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Figure 1: A typical example for animation video interpolation. Our approach is capable of estimating optical flows for

large motions correctly and restore the content, while competing methods fail to handle such motions.

Abstract

In the animation industry, cartoon videos are usually

produced at low frame rate since hand drawing of such

frames is costly and time-consuming. Therefore, it is desir-

able to develop computational models that can automatically

interpolate the in-between animation frames. However, ex-

isting video interpolation methods fail to produce satisfying

results on animation data. Compared to natural videos,

animation videos possess two unique characteristics that

make frame interpolation difficult: 1) cartoons comprise

lines and smooth color pieces. The smooth areas lack tex-

tures and make it difficult to estimate accurate motions on

animation videos. 2) cartoons express stories via exagger-

ation. Some of the motions are non-linear and extremely

large. In this work, we formally define and study the an-

imation video interpolation problem for the first time. To

address the aforementioned challenges, we propose an effec-

tive framework, AnimeInterp, with two dedicated modules

in a coarse-to-fine manner. Specifically, 1) Segment-Guided

Matching resolves the “lack of textures” challenge by ex-

ploiting global matching among color pieces that are piece-

wise coherent. 2) Recurrent Flow Refinement resolves the

“non-linear and extremely large motion” challenge by recur-

rent predictions using a transformer-like architecture. To

facilitate comprehensive training and evaluations, we build

a large-scale animation triplet dataset, ATD-12K, which

comprises 12,000 triplets with rich annotations. Extensive

experiments demonstrate that our approach outperforms ex-

∗Equal contributions; BCorresponding author.

isting state-of-the-art interpolation methods for animation

videos. Notably, AnimeInterp shows favorable perceptual

quality and robustness for animation scenarios in the wild.

The proposed dataset and code are available at https:

//github.com/lisiyao21/AnimeInterp/.

1. Introduction

In the animation industry, cartoon videos are produced

from hand drawings of expert animators using a complex

and precise procedure. To draw each frame of an animation

video manually would consume tremendous time, thus lead-

ing to a prohibitively high cost. In practice, the animation

producers usually replicate one drawing two or three times

to reduce the cost, which results in the actual low frame

rate of animation videos. Therefore, it is highly desirable to

develop computational algorithms to interpolate the interme-

diate animation frames automatically.

In recent years, video interpolation has made great

progress on natural videos. However, in animations, ex-

isting video interpolation methods are not able to produce

satisfying in-between frames. An example from the film

Children Who Chase Lost Voices is illustrated in Figure 1,

where the current state-of-the-art methods fail to generate a

piece of complete luggage due to the incorrect motion esti-

mation, which is shown in the lower-left corner of the image.

The challenges here stem from the two unique characteristics

of animation videos: 1) First, cartoon images consist of ex-

plicit sketches and lines, which split the image into segments

of smooth color pieces. Pixels in one segment are similar,

which yields insufficient textures to match the corresponding
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Figure 2: Two challenges in animation video interpola-

tion. (a) Piece-wise smooth animations lack of textures. (b)

Non-linear and extremely large motions.

pixels between two frames and hence increases the difficulty

to predict accurate motions. 2) Second, cartoon animations

use exaggerated expressions in pursuit of artistic effects,

which result in non-linear and extremely large motions be-

tween adjacent frames. Two typical cases are depicted in

Figure 2 (a) and (b) which illustrate these challenges re-

spectively. Due to these difficulties mentioned above, video

interpolation in animations remains a challenging task.

