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Abstract

In most existing learning systems, images are typically

viewed as 2D pixel arrays. However, in another paradigm

gaining popularity, a 2D image is represented as an im-

plicit neural representation (INR) — an MLP that pre-

dicts an RGB pixel value given its (x, y) coordinate. In

this paper, we propose two novel architectural techniques

for building INR-based image decoders: factorized multi-

plicative modulation and multi-scale INRs, and use them

to build a state-of-the-art continuous image GAN. Previous

attempts to adapt INRs for image generation were limited

to MNIST-like datasets and do not scale to complex real-

world data. Our proposed INR-GAN architecture improves

the performance of continuous image generators by several

times, greatly reducing the gap between continuous image

GANs and pixel-based ones. Apart from that, we explore

several exciting properties of the INR-based decoders, like

out-of-the-box superresolution, meaningful image-space in-

terpolation, accelerated inference of low-resolution images,

an ability to extrapolate outside of image boundaries, and

strong geometric prior. The project page is located at

https://universome.github.io/inr-gan.

1. Introduction

In deep learning, images are typically represented as 2D

arrays of pixels. However, there is another paradigm which

views an image as a continuous function F (p) = v that

maps a pixel’s 2D coordinate p = (x, y) 2 R
2 to its RGB

value v = (r, g, b) 2 R
3. The advantage of such a rep-

resentation is that it gives a true continuous version of the

underlying 2D signal instead of its cropped quantized coun-

terpart like pixel-based representations do. In practice, we

almost never know the underlying function F (p) and thus

have to work with its approximations. The most popular

and expressive way to approximate F (p) is through a neural

network Fθ [81, 74]. It is called an implicit neural repre-

sentation (INR) and is especially popular in 3D deep learn-

ing where working with voxels directly (i.e. pixels defined
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Figure 1: Comparison between a traditional convolutional

generator (left) and an INR-based one (right). A traditional

generator directly generates a pixel-based image represen-

tation given its latent code z. The INR-based one produces

parameters of an MLP. The corresponding pixel-based rep-

resentation is obtained by evaluating the INR at each coor-

dinate location (x, y) of a specified grid.

on a 3D grid) is too expensive [51, 11, 67, 55].

Building such a decoder has two severe difficulties: 1)

since it is a hypernetwork, i.e. a network that produces pa-

rameters for another network [26], it is unstable to train and

requires too many parameters in general [9]; and 2) it is

too costly to evaluate INRs for a dense high-resolution co-

ordinates grid limiting their application to low-resolution

images only. To alleviate these issues, we design two

principled architectural techniques: factorized multiplica-

tive modulation (FMM) layer for hypernetworks and multi-

scale INRs. We use these techniques to build INR-GAN:

a state-of-the-art continuous image generator that gener-

ates pictures in their INR representations. Previous at-

tempts to build such a model were only conducted on small

MNIST-like datasets [11, 3, 51] and do not scale to com-

plex real-world data. In our case, we managed to achieve

FID [28] scores of 5.09, 4.96 and 16.32 on LSUN Churches

110753



2562, LSUN Bedrooms 2562 and FFHQ 10242, respec-

tively, greatly reducing the gap between continuous image

GANs and their pixel-based analogs. In their contempo-

rary work, [1] achieved even better results by employing

a large-scale INR-based decoder with learnable coordinate

embeddings.

In our paper, we also shed light on many interesting

properties of the INR-based decoders:

• Extrapolating outside of image boundaries (see

Fig. 2): an ability to generate a “zoomed-out” version

of an image without being trained explicitly to do this.

• Geometric prior (see Fig. 4): better encoding of geo-

metric properties of a dataset in the latent space.

• Accelerated low-resolution inference (see Fig. 17): an

ability to generate a low-resolution version of an im-

age in shorter time than an image of the corresponding

training-time resolution.

• Meaningful image space interpolation (see Fig. 5).

• Out-of-the-box superresolution (see Fig. 3): an abil-

ity to produce a higher-resolution version of an image

without being trained for this task at all.

We emphasize that these features come naturally to INR-

based decoders and do not require any additional training.

