there is

very limited literature on FGNs. One such module, the

“Spatial Transformer” network, is proposed by Jaderberg et

al. [47]. This spatial transformer module applies an affine

transformation to feature maps to do translation and rota-

tion for improved classification. Following [47], all these

recent works [46, 48, 49] utilize the same concept to learn

a steerable filter [46], weather prediction filter [48], an im-

age enhancement filter [49], and a dynamic motion motion

representation filter [50] using source-target image pairs. In

contrast to these works, our focus is to learn dynamic fil-

ters that selectively prune channels which leak sensitive at-

tributes without dropping in performance on the target task.

The output of our dynamic channel pruning filters are binary

(0 or 1) in nature, where 0 masks (or deactivates) channels

that contribute to sensitive attributes, and 1 unmasks chan-

nels that contribute to the target task at hand.

3. Methodology

First, we introduce the attack and threat models and then

define the privacy considerations for our work. Finally, we

formalize our privacy evaluation setup and delineate our

proposed method DISCO: Dynamic and Invariant Sensitive

Figure 2: a) Input Image and Grad-CAM visualization from

ResNet-18 classifier b) Corresponding convolution repre-

sentations which encode inter-channel redundancy and pre-

serve intra-channel semantic integrity.

Channel Obfuscation for protecting sensitive information in

latent representation.

3.1. Formulation

Setup. Consider a parameterized model f(θ; ·) trained to

estimate the target attribute y ∈ Y1 for a given input image

x ∈ X . In many scenarios, x may be a sensitive input or

have a sensitive attribute ŷ ∈ Ŷ . Considerations for balanc-

ing compute feasibility and privacy has motivated private

collaborative inference schemes [24, 23] that split f(θ; ·)
into f1(θ1; ·) and f2(θ2; ·) where:

f1(θ1;x) ∈ F1 : X ×Θ1 → Z

f2(θ2; z) ∈ F2 : Z ×Θ2 → Y1

such that f2 = (θ2; f1(θ1;x)) and θ = {θ1, θ2}. We re-

fer to this as as traditional setup for collaborative inference.

We formalize f1 as the client network that is executed on a

trusted device and f2 as a task network which executes on an

untrusted server using the client activation z = f1(θ1;x).
Threat Model. Under our threat model, the untrusted

server could attempt to learn sensitive information about x
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by inferring an arbitrary sensitive attribute ŷ or by recon-

structing x itself. As a concrete example, x may be a face

image with y as gender and ŷ as racial identity. For the

evaluation and algorithm design purposes, we build a proxy

adversary that attempts to approximate the real world ad-

versary. This proxy adversary is parameterized with an ad-

versarial network f3(θ3; ·) that may intercept the payload

z to extract the sensitive input x or the attribute ŷ. Attack

Model. The adversary may utilize the activation z to per-

form a reconstruction attack to recover the sensitive input or

a leakage attack to extract the sensitive attribute. We define

the following attack models for the sensitive information z:

• Supervised Decoder: In this attack setting, the adver-

sary leverages a small number of (z, ŷ) pairs to train a

neural network f̂(θ̂) such that ŷ = f̂(z). The practical

validity of this attack is in the scenarios where some

finite number of pairs (z, ŷ) is obtained through a ma-

licious or colluding client who is also participating in

the collaborative inference setting. This attack scheme

is inspired from [33, 53, 54]. Another practical sce-

nario for this attack is where the pairs (x, ŷ) from a

similar distribution is publicly available, in such a case

the client can train an auto-encoder and use the trained

decoder for the attack. This technique can utilized for

both reconstruction attack and leakage attack.

• Likelihood Maximization: Unlike the above scheme,

here (z, ŷ) pairs are not needed to reconstruct the sen-

sitive input, instead, the attacker uses the weights θ1
of the client network and a randomly initialized net-

work f̂(θ̂; ·) that generates an image x̂ to produce

ẑ = f1(θ1, x̂). Then the loss ℓ2(ẑ, z) between ran-

dom and sensitive activation is minimized by optimiz-

ing θ̂. This attack scheme is inspired by the deep image

prior [32] for feature inversion. This attack is only ap-

plicable to the sensitive input protection and not sensi-

tive attribute. This attack setting is stronger and harder

to defend against because it does not require access to

the (z, ŷ) pairs.