In this work, we develop an effective and principled novel

method for video interpolation in animations. In particular,

we propose an effective framework, AnimeInterp, to ad-

dress the two aforementioned challenges. AnimeInterp con-

sists of two dedicated modules: a Segment-Guided Match-

ing (SGM) module and a Recurrent Flow Refinement (RFR)

module, which are designed to predict accurate motions for

animations in a coarse-to-fine manner. More specifically,

the proposed SGM module computes a coarse piece-wise

optical flow using global semantic matching among color

pieces split by contours. Since the similar pixels belonging

to one segment are treated as a whole, SGM can avoid the

local minimum caused by mismatching on smooth areas,

which resolves the “lack of textures” problem. To tackle

the “non-linear and extremely large motion” challenge in

animation, the piece-wise flow estimated by SGM is further

enhanced by a Transformer-like network named Recurrent

Flow Refinement. As shown in Figure 1, our proposed ap-

proach can better estimate the flow of the luggage in large

displacement and generate a complete in-between frame.

A large-scale animation triplet dataset, ATD-12K, is built

to facilitate comprehensive training and evaluations of video

interpolation methods on cartoon videos. Unlike other ani-

mation datasets, which consists of only single images, ATD-

12K contains 12,000 frame triplets selected from 30 ani-

mation movies in different styles with a total length over

25 hours. Apart from the diversity, our test set is divided

into three difficulty levels according to the magnitude of

the motion and occlusion. We also provide annotations on

movement categories for further analysis.

The contributions of this work can be summarized as fol-

lows: 1) We formally define and study the animation video

interpolation problem for the first time. This problem has

significance to both academia and industry. 2) We propose

an effective animation interpolation framework named Ani-

meInterp with two dedicated modules to resolve the “lack

of textures” and “non-linear and extremely large motion”

challenges. Extensive experiments demonstrate that Ani-

meInterp outperforms existing state-of-the-art methods both

quantitatively and qualitatively. 3) We build a large-scale

cartoon triplet dataset called ATD-12K with large content

diversity representing many types of animations to test ani-

mation video interpolation methods. Given its data size and

rich annotations, ATD-12K would pave the way for future

research in animation study.

2. Related Work

Video Interpolation. Video interpolation has been widely

studied in recent years. In [16], Meyer et al. propose a

phase-based video interpolation scheme, which performs im-

pressively on videos with small displacements. In [19, 20],

Niklaus et al. design a kernel-based framework to sample in-

terpolated pixels via convolutions on corresponding patches

of adjacent frames. However, the kernel-based framework is

still not capable of processing large movements due to the

limitation of the kernel size. To tackle the large motions in

videos, many studies use optical flows for video interpola-

tion. Liu et al. [15] predict a 3D voxel flow to sample the

inputs into the middle frame. Similarly, Jiang et al. [9] pro-

pose to jointly estimate bidirectional flows and an occlusion

mask for multi-frame interpolation. Besides, some studies

are dedicated to improving warping and synthesis with given

bidirectional flows [2, 1, 17, 18], and higher-order motion

information is used to approximate real-world videos [33, 5].

In addition to using pixel-wise flows on images, “feature

flows” on deep features are also explored for video interpola-

tion [8]. Although existing methods achieve great success in

interpolating real-world videos , they fail to handle the large

and non-linear motions of animations. Thus, the animation

video interpolation still remains unsolved. In this paper, we

propose a segment-guided matching module based on the

color piece matching, boosting the flow prediction.

Vision for Animation. In vision and graphics community,

there are many works on processing and enhancing the ani-

mation contents, e.g., manga sketch simplification [24, 23],

vectorization of cartoon images [35, 34], stereoscopy of an-

imation videos [14], and colorization of black-and-white

manga [22, 27, 11]. In recent years, with the surge of deep

learning, researchers attempt to generate favorable animation

contents. For example, generative adversarial networks are

used to generate vivid cartoon characters [10, 32] and style-

transfer models are developed to transfer real-world images

to cartoons [4, 29, 3]. However, generating animation video

contents is still a challenging task due to the difficulty of

estimating the motion between frames.
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Figure 3: Triplet samples and statistics of ATD-12K. Top: typical triplets in the training and test sets. (a) The percentage

of difficulty levels and motion tags in different categories. (b) Histograms of mean motion values and standard deviations

calculated in each image.