To summarize, our contributions are the following:

1. We propose a novel factorized multiplicative modula-

tion (FMM) layer for hypernetworks. It makes it possi-

ble to generate INRs with a large number of parameters

and stabilizes hypernetwork training.

2. We propose a novel multi-scale INR architecture. It

makes it possible to represent high-resolution images

in the INR-based form in a very efficient way.

3. Using the above two techniques we build INR-GAN:

an INR-based GAN model that outperforms existing

continuous image generators by several times on large

real-world datasets.

4. We explore several exciting properties of INR-based

decoders, like out-of-the-box superresolution, mean-

ingful image-space interpolation, accelerated infer-

ence of low-resolution images, an ability to extrapolate

outside of image boundaries, and geometric prior.

2. Related work

Implicit Neural Representations. The original idea of

augmenting neural networks with coordinates information

Figure 2: Extrapolating outside of image boundaries.

After training our INR-based GAN on LSUN 2562, we tried

to evaluate it on a wider grid. During training, we used co-

ordinates from [0, 1]2 square, and here we evaluate it on

coordinates from [�0.3, 1.3]2 square. To our surprise, the

model can produce meaningful extrapolation and generate

the picture beyond the coordinates area it was trained on.

Blue bounding box denotes [0, 1]2 coordinates area — an

image area the model was trained on. Very similar results

were previously shown by [49].

was proposed in CPPN [78] which is a neuroevolution-

based model that is trained to represent a 2D image. Af-

ter that, there were several works that use coordinates as

an additional source of information to neural networks

[52, 87, 86, 68, 77], but the largest popularity of implicit

neural representations (INRs) is observed in 3D deep learn-

ing, where it provides a cheap and continuous way to repre-

sent a 3D shape compared to mesh/voxel/pointcloud-based

ones [55, 67, 51, 21, 20, 75]. They have also been used for

other tasks, like representing textures [63], 3D shapes flow

[60], scenes [57, 76], audios and differential equations [74],

human grasps [41] and other information [56, 13]. Occu-

pancy Networks [55, 69, 13, 36] model a probability func-

tion of a voxel being occupied by a 3D shape and typically

employ a coordinate-based decoder that operates on top of

single-view images. They use the multi-resolution surface

extraction method, which is similar in nature to our pro-

posed multi-scale INR. However, in our case, we share com-

putation between neighboring pixels while they use surface

extraction to find regions to refine the predictions on. In this

way, they conduct the full inference for each low-resolution

coordinate which is the opposite of what we try to achieve

with multi-scale INRs. DeepSDF [67] models a signed dis-

tance function instead of the occupancy function and they

additionally have an encoder, which transforms an image

into a latent code. IM-NET [11] proposes to train a gen-

erative model on top of these latent codes and conduct ex-

periments not only on ShapeNet objects [8], but on MNIST

images as well. DeepMeta [51] models the occupancy func-

tion and predicts decoder parameters instead of the latent

codes. A vital branch of research on INRs is concerned

about the most efficient way to encode coordinates posi-

tions [84, 19]. Recent works show that using Fourier fea-

tures greatly improves INR expressiveness [81, 74], which

we observe in our experiments as well.

GANs. State-of-the-art results in image generation are
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Figure 3: Out-of-the-box superresolution properties of

the INR-based decoder. We train our INR-GAN on LSUN

128 ⇥ 128 and perform upsampling at test time to 256 ⇥

256 resolution with either classical interpolation techniques

(first 3 columns) or with “natural” INR-based upsampling

by evaluating Fθ on a denser coordinates grid. INR-based

superresolution is much crisper and obtained without any

additional supervision. Numbers in parentheses denote the

corresponding UpsampledFID scores.

held by generative adversarial networks (GANs) [23]. Two

key challenges in GAN training are instability and mode

collapse, that is why a big part of research in recent years

was devoted to finding stronger objective formulation [2,

53, 48], regularizers [25, 54, 58] and architectural designs

[38, 39, 40, 37] that would encourage stability, diversity and

expressivity of the GAN-based models.