Privacy. Following the setup described in Hamm et

al. [55], we measure privacy as the expected loss over the

estimation of sensitive information by the adversary. This

privacy loss Lpriv , given ℓp norm, for an adversary can be

stated as:

Lpriv(·) , E[ℓp(f̂(z), ŷ)]

Under this definition, releasing sensitive information while

preserving privacy manifests as a min-max optimization be-

tween the data owner and the attacker. For training the

model parameters, we use a proxy adversary from which

gradients can be propagated. We formalise our setup as an

analogue but relax the non-invertibility assumption made

by Hamm et al. [55] for the client f1, following [56], to

generalize the attack surface to sensitive inputs. Additional

details for the privacy framework are included in the sup-

plementary.

3.2. Premise Validation

Adversarial representation learning (ARL) is the exist-

ing state-of-the-art approach for performing private infer-

ence [24, 23, 29] on sensitive data. Consider Figure 2

which visualizes the face image and the learned client acti-

vation in ARL [29]. We note the following observations: a)

the learned activations have high inter-channel redundancy,

and b) individual feature maps preserve semantic integrity

of the input image, especially with shallower client net-

works. Since gradient attribution in convnets is spatially lo-

calized [57], we posit that reducing this inter-channel redun-

dancy and perturbing the intra-channel integrity of client ac-

tivations can help achieve better privacy-utility trade-offs.

3.3. DISCO

DISCO, depicted in Figure 1, is composed of three key

entities: a client, a predictor, and an adversary. The client

transforms the input image to generate client activations

which are communicated to the predictor for inferring the

task attribute but can be collected by an adversary.

a) Client owns the sensitive information. Given an input

x ∈ R3×H×W , this entity participates in the collaborative

inference and intends to achieve privacy in the client acti-

vations z it communicates.

Initially, x is passed through the pre-processing mod-

ule where the spatial decoupler first decomposes it into

d2 disjoint spatial partitions Pi ∈ R3×Ĥ×Ŵ for i =
{0, 1, 2, ...., d2} with Ĥ = H/d, Ŵ = W/d. Next, each

of the partitions Pi is resized back to H × W and passed

through a convolutional layer (with F filters) to generate

P̂i ∈ RF×H′
×W ′

. Finally, the feature aggregator gener-

ates an aggregated representation A ∈ Rd2
×H′

×W ′

by av-

eraging across channels and re-stacking each P̂i. A is then

communicated to the client network. Here, we note that

d2 = F in our pre-processing module so that the spatial de-

coupler can be easily bypassed (toggled-off) without alter-

ing the rest of the network architecture. The underlying idea

to use pre-processing module is to ensure pruning of chan-

nels in z leads to removal of unique spatial information. If

not performed, the redundancy present across channels in z
would allow an attacker to recover the full image even from

a pruned z.

Next, the client network takes A as input and generates

an intermediate activation ẑ ∈ RC′′
×H′′

×W ′′

. Finally, the

filter generating network g(φ, ẑ) parameterized by φ takes

ẑ as input and generates a feature map score F ∈ RC′′

for

each channel in ẑ. The F channel pruning filters are weakly

discretized using sigmoid with temperature (to avoid intro-

ducing discontinuity) and then thresholded to obtain a bi-
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Figure 3: Reconstruction results on CelebA [51]: All of the reconstructed images are obtained from the activations using

the likelihood maximization attack. We generate activations from the ResNet-18 [52] architecture where a set of convolution,

batch normalization, and activation layers are grouped under a block. The first column shows the original sensitive input and

remaining columns show its reconstruction across different blocks. For gaussian noise we use µ = −1., σ = 400, this is

the amount of noise at which the learning network gets utility close down to random chance. Adversarial refers to the set of

techniques for filtering sensitive information using adversarial learning [23, 29]. For DISCO and Random Pruning we use a

pruning ratio of R = 0.6.