3. ATD-12K Dataset

To facilitate the training and evaluation of animation

video interpolation methods, we build a large-scale dataset

named ATD-12K, which comprises a training set contain-

ing 10,000 animation frame triplets and a test set containing

2,000 triplets, collected from a variety of cartoon movies.

To keep the objectivity and fairness, test data are sampled

from different sources that are exclusive from the training

set. Besides, to evaluate video interpolation methods from

multiple aspects, we provide rich annotations to the test set,

including levels of difficulty, the Regions of Interest (RoIs)

on movements, and tags on motion categories. Some typical

examples of ATD-12K and the annotation information are

displayed in Figure 3.

3.1. Dataset Construction

In the first step to build ATD-12K, we download a large

number of animation videos from the Internet. To keep the

diversity and representativeness of ATD-12K, a total of 101

cartoon clips are collected from 30 series of movies made

by diversified producers, including Disney, Hayao, Makoto,

Hosoda, Kyoto Animation, and A1 pictures, with a total

duration of more than 25 hours. The collected videos have a

high visual resolution of 1920×1080 or 1280×720. Second,

we extract sufficient triplets from the collected videos. In

this step, we not only sample adjacent consecutive frames

into the triplet but also extract those with one or two frames

as an interval to enlarge the inter-frame displacement. Since

the drawing of an animation frame may be duplicated several

times, it is common to sample similar contents in the triplets

extracted from one video. To avoid high affinity among

our data, we filter out the triplets that contains two frames

with a structural similarity (SSIM) [30] larger than 0.95.

Meanwhile, triplets with SSIM lower than 0.75 are also

dropped off to get rid of scene transitions in our data. After

that, we manually inspect the remaining 131,606 triplets for

further quality improvement. Triplets that are marked as

eligible by at least two individuals are kept. Frames that

contain inconsistent captions, simple or similar scenes or

untypical movements are removed. After the strict selection,

12,000 representative animation triplets are used to construct

our final ATD-12K.

Statistics. To explore the gap between natural and cartoon

videos, we compare the motion statistics of the ATD-12K

and a real-world dataset Adobe240 [26], which is often used

as an evaluation set for video interpolation. We estimate the

optical flow between frames of every input pair in the two

datasets, and compute the mean and standard deviation of

displacements for each flow. The normalized histograms of

means and the standard deviations in the two datasets are

shown in Figure 3. They reveal that the cartoon dataset ATD-

12K has a higher percentage of large and diverse movements

than the real-world Adobe240 dataset.

3.2. Annotation

Difficulty Levels. We divided the test set of ATD-12K into

three difficulty levels, i.e., “Easy”, “Medium”, and “Hard”

based on the average magnitude of motions and the area of

occlusion in each triplet. For more details on the definition

of each level, please refer to the supplementary file. Sample

triplets of different levels are displayed in Figure 3.

Motion RoIs. Animation videos are made of moving fore-

ground objects and motion-less background scenes. Since

the foreground characters are more visually appealing, the

motions of those regions have more impact on audiences’

visual experience. To better reveal the performance of inter-

polation methods on motion areas, we provide a bounding
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Figure 4: (a) The overall pipeline of AnimeInterp. The input I0 and I1 are fed to the SGM module to generate the coarse

flows, i.e. f0!1 and f1!0. Then, f0!1 and f1!0 are refined by the RFR module. The final interpolation result is produced

by the warping and synthesis network borrowed from SoftSplat [18]. (b) The inner structure of the SGM module. (c) The

workflow of the RFR module.

box for the 2nd image (as shown in Figure 3 test set) of each

triplet to delineate the motion RoI.

Motion Tags. We also provide tags to describe the major

motion of a triplet. Our motion tags can be classified into

two categories, namely, 1) general motion types including

translation, rotation, scaling, and deformation; 2) character

behaviors containing speaking, walking, eating, sporting,

fetching, and others. The percentage for tags in each category

is shown in Figure 3.

4. Our Approach

The overview of our framework is shown in Figure 4.