Generative models + coordinates. There were attempts

to combine generative modeling and INR-based represen-

tations prior to our work. IM-NET [11] trains a genera-

tive model on top of latent codes of an occupancy autoen-

coder. In our case, instead of feeding a latent code to a

coordinate-based decoder, we produce its parameters with a

hypernetwork-based generator. Besides, their image gen-

eration experiments were limited to small-scale MNIST-

like datasets [46] only. CoordConv GAN [52] concatenates

coordinates to each representation in the DCGAN model,

which endows it with geometric translating behavior dur-

ing latent space interpolation. [91] use CoordConv layers to

perform superresolution. SBD [88] augments a VAE [43]

decoder with coordinates information. SpatialVAE [3] addi-

tionally models rotation and translation separately from the

latent codes COCO-GAN [49] generates images by patches

given their spatial information and then assembles them into

a single image. [93] uses coordinates-based convolutions

for sky replacement and video harmonization. In their con-

(a) StyleGAN2 (b) INR-GAN

Figure 4: Predicting keypoints from latent codes. We

train a linear model to predict face keypoints directly from

the corresponding latent codes. Its performance shows how

much geometric information is contained in a latent code

and how accessible it is. For this benchmark, our model

easily outperforms StyleGAN2 despite it being trained with

the additional PPL loss [40] that forces better latent codes

conditioning in the decoder. That demonstrates better ge-

ometric prior of our model. The corresponding scores are

presented in Table 3.

temporary work, [1] builds an INR-based generator with

learnable coordinate embeddings and achieves state-of-the-

art results on several large-scale datasets.

Hypernetworks. Hypernetworks or meta-models are

models that generate parameters for other models [26,

50]. Such parametrization provides higher expressivity

[17, 18] and compression due to weight sharing through

a meta-model [26]. Our factorized multiplicative modula-

tion (FMM) is closely related to the squeeze-and-excitation

mechanism [30]. But in contrast to it, we modulate weights

instead of hidden representations, similar to [10], where

authors condition kernel weights on an input via attention.

Hypernetworks are known to be unstable to train [83] and

[9] proposed a principled initialization scheme to remedy

the issue. In our case, we found it to be unnecessary since

our FMM module successfully reduces the influence of hy-

pernetwork initialization on signal propagation inside an

INR. Hypernetworks found many applications in other ar-

eas like few-shot learning [4], continual learning [85], ar-

chitecture search [92] and others. In the case of genera-

tive modeling, [80] built a character-level language model,

and [71] proposed a generative hypernetwork to produce pa-

rameters of neural classifiers. Similar to our FMM, [79]

proposed a low-rank modulation by parametrizing a target

model’s weight matrix as W = Ws� (A⇥B), where Ws

is a shared component and A,B are rectangular matrices

produced by a hypernetwork.

Hypernetworks + generative modeling. Combining

hypernetworks and generative models is not new. In [71]

and [27], authors built a GAN model to generate param-

eters of a neural network that solves a regression or clas-
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sification task and demonstrate its favorable performance

for uncertainty estimation. HyperVAE [59] is designated

to encode any target distribution by producing generative

model parameters given distribution samples. HCNAF [64]

is a hypernetwork that produces parameters for a condi-

tional autoregressive flow model [42, 66, 31]. [7] trains a

generator to produce a 3D object in the INR form and uses

mFiLM[70, 14] to compress the output space.

Hypernetworks + INRs. There are also works that com-

bine hypernetworks and INRs. [76] represents a 3D scene as

an INR, rendered by differentiable ray-marching, and trains

a hypernetwork to learn the space of such 3D scenes. [45]

proposes to represent an image dataset using a hypernet-

work and perform super-resolution by passing denser co-

ordinate grid into it. DeepMeta [51] builds an encoder that

takes a single-view 3D shape image as input and outputs pa-

rameters of an INR. Authors also trained a model to encode

a MNIST image into a temporal sequence of digits.

Computationally efficient models. Among other

things, we demonstrate that our INR-based decoder enjoys

faster inference speed compared to classical convolutional

ones. Each INR layer can be seen as a 1 ⇥ 1 convolution

[29, 73], i.e. a convolution with the kernel size of 1. The

core difference is that layer’s weights are produced with a

hypernetwork G. Since INR may have a lot of parameters,

we factorize them with low-rank factorization [90]. There is

a vast literature on using low-rank matrix approximations to

compress deep models or accelerate them [61, 12, 34, 15].

