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Abstract

While mesh saliency aims to predict regional importance

of 3D surfaces in agreement with human visual perception

and is well researched in computer vision and graphics, lat-

est work with eye-tracking experiments shows that state-of-

the-art mesh saliency methods remain poor at predicting

human fixations. Cues emerging prominently from these ex-

periments suggest that mesh saliency might associate with

the saliency of 2D natural images. This paper proposes a

novel deep neural network for learning mesh saliency using

image saliency ground truth to 1) investigate whether mesh

saliency is an independent perceptual measure or just a

derivative of image saliency and 2) provide a weakly super-

vised method for more accurately predicting mesh saliency.

Through extensive experiments, we not only demonstrate

that our method outperforms the current state-of-the-art

mesh saliency method by 116% and 21% in terms of linear

correlation coefficient and AUC respectively, but also re-

veal that mesh saliency is intrinsically related with both im-

age saliency and object categorical information. Codes are

available at https://github.com/rsong/MIMO-GAN .

1. Introduction

Mesh saliency, first proposed by the seminal paper of

Lee et al. [16], measures regional importance of 3D surfaces

in accordance with human visual perception. While many

methods [5, 23, 25, 26, 17] for mesh saliency have been

presented since then, recent eye-tracking work [34, 33, 15]

shows that state-of-the-art mesh saliency methods are poor

at predicting human fixations. In particular, Lavoué et al.

[15] found that even a simple centre-bias model, a prior
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widely used for predicting saliency of 2D natural images,

generated better results for various 3D meshes than the

state-of-the-art mesh saliency methods including [16, 26,

19, 17]. Apart from the centre bias, mesh saliency and im-

age saliency also have other characteristics in common. For

instance, it was found that some features such as facial areas

of people or animals always attract human fixations no mat-

ter whether they are expressed by 2D images or 3D meshes.

Image saliency is mainly driven by colour and texture

while the detection of mesh saliency relies largely on object

geometry. But the findings above give us an impression that

despite such a fundamental difference, mesh saliency might

be a derivative of image saliency rather than an independent

perceptual measure. To explore this proposition, we pro-

poses to learn mesh saliency from ground-truth saliency of

general 2D images. In addition, it has been shown that 3D

objects of the same category usually have similar saliency

distributions [2, 15]. One explanation is that the information

vital for object classification is usually also important for

saliency as it can help humans to recognise an object swiftly

without the need for scrutinizing its details [27]. There-

fore, considering that there already exist large-scale public

datasets for image saliency (e.g. SALICON Dataset [10],

MIT Saliency Benchmark [1] and DUT-OMRON Dataset

[38]) and 3D object classification (e.g. ModelNet [37] and

ShapeNet [21]), we present a weakly supervised deep neu-

ral network for mesh saliency trained jointly with saliency

maps of 2D images and category labels of 3D objects.

Importantly, such a weakly supervised method is poten-

tially of broad interest as gathering eye-fixation data for 3D

objects is a notoriously laborious task [12, 34, 33, 15]. To

the best of our knowledge, all existing fixation datasets for

mesh saliency are very small (e.g. 5 objects in [12], 15 ob-

jects in [34], 16 objects in [33] and 32 objects in [15]). The
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consequence of using such a small dataset to train a neural

network that cannot be sufficiently deep (for avoiding over-

fitting) is that it usually failed to generalise across a diver-

sity of objects [33]. In this paper, we shall demonstrate that

with the training data of image saliency and object category

labels, our weakly supervised method accurately predicts

ground-truth fixations of various 3D objects. Specifically,

in the view-dependent set-up, our method outperforms the

state-of-the-art mesh saliency method by 116% and 21% in

terms of linear correlation and AUC respectively on the cur-

rently largest fixation dataset [15] for mesh saliency.

The core of the proposed method is a Multi-Input Multi-

Output Generative Adversarial Network (MIMO-GAN). It

contains two input-output paths: a regression path for pixel-

level saliency prediction and a classification path for object-

level recognition. The two paths essentially enable transfer

learning from image saliency and 3D object classification to

mesh saliency. And, since projected 2D views of 3D meshes

appear highly different from 2D natural scene images, we

propose to use a GAN architecture so that transfer learning

is compelled to minimise the gap between image saliency

and mesh saliency as much as possible.