Given the input images I0 and I1, we first estimate the coarse

flows f0!1 and f1!0 between I0 and I1 in both directions

via the proposed SGM module in Section 4.1. Then, we

set the coarse flow as the initialization of a recurrent neu-

ral network and gradually refine it to obtain the fine flows

f
′

0!1 and f
′

1!0 in Section 4.2. Finally, we warp I0 and I1
using f

′

0!1 and f
′

1!0 and synthesize the final output Î1/2 in

Section 4.3.

4.1. Segment­Guided Matching

For typical 2D animations, objects are usually outlined

with explicit lines, and each enclosed area is filled with a

single color. The color of the moving object in one frame re-

mains stable in the next frame despite the large displacement,

which could be regarded as a strong clue to find appropriate

semantic matching for the color pieces. In this paper, we

leverage this clue to tackle smooth piece-wise motions by

generating coarse optical flows. The procedure is illustrated

in Figure 4(b), and we elaborate it in the following.

Color Piece Segmentation. Following Zhang et al.’s work

[35], we adopt the Laplacian filter to extract contours of ani-

mation frames. Then, the contours are filled by the “trapped-

ball” algorithm [35] to generate color pieces. After this step,

we obtain a segmentation map S ∈ N
H×W , where pixels

of each color piece is labeled by an identity number. In the

rest of this section, we notate the segmentation of the input

I0 and I1 as S0 and S1, respectively. S0(i) represents the

pixels in the ith color piece of I0, and S1(i) for I1 is similar.

Feature Collection. We feed the input I0 and I1 into

a pretrained VGG-19 model [25] and extract features

of relu1 2, relu2 2, relu3 4 and relu4 4 layers.

Then, we assemble the features belonging to one segment by

the super-pixel pooling proposed in [13]. Features of smaller

scales are pooled by the down-sampled segmentation maps

and are concatenated together. After the pooling, each color

piece is represented by an N -dimensional feature vector,

and the whole image is reflected to a K ×N feature matrix,

where K is the number of the color pieces and each row of

the matrix represents the feature of the corresponding color

piece. The feature matrices I0 and I1 are denoted as F0 and

F1, respectively.

Color Piece Matching. We now use F0 and F1 to esti-

mate a consistent mapping between color pieces of I0 and

I1. Specifically, we predict a forward map M0!1 and a

backward map M1!0. For the ith color piece in the first

frame, the forward map M0!1(i) indicates the maximum-

likelihood corresponding piece in the second frame and the

backward map does the same from I1 to I0. To quantify the

likelihood of a candidate pair (i ∈ S0, j ∈ S1), we compute

an affinity metric A using F0 and F1 as
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A(i, j) =
N
∑

n

min
(

F̃0(i, n), F̃1(j, n)
)

, (1)

where F̃0(i, n) = F0(i, n)/
∑

n F0(i, n) is the normalized

feature of F0, and F̃1 is similar to F̃0. This affinity metric

measures the similarities of all pairs globally. Besides, to

avoid potential outliers, we also exploit two constraint penal-

ties, i.e., the distance penalty and the size penalty. First, we

assume that the displacement between two corresponding

pieces is unlikely to be overly large. The distance penalty is

defined as the ratio of the distance between the centroids of

two color pieces and the diagonal length of the image,

Ldist(i, j) =
‖P0(i)− P1(j)‖√

H2 +W 2
, (2)

where P0(i) and P1(j) represent the positions of the cen-

troids of S0(i) and S1(j), respectively. Note that this penalty

is only performed to the matching with the displacement

larger than 15% of the diagonal length of the image. Second,

we suggest that the sizes of matched pieces should be similar.

The size penalty is designed as,

Lsize(i, j) =

∣

∣

∣

∣

|S0(i)| − |S1(j)|
HW

∣

∣

∣

∣

, (3)

where | · | denotes the number of pixels in a cluster.