In our case, we found it sufficient just to output a weight

matrix as a product of two low-rank matrices W = A⇥B

without using any specialized techniques. SENet [30] pro-

posed to apply squeeze-and-excitation mechanism on the

hidden representations, and we apply them on the INR

weights to make the model more stable to train and faster

to converge.

3. Image Meta Generation

3.1. Model overview

We adopt the standard GAN training setup and replace a

convolutional generator with our INR-based one, illustrated

in Figure 1. We build upon the StyleGAN2 framework and

keep every other component except for the generator un-

touched, including the discriminator, losses, optimizers, and

the hyperparameters. The details are in Appendix A.

Our generator G is hypernetwork-based: it takes latent

code z ⇠ N (0, I) as input and generates parameters θ for

an INR model Fθ . To produce an actual image, we evalu-

ate Fθ at all the locations of a predefined coordinates grid,

which size is determined by the dataset resolution. For ex-

ample, for LSUN bedroom 2562 we compute pixel values at

2562 = 65536 grid locations of [0, 1]2 square, that are po-

sitioned uniformly. We use recently proposed Fourier fea-

(a) Image interpolation in the pixel-based form.

(b) Image interpolation in the INR-based form.

Figure 5: Images have meaningful interpolation when rep-

resented in the INR-based form. To interpolate between

Fθ1
and Fθ2

, we compute interpolation parameters θ =
↵θ1 + (1 � ↵)θ2 and evaluate Fθ for the provided coor-

dinates grid.

tures to embed the (x, y) coordinates [81, 74]. From the

implementation perspective, these Fourier features is just a

simple linear layer u = sin(�Up) with sine (or cosine) ac-

tivation that maps a raw coordinate vector p = (x, y) into

a feature vector u 2 R
df . Note that our embedding matrix

U is not kept fixed and shared but predicted by the genera-

tor from z. This gives the model flexibility to select feature

frequencies that are the most appropriate for a given image.

3.2. Factorized Multiplicative Modulation (FMM)

A hypernetwork is a model that generates parameters for

another model. In our case, we want to generate INR’s

parameters given the noise vector z. Imagine, that we

need to produce the weights W ` 2 R
nin×nout , b` 2 R

nout

of the `-th linear layer of Fθ . A naive implementation

would output them directly, but this is extremely ineffi-

cient: if the hypernetwork has the hidden dimensionality

of size h, then its output projection matrix will have the

size h ⇥ (nin · nout + nout). Even for small nin, nout this is

prohibitively expensive.

The main problem lies in generating W ` since it con-

tains most of the weights, thus factorizing it via low-rank

matrix decomposition W ` = A` ⇥ B` might seem like

a reasonable idea. However, our preliminary experiments

showed that it severely decreases the performance because

having low-rank weight matrices is equivalent to having

a lot of zero singular values, leading to severe instabili-
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(b) INR-based generator with FMM.

Figure 6: (a) FMM linear layer for inputs x, shared ma-

trix Ws and output y; (b) INR-based generator with the

FMM mechanism: its parameters are split into θs (shared)

and θ (predicted by the hypernetwork). This mechanism

makes our architecture be similar to StyleGAN2 [40]: the

hypernetwork becomes a mapping network and the INR Fθ

becomes the synthesis network (decoder).

ties in GAN training [5, 58]. That is why we change the

parametrization so that the full rank is preserved while the

hypernetwork output is still factorized.

Namely, we first define a shared parameters matrix

W `
s
2 R

n
`

out×n
`

in , which is learnable and shared across all

samples. Our hypernetwork produces two rectangular ma-

trices A` 2 R
n
`

out×r and B` 2 R
r×n

`

in , which are mul-

tiplied together to obtain a low-rank modulating matrix

W `

h
= A` ⇥B`. We compute the final weight matrix W `

as W ` = W `
s
� �(W `

h
) where � is sigmoid function. Bias

vector b` is produced directly since it is small. In all the

experiments, we set r = 10 for all the layers of Fθ except

the first and the last ones which are small enough to be gen-

erated directly. We illustrate FMM in Figure 6.