Overall, the contribution of our work is threefold:

• We propose a novel method for mesh saliency trained

with image saliency and object category labels in a

weakly supervised manner and thus does not need the

expensive collection of human fixations for 3D objects.

• We reveal and validate that 1) image saliency helps

predict mesh saliency even though 2D natural images

appear highly different from projected 2D views of 3D

meshes and 2) mesh saliency also associates with class

membership of meshes.

• We demonstrate that our method significantly out-

performs existing state-of-the-art approaches to mesh

saliency on publicly available datasets in both view-

dependent and independent set-ups.

2. Related work

Mesh saliency has been widely explored in computer vi-

sion and graphics. This section categorises the methods

for mesh saliency into two groups depending on whether

a method is based on handcrafted features or learning.

Mesh saliency via handcrafted features. Early mesh

saliency methods exploited handcrafted geometric features.

Lee et al. [16] computed mesh saliency using a centre-

surround operator on Gaussian-weighted curvatures at mul-

tiple scales. Kim et al. [12] later demonstrated that such

a mechanism has better correlation with human fixations

than both random and curvature-based models. Gal and

Cohen-Or [5] introduced a salient geometric feature based

on curvatures characterizing a local partial shape function-

ally. Shilane and Funkhouser [23] developed a method for

computing salient regions of a 3D surface by describing lo-

cal shape geometry through a Harmonic Shape Descriptor.

Some methods also investigated global handcrafted fea-

tures as saliency depends on global features of geometry

according to some psychological evidence [30, 35, 13]. For

example, Wu et al. [36] proposed an approach based on

the observation that salient features are both locally promi-

nent and globally rare. Song et al. [26] analysed the log-

Laplacian spectrum of meshes and presented a method cap-

turing global information in the spectral domain. Wang et

al. [32] detected mesh saliency using low-rank and sparse

analysis in a feature space which encodes global structure

information of the mesh. Leifman et al. [17] proposed to

detect surface regions of interest by looking for regions that

are distinct both locally and globally where the global con-

sideration is whether the object is ‘limb-like’ or not.

Mesh saliency via learning. Since mesh saliency rea-

sons about human visual perception on 3D data, it is natural

to consider learning saliency from data generated by hu-

man subjects. However, due to the aforementioned training

data problem, existing learning-based methods rely mainly

on shallow learning. For example, Chen et al. [2] learned

a regression model from a small dataset of 400 meshes to

predict the so-called Schelling distribution. It is essentially

a shallow learning scheme using a selection of handcrafted

features. Lau et al. [14] proposed the well-defined concept

of tactile mesh saliency and human subjects tend to give

highly consistent responses in the process of data collection.

Even so, only 150 meshes were collected for both training

and testing. Similar to [14] which proposed a 6-layer toy

network, Wang et al. [33] designed a 5-layer convolutional

neural network (CNN) to predict human eye fixations on 3D

objects as they only collected a set of 16 objects.

It can be seen that due to the concern about overfitting,

existing methods based on supervised learning cannot make

good use of neural networks sufficiently deep to learn well-

generalised salient features. To address this problem, Song

et al. [27] proposed a weakly supervised method for learn-

ing mesh saliency from class membership of meshes. Li

et al. [18] developed an unsupervised method for detecting

distinctive regions on 3D meshes. The two methods avoided

the training relying on vertex-level saliency annotations but

were not evaluated with eye fixation ground truth.

3. Method

The pipeline of our method is illustrated in Fig. 1. In this

section, we first describe each of its components in a piece-

wise manner. Then, we elaborate the implementation as a

whole for both training and inference where each compo-

nent is situated in the context of the complete pipeline.