nary vector b. Then b is multiplied channel wise with ẑ to

produce a pruned feature volume z, the client activation,

with channels leaking the sensitive information masked out

(or deactivated) in the latent space. Note that F , the feature

map score, is conditioned on ẑ (hence x) and is thus gener-

ated dynamically on run-time per sample basis. A key idea

of DISCO is to disentangle representation learning from pri-

vacy via the learned pruning filter. The hyper-parameter

pruning ratio R governs the number of active channels in the

pruning filter and helps regulate the privacy-utility trade-off.

b) Predictor is an untrusted entity that receives the client

activations (z) and executes the task network (f2) to esti-

mate the task attribute (y). The task network is optimized on

the conventional loss function (ℓu) used for the task. In this

paper we consider image classification as taska and hence

use cross entropy loss (ℓcce).

c) Adversary also receives the client activations (z) and

executes the adversarial network (f3) with the intent of ex-

tracting sensitive information - input or attribute. The adver-

sary performs reconstruction attacks for obtaining the sen-

sitive inputs or attribute leakage attacks to infer sensitive

attributes. During the training, we design a proxy adver-

sary that has access to the sensitive inputs (x) and attributes

(ŷ). For reconstruction attacks, the adversarial network is

a decoder module optimized using ℓ1 loss against the input

x. For attribute leakage attacks, the adversarial network is

a convolutional classifier module optimized using ℓcce loss

against the sensitive attribute ŷ. The adversary loss can be

summarized as :

la =

{

ℓ1(f3(z), x) mode = SI

ℓcce(f3(z), ŷ)) mode = SA

where, mode ∈ [SI, SA] represents attack on sensitive input

(SI) or sensitive attribute (SA). Note that f3 is a proxy ad-

versary used for training purposes while f̂ is the real world

adversary which will be used for attack during evaluation.
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3.4. Training

The utility of the task during inference depends upon pa-

rameters θ1, φ, θ2 learned during the training stage and can

be expressed as

Lutil(θ1, φ, θ2) , E[ℓu(f2(g(f1(x; θ1);φ); θ2), y)]

As described previously we use a proxy adversary during

the training and evaluation of our setup as described by the

evaluation function Lpriv to train the pruning network.

Lpriv(θ1, φ, θ3) , E[ℓa(f3(g(f1(x; θ1);φ); θ3), ŷ)]

θ3 is the parameters for the proxy adversary used during
the training and evaluation. ℓu and ℓa is the loss function
used for evaluating utility and privacy respectively. The
adversary network and task network have access to super-
vised data and attempt to minimize their losses Lutil and
Lpriv respectively. The filter generating network is trained
to minimize Lutil and maximize Lpriv , simulating an im-
plicit min-max optimization for these two components. The
client network parameters are only optimized to minimize
Lutil. We deliberately restrict θ1 for minimizing Lutil and
not maximize Lpriv to ensure that the filter generating net-
work generalizes and does not trivially utilize representa-
tions learned by the θ1. This makes our explicit privatiz-
ing module g(φ, ·) one of the big differentiating factor of
our work from existing ARL based methods [23, 24, 29].
We posit that this facilitates the filter generating network
to specialize at pruning by identifying the privacy leaking
channels. This overall objective can be summarized as:

min
φ

[

max
θ3

−Lpriv(θ1, φ, θ3) + ρ min
θ1,θ2

Lutil(θ1, φ, θ2)

]

Here, ρ is chosen as a hyper-parameter to trade-off be-

tween accuracy and privacy.

3.5. Prediction

During the inference stage, computation for feature ex-

traction ẑ = f1(x; θ
∗

1
) and pruning z = g(ẑ;φ∗;R) is per-

formed on the trusted system and z is sent to the untrusted

party. The value of pruning ratio R governs the total num-

ber of channels to be pruned from z and allows adjusting

for the privacy and utility trade-off during runtime.