The above modulation is very similar to the one pro-

posed in [79] with the difference that [79] does not use

the sigmoid activation. However, as our experiments in 4

demonstrate, using the activation is crucial since it bounds

the activations and makes the training more stable. Note

that the FMM-based INR-GAN becomes very close archi-

tecturally to StyleGAN2 [40], which uses a mapping net-

work to predict the style vector used to modulate the convo-

lutional weights of its decoder via multiplication.

3.3. Multi-scale INRs

Scaling a traditional INR-based decoder to large image

resolutions is too expensive: to produce a 10242 image, we

have to input ⇡106 coordinates into Fθ . Such a huge batch

size makes it impossible to use large hidden layers’ sizes

due to excessive computation and memory consumption. To

circumvent the issue, we propose a multi-scale INR archi-

tecture: we split Fθ into K blocks, where each block oper-

ates on its own resolution and only the final block operates

on the target one. Earlier blocks compute low-res features

that are then replicated and passed to the next level. This

process is illustrated on Fig. 7 and is equivalent to using

different grid sizes depending on the resolution and using

the nearest neighbor interpolation for the hidden represen-

tations. For the multi-scale INRs, we use more neurons for

lower resolutions and fewer ones for the more expensive

high-resolution blocks. The use of multi-scale INRs makes

our architecture very similar to classical convolutional de-

coders, which grow the resolution progressively with depth

[62]. In our case, one of the additional benefits of having

the multi-scale architecture is that neighboring pixels get

conditioned on the common context computed at a previous

resolution.

We start with the resolution of 642 for the first block and

increase it by 2 for each next one until we reach the tar-

get resolution. Each block contains 2-4 layers, and Fourier

coordinates features are concatenated to a hidden represen-

tation at the beginning of each block. Replicating low-

resolution features for each high-dimensional pixel is equiv-

alent to upsampling the inner grid with nearest neighbors

interpolation, and this is the way we implement it in prac-

tice. Further implementation details can be found in the

supplementary material or the attached source code.

4. Experiments

4.1. Standard GAN training

Datasets. We conduct experiments on four datasets:

LSUN Bedrooms 1282, LSUN Bedrooms 2562, LSUN

Churches 2562 and FFHQ 10242. LSUN Bedrooms and

LSUN Churches consist on 3M and 125k images of in-the-

wild bedrooms and churches [89], respectively. FFHQ is a

high-resolution dataset of 70k human faces [39]. For all the

datasets, we apply random horizontal flip for data augmen-

tation.

Evaluation metrics. We evaluate the model using

Frechet Inception Distance (FID) [28] metric using 50k im-
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Table 1: We start with the INR-based decoder conditioned on the latent code [11, 3] and progressively improve it. O/M

denotes “out-of-memory” error: we couldn’t train the model even for a batch size of 1 on a 32GB NVidia V100 GPU.

Decoder type
LSUN 1282 LSUN 2562 FFHQ 10242

GMACs #params FID GMACs #params FID GMACs #params FID

Latent-code conditioned INR decoder [44, 3] 30.09 7.1M 229.9 120.33 7.1M 253.3 1925.22 7.1M O/M

+ Hypernetwork-based decoder [51] 23.54 2055.5M 28.83 88.01 2055.5M O/M 1377.52 2055.5M O/M

+ Fourier embeddings from [74, 81] (ours) 28.02 2312.02M 23.07 105.34 2312.02M O/M 1651.52 2312.02M O/M

+ Factorized Multiplicative Modulation (ours) 25.87 108.2M 11.51 103.19 108.2M 15.68 1649.37 108.2M O/M

+ Multi-Scale INR (ours) 21.58 107.03M 5.69 38.76 107.03M 6.27 47.35 117.3M 16.32

StyleGAN2 generator [39] - - - 84.36 30.03M 2.65 143.18 30.37M 4.41

θ

z ∼ N (0, I)

Linear

Activation

Linear

Activation

Linear

Activation
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Figure 7: Multi-Scale INR-based GAN (without FMM).