Combining all items above, a matching degree matrix C
is then computed as,

C = A− λdistLdist − λsizeLsize, (4)

where λdist and λsize are set to 0.2 and 0.05 in our imple-

mentation, respectively. For each pair (i ∈ S0, j ∈ S1),
C(i, j) indicates the likelihood. Hence, for the ith color

piece in S0, the most likely matching piece in S1 is the one

with the maximum matching degree, and vice versa. The

mapping of this matching is formulated as,

M0!1(i) = argmax
j

(C(i, j)),

M1!0(j) = argmax
i

(C(i, j)).
(5)

Flow Generation. In the last step of SGM module, we

predict dense bidirectional optical flows f0!1 and f1!0

using M0!1 and M1!0. We only describe the procedure

to compute f0!1, for f1!0 can be obtained by reversing

the mapping order. For each matched color-piece pair (i, j)
where j = M0!1(i), we first compute the displacement of

the centroids as a shift base f i
c = P1(j)−P0(i), and then we

compute the local deformation f i
d := (u, v) by variational

optimization,

E
(

f i
d(x)

)

=

∫

|Ij1
(

x+ f i
c(x) + f i

d(x)
)

− Ii0(x)|dx

+

∫

(

|∇u(x)|2 +∇|v(x)|2
)

|dx.
(6)

Here, Ii0 represents a masked I0 where pixels not belonging

to ith color piece are set to 0. Ij1 is the similar to Ii0. The

optical flow for pixels in ith color piece is then f i
0!1 =

f i
d + f i

c . Since the color pieces are disjoint, the final flow

for the whole image is calculated by simply adding all piece-

wise flows together as f0!1 =
∑

i f
i
0!1.

To further avoid outliers, we mask the flow of the ith

piece to zero if it does not satisfy the mutual consistency,

i.e., M1!0(M0!1(i)) 6= i . This operation prevents the

subsequent flow refinement step to be misled by the low-

confidence matching.

4.2. Recurrent Flow Refinement Network

In this section, we refine the coarse optical flows f0!1

and f1!0 to the finer views f ′

0!1 and f ′

1!0 via a deep Re-

current Flow Refinement (RFR) network. There are two

main motivations for introducing the RFR module. First,

since a strict mutual consistency constraint is adopted in the

color-piece-matching step, non-robust pairs are masked off,

leaving null flow values in some locations. RFR is able to

produce valid flows for those locations. Second, the SGM

module is beneficial for large displacements but is less ef-

fective to predict precise deformation for the non-linear and

exaggerated motion in animation videos. Here, RFR comple-

ments the previous step by refining the coarse and piece-wise

flows.

Inspired by the state-of-the-art optical flow network

RAFT [28], we design a transformer-like architecture as

shown in Figure 4(c) to recurrently refine the piece-wise

flow f0!1. For the sake of brevity, we only illustrate the

process to compute f ′

0!1. First, to further avoid potential

errors in the coarse flow f0!1, a pixel-wise confidence map

g is learned to mask the unreliable values via a three-layer

CNN, which takes concatenated |I1(x+ f0!1(x))− I0(x)|,
I0 and f0!1 as input. Then, the coarse flow f0!1 is mul-

tiplied with exp{−g2} to be the initialization f
(0)
0!1 for the

following refinement. Next, a series of residues {∆f
(t)
0!1}

are learnt via a convolutional GRU [6]:

∆f
(t)
0!1 = ConvGRU

(

f
(t)
0!1,F0, corr(F0,F (t)

1!0)
)

, (7)

where corr(·, ·) calculates the correlation between two ten-

sors, F0 and F1 are frame features extracted by a CNN, and

F (t)
1!0 is bilinearly sampled from F1 with optical flow f

(t)
0!1.

The learnt residues are recurrently accumulated to update

the initialization. The optical flow refined after T iterations

is computed as

f
(T )
0!1 = f

(0)
0!1 +

T−1
∑

t=0

∆f
(t)
0!1. (8)

And the fine flow f ′

0!1 is the output of the last iteration.
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Table 1: Quantitative results on the test set of ATD-12K. The best and runner-up values are bold and underlined, respectively.