4. Discussion: Dynamic Design of DISCO

A key idea behind DISCO is the decoupling of privacy

considerations from representation learning using the dy-

namic pruning filter. We analyse the dynamic formulation

of this design along the following dimensions:

• Dynamic Private Representations: The filter generat-

ing network in DISCO estimates the pruning filter for

each input, independently at run-time. Since differ-

ent convolutional filters are known to activate differ-

ently [45], the dynamic channel pruning in DISCO

enables more personalized identification of sensitive

channels for each input resulting in better privacy-

utility trade-offs.

• Dynamic Integration: We train DISCO in two phases

as i) train the client and the predictor networks to maxi-

mize utility ii) train filter generating network with pre-

dictor and the (proxy) adversary to minimize privacy

leakage and preserve utility. Decoupling of g from f1
enables private expert filters that can obfuscate sensi-

tive attributes and be employed by a network running

DISCO. For example, one can build a dictionary of

DISCO modules for different sensitive attributes for

faces such as race, gender, eyeglasses, and etc. can

be trained and used by different vendors based on their

context for privacy and utility.

• Dynamic Privacy Utility Trade-offs: All previous

methods weight seek to balance privacy-utility during

training by weighting the corresponding losses.

However, once the model is trained, the privacy-utility

trade-off is frozen. In contrast, DISCO can allow

dynamically varying privacy-utility at inference by

tweaking the pruning ratio (R). However, this would

also require the server’s parameters (θ2) to be trained

with different R. This dynamic adjustment enables

one to continuously control the privacy offered by

deployed systems without having to interrupt or

retrain the machine learning service from scratch.

5. Experiments

Datasets We conduct experiments with the following

datasets:

• Fairface [58] dataset consists of 108,501 images, with

race, gender, and age groups. The dataset is designed

with the emphasis of balanced race composition which

we preserve in our experimental train and test sets. For

our experiments, the task attribute is gender and the

sensitive attribute is race.

• CelebA [51] consists of 202,599 celebrity face images

across 10,177 identities, each with 40 attribute annota-

tions. For our experiments, we define the task attribute

as emotion and sensitive attribute as gender.

• CIFAR [59] consists of 60000 32x32 colour images

in 10 classes, with 6000 images per class. There are

50000 training images and 10000 test images. We

manually label each of the 10 classes as living or non-

living. For our experiments, the task attribute is the

class label and sensitive attribute is living/non-living,

as introduced in [24].

Implementation Details Experiments are implemented

using Pytorch and conducted using NVIDIA Tesla V100

GPUs. The backbone network is ResNet-18 [52] with the
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Figure 4: Privacy-Utility Trade-off: We vary the pruning

ratio R for DISCO and λ trade-off parameter for ARL [23,

29]. Leakage is measured as SSIM score between inputs

and reconstruction.

client activations obtained from the block-4, unless speci-

fied otherwise. Additional details including hyperparame-

ters can be found in the supplementary.

Evaluation Metrics We measure utility using top-1 ac-

curacy on the task attribute. For attacks on sensitive inputs,

we measure privacy using ℓ1 loss, SSIM and PSNR [60] be-

tween reconstructed and input image and top-1 accuracy on

the private attribute for attacks on sensitive attributes.

Baselines For attacks on sensitive attributes, we baseline

with ARL based methods [29, 24, 23] which are state-of-

the-art on attribute leakage. For attacks on sensitive inputs,

we baseline with [29, 23] and two randomized variants

of DISCO where we perform: i) random pruning ii) gaus-

sian noise. Finally, for both sensitive inputs and attributes,

we also compare with a traditional CNN model, denoted

astraditional, with no activation privacy, this has been stud-

ied in Osia et al [61].