Each block operates on a different resolution, determined

by the granularity of an input grid. We increase the granu-

larity with depth: this allows to share computation between

neighbouring pixels and condition them on a common con-

text. We depict the multi-scale mechanism without FMM

not to clutter the illustration. In practice, we use both FMM

and the multi-scale architecture for our INR-GAN.

ages to compute the statistics. We also compute the number

of parameters for a given model and the amount of multiply-

accumulate operations (MACs) — a standard measure for

accessing the model’s computational efficiency [29, 16].

Models and training details. All our models have

equivalent training settings and differ only in the genera-

tor architecture. We use two existing architectures as our

baseline:

1. A non-hypernetwork-based generator, which has

shared parameters for all INRs and each INR is con-

ditioned on latent code w = G(z) [11, 3, 67]. I.e., in-

stead of producing parameters for Fθ , we pass w into

it as an additional input v = Fθ(x, y,w).

2. A hypernetwork-based generator, which produces pa-

rameters θ for Fθ but does not use any factorization

techniques to reduce the output matrix size [51].

We build upon the above baselines by incorporating Fourier

positional embeddings of the coordinates [81, 74], incor-

porating our FMM layer and incorporating our multi-scale

INR architecture. In all the experiments, G is a 4-layer

MLP with residual connections that takes z 2 R
512 as in-

put and produces INR parameters θ as output. For the first

baseline, it produces the transformed latent codes instead.

For hypernetwork-based models, we additionally apply a

learned linear layer to w to obtained INR parameters θ.

In all the experiments, a ResNet-based discriminator from

StyleGAN2 [40] is used. However, since beating the scores

is not the goal of the paper, we used its “small” version

(corresponding to config-e). R1-regularization [54] with the

penalty weight of 10 is used. All the models are trained for

800k iterations on 4 NVidia V100 32GB GPUs.

Results. The results are reported in Table 1. As we

can see, the latent code conditioned baseline cannot fit

training data at all since it lacks expressivity and cannot

capture the whole image representation in the latent code.

Its hypernetworks-based counterpart achieves much higher

performance but is still not competitive. An attempt to fit

the baselines on FFHQ 10242 resulted in out-of-memory

errors even for a batch size of 1 for a 32GB GPU. The non-

factorized hypernetwork-based decoder [51] was too expen-

sive even for 2562 resolution.

Our INR-based decoder with FMM layer and multi-

scale INR architecture achieves competitive FID scores and

greatly reduces the gap between continuous and pixel-based

image generation. It is still inferior to StyleGAN2 [40] in

terms of performance, but is three times more efficient. One

should also note that we didn’t use any of the numerous

training tricks employed by StyleGAN2 and that our dis-

criminator architecture is smaller (it corresponds to config-e

[40]). Besides, as we show in Section 4.2, our model natu-

rally gives rise to a lot of additional properties that convolu-

tional decoders lack. Our model also has three times more

parameters than its convolution-based counterpart. The rea-

son for it is the huge size of the output projection matrix of

G, which has the dimensionality of ⇡ 103 ⇥ 105 occupy-

ing 90-99% of parameters of the entire model. Compress-

ing this matrix is an ongoing hypernetworks research topic

[26, 15] and we leave this for future work. We emphasize

that despite its enormous size, the output layer’s inference

time is almost negligible due to highly optimized matrix-

matrix multiplications on modern GPUs.
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Figure 8: FID scores (in log scale) for different rank val-

ues of the proposed FMM modulation. Increasing the rank

beyond 1 gives clear advantage, but the returns are dimin-

ishing for the subsequent rank increase.

Table 2: FID scores for additional ablations of our multi-

scale INR-based GAN (INR-GAN). Removing �(x) from

FMM worsens the scores. Incorporating StyleGAN2’s

architecture and bilinear upsampling allows the INR-

based generator to rival its convolution-based counterpart.

Img/sec of G is measured on 1 NVidia V100 32GB.