Whole RoI Easy Medium Hard

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Super SloMo w/o. ft. 27.88 0.946 24.56 0.886 30.66 0.966 27.29 0.948 24.63 0.917

Super SloMo [9] 28.19 0.949 24.83 0.892 30.86 0.967 27.63 0.950 25.02 0.922

DAIN w/o. ft. 28.84 0.953 25.43 0.897 31.40 0.970 28.38 0.955 25.77 0.927

DAIN [1] 29.19 0.956 25.78 0.902 31.67 0.971 28.74 0.957 26.22 0.932

QVI w/o. ft. 28.80 0.953 25.54 0.900 31.14 0.969 28.44 0.955 25.93 0.929

QVI [33] 29.04 0.955 25.65 0.901 31.46 0.970 28.63 0.956 26.11 0.931

AdaCoF w/o. ft. 28.10 0.947 24.72 0.886 31.09 0.968 27.43 0.948 24.65 0.916

AdaCoF [12] 28.29 0.951 24.89 0.894 31.10 0.969 27.63 0.951 25.10 0.925

SoftSplat w/o. ft. 29.15 0.955 25.75 0.904 31.50 0.970 28.75 0.956 26.29 0.934

SoftSplat [18] 29.34 0.957 25.95 0.907 31.60 0.970 28.96 0.958 26.59 0.938

Ours w/o. SGM 29.54 0.958 26.15 0.910 31.80 0.971 29.15 0.959 26.78 0.939

Ours w/o. RFR 27.62 0.944 24.43 0.887 29.78 0.959 27.29 0.946 24.94 0.920

Ours 29.68 0.958 26.27 0.910 31.86 0.971 29.26 0.959 27.07 0.939

4.3. Frame Warping and Synthesis

To generate the intermediate frame using flow f ′

0!1 and

f ′

1!0, we adopt the splatting and synthesis strategy of Soft-

Splat [18]. In short, a bunch of features are extracted from

I0 and I1 using a multi-scale CNN, and then, all features and

input frames are splatted via forward warping to the center

position, e.g., I0 is splatted to I0!1/2 as

I0!1/2(x+ f0!1(x)/2) = I0(x). (9)

Finally, all warped frames and features are fed into a GridNet

[7] with three scale levels to synthesize the target frame Î1/2.

4.4. Learning

To supervise the proposed network, we adopt the L1 dis-

tance ‖Î1/2 − I1/2‖1 between the prediction Î1/2 and the

ground truth I1/2 as the training loss.

We train this network in two phases: the training phase

and the fine-tuning phase. In the training phase, we first pre-

train the recurrent flow refinement (RFR) network following

[28], and then fix the weights of RFR to train the rest parts

of proposed network on a real-world dataset proposed in

[33] for 200 epochs. During this phase, we do not use the

coarse flows predicted by SGM module. The learning rate

is initialized as 10−4 and decreases with a factor 0.1 at the

100th and the 150th epochs. In the second phase, we fine-

tune the whole system for another 50 epochs on the training

set of our ATD-12K with the learning rate of 10−6. During

fine-tuning, images are rescaled into 960 × 540 and are

randomly cropped into 380 × 380 with batch size 16. We

also stochastically flip the images and reverse the triplet

order as data augmentation.

5. Experiments

Compared Methods. AnimeInterp is compared with five

most recent state-of-the-art methods including Super SloMo

[9], DAIN [1], QVI [33], AdaCoF [12] and SoftSplat [18].

We use the original implementation of DAIN, QVI and Ada-

CoF, and the implementation from [21] for Super SloMo.

Since no model is released for SoftSplat, we implement this

method following the description in [18], and train it with

the same strategy as our proposed model.

Datasets. We fine-tune these baseline models on the training

set of ATD-12K with the hyper-parameters described in Sec-

tion 4.4. Models before and after fine-tuning are separately

evaluated on our proposed ATD-12K test set.