6. Benchmark for private inference

As we strive towards rigorous understanding of privacy

for collaborative inference, we also release an evaluation

benchmark for attack models on sensitive inputs and at-

tributes. The benchmark consists of 1 million pairs of ac-

tivations, model weights, and inputs details for attacks dis-

cussed in this paper. The benchmark includes samples from

3 datasets: CelebA, CIFAR-10, and FairFace for multi-

ple recent techniques focused on privacy during inference:

DISCO, Max Entropy [24], and Adversarial [29].

7. Results

Sensitive Attribute. For sensitive attributes, we perform

qualitative analysis and report performance in Table 1. We

mention accuracy of the adversary on the sensitive attribute

(i.e. privacy) and of the predictor on the task attribute (i.e.

utility). We note that DISCO provides the best privacy-

utility trade-off on each of these datasets. Specifically, on

the CIFAR-10 dataset [59], without loss of utility, we im-

prove on decreasing the adversary accuracy to 0.2282 from

0.3573 in [24], the most recent state-of-the-art.

Figure 5: Reconstruction attack qualitative evaluation:

We show the reconstruction quality across traditional col-

laborative inference, adversarial, and ours. Note that the

utility performance on the target task of gender classifica-

tion does not suffer from accuracy degradation in our task.

Sensitive Input. For sensitive inputs, we perform both

quantitative (Table 2) and qualitative analysis (Figure 5) for

stronger likelihood maximization attacks. The visual results

highlight that DISCO achieves significantly better obfusca-

tion in the reconstructed input. This is corroborated by the

quantitative results where DISCO obtains an SSIM of 0.38

and PNSR of 11.61 as against 0.68 and 20.49 for adversar-

ial class of techniques [23, 29]. Please note that while other

techniques may also provide some level of obfuscation in

reconstruction, DISCO is the only technique which is able

to additionally prohibit the re-identification of the input im-

age. (compare columns 3 and 5 in Figure 5). We observe

that supervised decoder is a stronger attack for DISCO but

loses the identity of the original image. The results can be

found in the supplementary.

Next, Figure 3 presents the reconstructed outputs for

varying depths of the client activations (from block-1 to

block-7 of the ResNet-18 [52]). The results indicate a pro-

gressive worsening of performance as we move towards

shallower client activations (lower resnet blocks) for base-

lines. In contrast, we note that DISCO still consistently

protects the input from the likelihood maximization attack.

This validates the motivation and formulation of the pre-

processing module of DISCO. We evaluate privacy-utility

tradeoff in the Figure 4 by varying the trade-off parameter

for both ARL [23, 29] and DISCO.
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Method
Privacy Utility Privacy Utility Privacy Utility

(Fairface) ↓ (Fairface) ↑ (CelebA) ↓ (CelebA) ↑ (CIFAR10) ↓ (CIFAR10) ↑

[61] 0.319 0.824 0.729 0.916 0.912 0.498

DISCO 0.190 0.815 0.612 0.910 0.223 0.9198

[24] 0.236 0.802 0.780 0.880 0.358 0.915

[29] 0.193 0.815 0.675 0.905 0.526 0.924

Table 1: Comparison for sensitive attribute leakage: We compare our approach on sensitive attribute leakage with the

existing works. For the fairface dataset, sensitive attribute is race and task attribute is gender. In the CelebA dataset, sensitive

attribute is gender and task attribute is smiling. The adversary accuracy is reported on the supervised reconstruction attack as

described in 3.1, for all the three methods, adversary accuracy is close to random chance, indicating that evaluation of privacy

just by analyzing the adversary proxy during the training may give a false sense of privacy.

SSIM ↓ PSNR ↓ ℓ1 ↑ Utility ↑

Traditional [61] 0.88± 0.03 31.58± 2.44 108.82± 8.92 97.35

Adversarial [29] 0.68± 0.12 20.49± 5.94 123.33± 20.67 97.15

DISCO 0.38±0.09 11.61±1.91 125.34±15.29 95.66

Table 2: Comparison for sensitive input leakage: We

compare our approach on sensitive input reconstruction task

and compare with our baselines and the existing works.