Decoder type Churches # Bedrooms # img/sec "

INR-GAN w/o FMM activation 10.35 11.73 267.3

INR-GAN 7.12 6.27 267.1

+ StyleGAN2 architecture 5.09 4.96 265.1

+ bilinear upsampling 3.12 3.41 203.4

StyleGAN2 3.86 2.65 85.5

Ablating FMM rank. In all the experiments, we use an

FMM rank of 10. We ablate over its importance for LSUN

bedroom 2562 and report the resulting convergence plots

on Fig. 8. As one can see, the model benefits from the in-

creased rank, but the advantage is diminishing for further

rank increase. These results show that vanilla or ”full-rank”

hypernetworks are heavily overparameterized and there is

no need to predict each parameter separately. On the other

that is the evidence that there is much potential for ”go-

ing further” than squeeze-and-excitation [30] and AdaIN

[33, 39] approaches, i.e. predicting more than a single mod-

ulating value for each neuron.

Additional ablations. All the above experiments were

conducted on top of a vanilla INR-based decoder which

uses nearest neighbour interpolation (to make neighboring

pixels be computed independently as the vanilla INR does).

It also lacks important StyleGAN2’s techniques which im-

prove the performance, like equalized learning rate [38],

style mixing, pixel normalization [38] and noise injection

[39]. In all our experiments, we also used a small-size

version of StyleGAN2’s discriminator to make the train-

ing run faster. Incorporating the above design choices and

giving up the nearest neighbour upsampling for the bilinear

one (which might be reasonable for some applications) sig-

nificantly improves our generator’s performance. We con-

duct those experiments on LSUN Churches 2562 and LSUN

Bedrooms 2562 and report the results in Table 2. For the

INR-based decoder with bilinear upsampling, we even sur-

pass StyleGAN2’s performance on Churches.

Another critical question is how important the activation

in FMM is. As discussed in Section 3.2, it allows to stabilize

training by bounding the magnitudes of the weights. We ab-

late its influence by replacing � with the identity mapping

and report the resulted FID in Table 2. The drop in perfor-

mance demonstrates that it carries a crucial influence on the

image quality.

Performance on multi-class datasets. To test if the pro-

posed architectural techniques improve the performance on

diverse multi-class datasets, we also conduct experiments

on LSUN-10 2562 and MiniImageNet 1282. We provide

the details of these experiments in Appendix F.

4.2. Exploring the properties

Extrapolating outside of image boundaries. At test

time, we sample pixels beyond the coordinates grid that the

model was trained on and present the results on Fig. 2. It

shows that an INR-based decoder is capable of generating

meaningful content outside of the grid boundaries, which

is equivalent to a zooming-out operation. It is a surprising

quality indicating that the coordinates features produced by

the generator are exploited by an INR in a generalizable

manner instead of just being simply memorized.

Meaningful interpolation. Image space interpolation is

known for its poor behavior [22]. However, when images

are represented in the INR-based form and not the pixel-

based one, the interpolation becomes reasonable. We illus-

trate the difference on Fig. 5.

Keypoints prediction. Direct access to coordinates pro-

vides more fine-grained control over the geometrical prop-

erties of images during the generation process. Thus one

can expect the INR-based decoder to better embed the geo-

metric structure of an image into the latent space [52]. To

test this hypothesis, we perform the following experiment.

We take 10k samples from our model trained on FFHQ 2562

and extract face keypoints with a pre-trained model [6]. Af-

ter that, we fit a simple linear regression model to predict

these keypoints coordinates given the corresponding latent

code. We compute this model’s test loss on the real-world

images from FFHQ 2562 and coin this metric Keypoints

Prediction Loss (KPL). The above procedure is formally de-

scribed in Algorithm 1 in Appendix B. The corresponding

latent codes for the real-world images are obtained by pro-

jecting an image into the corresponding latent space through

gradient descent optimization. We use the standard proto-

col from [40] to do this for both models. KPL is computed

for both Z-space and W-space. For our model, this corre-

sponds to G input noise vectors z and penultimate hidden
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Table 3: Keypoints Prediction Loss (KPL) metric for our

INR-based decoder and StyleGAN2 generator computed on

FFHQ 256 ⇥ 256 dataset for different latent spaces. The

qualitative difference is illustrated on Fig. 4.