Evaluation Metrics. We use two distant images in every

test triplet as input frames and use the middle one as ground

truth. The PSNR and SSIM [31] between the predicted

intermediate results and the ground truth are adopted as

evaluation metrics. Using the annotation in Section 3.2, we

evaluate the interpolation results not only on the whole image

(denoted as “Whole”), but also on the regions of interest

(denoted as “RoI”). Meanwhile, we show the evaluations for

the three levels (“Easy”, “Medium” and “Hard”).

5.1. Comparative Results

Quantitative Evaluation. The quantitative results are

shown in Table 1. According to the comparison, our pro-

posed model consistently performs favorably against all the

other existing methods on all evaluations. The PSNR score

of our method improves 0.34dB compared to the best com-

parative method (SoftSplat) on the whole image evaluation.

For the evaluation on RoI, which indicates the significant

movement in a triplet, our method can also achieve an im-

provement of 0.32dB. Since animation videos contain many

frames with static background, the evaluation on RoI is more

precise to reflect the effectiveness on large motions.

Qualitative Evaluation. To further demonstrate the effec-

tiveness of our proposed method, we show two examples for

visual comparison in Figure 5. In each example, we display
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Inputs and GT Super SloMo DAIN SoftSplat Ours w/o SGM Ours

Figure 5: Qualitative results on ATD-12K test set. The first row of each example shows the overlapped input frames and the

optical flow predicted by corresponding method, while the second row shows the ground truth and interpolation results.

the interpolation results and corresponding optical flows pre-

dicted by different methods. In the first example, Mowgli

is reaching out a vulture using one hand, while his other

hand is already on the wing of the vulture. Interpolation on

this case is very challenging because the displacement of

the boy’s arm is locally discontinuous and extremely large.

Moreover, the local patterns of the boy’s two hands are very

similar, which result in a local minimum for the optical flow

prediction. Consequently, all existing methods fail to predict

correct flow values on the boy’s hand. In the interpolation

results of these methods, the moving hand either disappears

(e.g., SoftSplat) or splits into two deformed ones (e.g., Super

SloMo, DAIN). In contrast, our method can estimate a more

accurate optical flow and generate a relatively complete arm

in the intermediate position. In the second case, Peter Pan

flies fast in the air while the background moves with a large

displacement. Similar to the first example, the compared

methods estimate wrong flow values on the character, and

hence fail to synthesize a complete body in the accurate

position, while our method can produce the whole charac-

ter, which is almost identical to the ground truth and looks

correct.

5.2. Ablation Study

Quantitative Evaluation. To explain the effectiveness of

the SGM and RFR modules in AnimeInterp, we evaluate

two variants of the proposed method, where the SGM mod-

ule and the RFR module are removed, respectively (denote

as “Ours w/o. SGM” and “Ours w/o. RFR”). The “w/o.

SGM” variant directly predicts optical flows using the recur-

rent refinement network, without the guided initialization of

global-context-aware piece-wise flow, while the “w/o. RFR”

model uses the piece-wise flow predicted by SGM to warp

and synthesize the interpolate results. For a fair compari-

son, we re-fine-tune the weights of these two variants after

removing the corresponding modules. As shown in Table 1

and Figure 6(a), the PSNR of “ w/o. SGM” variant on the

whole-image evaluation is lowered about 0.14dB , while the

score of “w/o. RFR” model drops sharply to 2.06dB, be-

cause the piece-wise flow are coarse and contain zero values

on mutually inconsistent color pieces. The results suggest

that both of the proposed SGM module and RFR module

play a critical role in our method. To have a more precise

view on different difficulty levels, the SGM module can im-

prove about 0.3dB on the performance of triplets marked as

“Hard”, from 26.78dB to 27.07dB, but merely improves the

“Easy” evaluation by 0.06dB, suggesting that the proposed

SGM module is more useful on improving the performance

of large-motion videos.