8. Discussion

In this section, we present the motivation and analyse the

implication of various design choices for DISCO.

i) Privacy-Utility for Correlated Attributes While

users idealize high privacy-utility guarantees, we posit that

what level can be empirically realized is conditioned on the

similarity of the task and sensitive attribute. To corrobo-

rate this position, we conduct leakage attacks using DISCO

and traditional with the following attribute configuration:

corroborate this with observations from the following ex-

periments on the celebA dataset:

• S1: Sensitive Attribute is Mouth Open (yes/no) and the

Task Attribute is Smiling (yes/no)

• S2: Sensitive Attribute is Nose Size and Task Attribute

is Smiling (yes/no)

Results in Table 3 indicate DISCO achieves near-perfect

privacy and high utility in S2, the privacy-utility worsens

for S1 where the sensitive attribute (mouth open) is strongly

correlated with task attribute (smiling) due to spatial overlap

of the corresponding regions of interest.

ii) Comparing with Activation Noise for Privacy

Adding noise to the output of a statistical query (client ac-

tivations in this case) is a well known mechanism for pri-

vatizing sensitive data. These mechanisms are sometimes

built under the framework of differential privacy [16] or its

derivatives [62, 63]. While we do not compare or operate

under a strict differentially private mechanism, we posit that

preventing sensitive input reconstruction requires a heavy

Sensitive Attribute Method Privacy (↓) Utility (↑)

Mouth Open (S1)
[61] 0.814 0.893

DISCO 0.783 0.907

Big Nose (S2)
[61] 0.616 0.896

DISCO 0.559 0.893

Table 3: Privacy-utility trade-offs is influenced by correla-

tion of task and sensitive attribute. The task attribute here is

Smiling (yes/no). Both sensitive attributes are binary.

amount of noise. To validate this, we design an experi-

ment where we add Gaussian noise to the client activations

and incrementally increase σ until the reconstruction is pre-

vented. We also measure the difference in utility obtained

by these noise based mechanisms. Compared to the learn-

ing based approaches like adversarial and DISCO, achiev-

ing privacy through random noise comes at a heavy cost

of deteriorating utility to the extent that utility gets close

to random chance with noise that is empirically capable of

preventing reconstruction attack µ = −1, σ = 400.

9. Conclusion

In this work, we focus on selective privacy of sensitive

information in learned representations. We posit that se-

lectively removing features in this latent space can protect

the sensitive information and provide better privacy-utility

trade-off. Consequently, we introduce DISCO, a dynamic

scheme for obfuscation of sensitive channels to protect sen-

sitive information in collaborative inference. DISCO pro-

vides a steerable and transferable privacy-utility trade-off at

inference without any retraining. We propose diverse at-

tack schemes for sensitive inputs and attributes and achieve

significant performance gain over existing methods on mul-

tiple datasets. To encourage rigorous exploration of attack

schemes for private collaborative inference, we also release

a benchmark dataset of 1 million sensitive representations.
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[58] Kimmo Kärkkäinen and Jungseock Joo. Fairface: Face at-

tribute dataset for balanced race, gender, and age, 2019.

[59] Alex Krizhevsky and Geoff Hinton. Convolutional deep be-

lief networks on cifar-10. Unpublished manuscript, 40(7):1–

9, 2010.

[60] Alain Hore and Djemel Ziou. Image quality metrics: Psnr

vs. ssim. In 2010 20th international conference on pattern

recognition, pages 2366–2369. IEEE, 2010.

[61] Seyed Ali Osia, Ali Shahin Shamsabadi, Sina Sajadmanesh,

Ali Taheri, Kleomenis Katevas, Hamid R Rabiee, Nicholas D

Lane, and Hamed Haddadi. A hybrid deep learning architec-

ture for privacy-preserving mobile analytics. IEEE Internet

of Things Journal, 7(5):4505–4518, 2020.
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