Generator KPL (Z) KPL (W) KPL (random)

StyleGAN2 2.1 · 10−4 7.6 · 10−5 4.6 · 10−4

INR-GAN 6.0 · 10−5 5.2 · 10−5 4.7 · 10−4

representations (i.e. hidden representations before the out-

put projection into INR parameter space). For StyleGAN2,

this corresponds to the mapping network’s input and out-

put space. We also compute KPL on top of random vectors

to check that a better performance in keypoints prediction

is not due to their reduced variability. The results of this

experiment are provided in Table 3.

Accelerated inference of lower-resolution images.

Our INR-GAN has a natural capability of generating a low-

resolution sample faster because it can be directly evaluated

at a low-resolution coordinates grid without performing the

full generation. We explore this in Appendix G.

Out-of-the-box superresolution. Our INR-based de-

coder is able to produce images of higher resolution than

it was trained on. For this, we evaluate our model on a

denser coordinates grid. To measure this quantitatively,

we propose UpsampledFID: a variant of FID score where

fake data statistics are computed based on upsampled low-

resolution images. We compare our UpsampledFID score

to three standard upsampling techniques: nearest neighbor,

bilinear, and bicubic interpolation. Fig. 3 demonstrates that

INR-upsampling improves the score by up to 50%.

5. Additional potential of INR-based decoders

In Section 4.2, we explored several exciting properties

of INR-based decoders and tested them in practice. Here,

we highlight their additional potential and leave its explo-

ration for future work.

An ability to backpropagate through pixels positions.

Since coordinate positions (x, y) are transformed via well-

differentiable operations, it gives a possibility to back-

propagate through coordinate positions. This opens a large

range of possible work like using spatial transformer layers

[35] in the generator and not only discriminator. Or produc-

ing a coordinates grid with the discriminator for zooming-in

into specific parts of an image.

Faster inference speed. Since INRs do not use lo-

cal context information during inference, it does not spend

computation on aggregating it as convolutions do. This is

equivalent to using convolutions with a kernel size of 1 and

thus works much faster [29]. Table 1 demonstrates that our

model uses three times fewer MACs for its inference pro-

cess, which is due to ignoring context information.

Parallel pixel computation Non-autoregressive models

like Parallel WaveNet [65, 24] are valued by their ability

to generate an arbitrarily long sequence in parallel, so their

inference speed decreases linearly with more compute be-

ing added. INR-based decoders also have this property due

to their independent pixel generation nature. Convolutional

decoders, in contrast, are forced to use local context during

the inference process, which limits their parallel inference.

Universal decoder architecture One can employ the

same decoder architecture for training a decoder model in

any domain: 2D images, 3D shapes, video, audio, etc.

They would only differ at what coordinates are being passed

as input to the corresponding INR. For 2D images, these

would be (x, y)R2 coordinates, for 2D video, this would be

(x, y, t)R2⇥R+ with the additional timestep t 2 R+ input,

for 3D shapes — (x, y, z) 2 R
3 coordinates, etc. That has

already been partially explored in [51, 74].

Biological plausbility. While convolutional encoders

have a very intimate connection to how a human eye works

[47], convolutional decoders do not have much resemblance

to any human brain mechanism. In contrast, [72] argue that

hypernetworks have a very close relation to how a prefrontal

cortex influences other brain parts. It does so by modulat-

ing the activity in several different areas at once, precisely

how our hypernetwork-based generator applies modulation

to different INR layers.

6. Limitations

The core limitation of INR-based decoders comes from

their strengths: not using spatially common context be-

tween neighboring pixels. Multi-Scale INR architecture

partially alleviates this issue by grounding them on the same

low-resolution representation, but as our experiment with

adding bilinear interpolation demonstrates (see Table 2), it

is not enough. Also, we noticed that the INR-based de-

coders might become too sensitive to high-frequency co-

ordinates features. This may produce “texture” artifacts:

a generated image having a random transparent texture

spanned on it which becomes more noticeable for higher

resolutions.

7. Conclusion

This paper explored the adversarial generation of contin-

uous images represented in the implicit neural representa-

tions (INRs) form. We proposed two principled architec-

tural techniques: factorized multiplicative modulation and

multi-scale INRs, which allowed us to obtain solid state-of-

the-art results in continuous image generation. We explored

several attractive properties of INR-based decoders and dis-

cussed their future potential and limitations.
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