Qualitative Evaluation. As for the quality of visual results,

if the SGM module is removed, the predicted flow of our

methods becomes incorrect since it falls into a local min-

imum. For instance, in the first sample of Figure 5, the

moving right hand of the boy in the first image is matched to

the left hand in the second image, which is spatially closer

but wrong for the matching. Interestingly, with the piece-
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Figure 6: (a) Ablation study for the SGM module. Quantitative results of PSNR are exhibited. (b) Visualization for the

effectiveness of SGM. In the first row, the color piece segmentation of frame 0 and frame 1 in Figure 1 are visualized,

where the matching pieces are filled with the same random color in S0 and S1. In the second row, flow estimations and final

interpolation results are displayed. (c) User study results. Our method outperforms others with a large margin.

wise flow as guidance, our method can avoid this local mini-

mum and estimate correct flow values by taking advantage

of global context information. A detailed illustration of the

effectiveness of SGM is shown in Figure 6(b). In the first

row, we show the color piece segmentation of the two input

frames displayed in Figure 1. The matching pieces are filled

with the same random color, and the color pieces disobeying

the mutual consistency are masked as white. As can be seen

in the red boxes, the segments of the luggage are correctly

matched, even though it is segmented into several pieces. In

the second row of Figure 6(b), we visually compare the opti-

cal flow and the interpolation results with and without SGM.

Although the piece-wise flow f1!0 is coarse, it can be a

good guidance to the refinement network to predict accurate

f ′

1!0, which leads to a complete synthesis of the luggage.

In conclusion, the proposed SGM module significantly im-

proves the performance on local-discontinuous motions via

global context matching.

5.3. Further Analysis

Influence of Difficulty Levels and Motion RoIs. As can

be seen in Table 1, the difficulty levels have great impact on

the performance. The PSNR scores of various methods will

drop more than 2dB when the difficulty increases one level.

The drop is more significant for those methods which are

not designed to resolve “lack of textures” and “non-linear

and extremely large motion” challenges in animation. For

example, DAIN achieves the third-best score (31.67dB) in

the evaluation on ‘Easy’ level, with the difference less than

0.2dB compared to our proposed method (31.86dB), but its

performance drops more than ours for ‘Medium’ (28.74dB

vs. 29.26dB) and ‘Hard’ (26.22dB vs. 27.07dB) levels.

Meanwhile, the performance of various methods on RoIs

are much lower than that on the whole images. Since RoI

regions are the essential parts of animation videos, which

have great impact on the visual experience, future studies

focusing on restoring RoIs are encouraged.

User Study. To further evaluate the visual performance of

our methods, we conduct a user study on the interpolation

results of Super SloMo, DAIN, SoftSplat and our proposed

method. We separately conduct subjective experiments with

ten people. In every test, we randomly select 150 pairs, each

of which contains the interpolation result of our method and

the corresponding frame from one of the compared methods,

and ask the subject to vote for the better one. We provide

both the interpolated frames and the input frames to subjects

so that they can take the temporal consistency in their deci-

sion. Figure 6 shows the percentages of the average votes

of our method versus the compared methods. For each com-

pared method, over 83% of the average votes account for

ours as being better in terms of visual quality. These exper-

imental results show our method produces more favorable

results on both the quantitative evaluations and the visual

quality.

6. Conclusion

This paper introduces the animation video interpolation

task, which is an important step towards cartoon video gen-

eration. To benchmark animation video interpolation, we

build a large-scale animation triplet dataset named ATD-12K

comprising 12,000 triplets with rich annotations. We also

propose an effective animation video interpolation frame-

work called AnimeInterp, which employs the segmentation

of color pieces as a match guidance to compute piece-wise

optical flows between different frames and leverages a re-

current module to further refine the quality of optical flows.

Comprehensive experiments demonstrate the effectiveness

of the proposed modules as well as the generalization ability

of AnimeInterp.
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