3.1. Generation of projected 2D images

Multi-view representation of 3D objects has been widely

explored to adapt CNNs to 3D data. Compared to other

8854



Figure 1. The pipeline of our method for generating mesh saliency.

methods for generalising deep learning to non-Euclidean

domains, it shows state-of-the-art performance in various

3D object understanding tasks [28, 20, 11, 7]. In this work,

we assume that each 3D object is upright oriented along the

z-axis and represent it as a set of projected 2D images taken

as input by the MIMO-GAN. Specifically, in the training

stage, we experimented with two multi-view set-ups sug-

gested by [28] and [27], respectively. The former created 12
rendered views for a 3D mesh with the viewpoints subject to

azimuth ∈ {0, 30, . . . , 330} and elevation = 30, where

both azimuth and elevation are measured in degrees. The

latter produced 24 views with the same set of azimuth but

elevation ∈ {−30, 30}. The resolution of the projected

images is fixed to 224× 224, as required by the encoder of

MIMO-GAN, no matter how many vertices the mesh con-

tains. The projected images inherit the category labels of

their corresponding mesh. In the inference stage, a given

3D mesh can be rendered either with designated viewpoints

for predicting view-dependent mesh saliency, or in the way

described above for generating view-independent saliency

computed as the average over the saliency maps of all views.

3.2. MIMO-GAN

Fig. 2 illustrates the architecture of our MIMO-GAN. Its

inputs include projected 2D images of 3D objects annotated

with their category labels and 2D natural images annotated

with pixel-wise saliency maps recording human fixations.

As a weakly supervised network, the MIMO-GAN predicts

pixel-wise saliency maps for projected 2D images based on

the two types of inputs. As we mentioned above, the de-

sign of the MIMO-GAN is motivated by two observations.

First, image saliency and mesh saliency have common char-

acteristics such as centre bias and identical salient regions

on some objects. Second, 3D objects of the same class usu-

ally have similar saliency distributions as the informative

features important for distinguishing a 3D object from oth-

ers belonging to different classes are likely to be detected

as salient. Thus as shown in Fig. 2, after a shared encoder

consisting of typical convolutional blocks, the MIMO-GAN

branches into two paths. One is the classification path end-

ing with the classification loss LC which ensures that the

feature extraction for saliency prediction is subject to object

classification. The other is the saliency path which gener-

ates pixel-wise saliency maps via a decoder and leads to the

saliency loss LS . This path encourages the encoder and de-

coder to produce saliency maps of 2D natural images con-

sistent with the corresponding fixation ground truth.

These two paths hardly impose the consistency between

the saliency of natural images and that of the 2D projected

views of 3D meshes to any extent, and consequently there

is no guarantee that a sufficient amount of desirable char-

acteristics of image saliency are effectively transferred into

mesh saliency through the learning. Hence, a GAN archi-

tecture is further introduced to force the predicted saliency

of projected 2D images of 3D meshes to be indistinguish-

able from that of 2D natural images. Each component of the

MIMO-GAN is elaborated in the following.

Encoder. We employ the convolutional blocks of the

VGG16 network [24] pre-trained on ImageNet as the en-

coder of MIMO-GAN. To establish the classification path,

we add three fully connected (FC) layers on top of the con-

volutional encoder. We also bring in dropout layers next to

the first and the second FC layers respectively to reduce po-

tential overfitting as the entire network already contains a

relatively large number (≈ 24.9M) of trainable parameters.

Decoder/Generator. The decoder of the MIMO-GAN

also acts as the generator that produces monotone saliency

maps (see Fig. 1) with the same dimension as the input im-

ages. It is an expansive path including five up-convolutional

blocks. Except for the first one which only contains an

upsampling layer and a convolutional layer, a typical up-

convolutional block consists of a 2×2 upsampling layer,

a 2×2 convolutional layer that halves the number of fea-

ture channels, a concatenation with a skip-connection to

a particular convolutional layer from the encoder, and one

3×3 convolution, each followed by a ReLU. Note that skip-

connection has been widely used to preserve local features

for image segmentation. In the MIMO-GAN, differing from

most skip-connections, an extra separable convolution is

used to encode the feature map output by a particular con-

volutional layer from the encoder and reduce its number of
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Figure 2. MIMO-GAN architecture. The MIMO-GAN takes as input projected 2D views of 3D objects and natural images, and is trained

with an object classification loss LC , an image saliency loss LS and a GAN loss including a generator loss LG and a discriminator loss

LD . In the inference stage, only the encoder and the decoder/generator are needed.

channels to half of the output dimension of the 2×2 con-

volution. This is because skip-connection applied within

image segmentation focuses significantly on local details

while humans can quickly attend to salient features with-

out a slow process of scrutinising details [9]. Thus in the

MIMO-GAN, the skip-connection via separable convolu-

tion ensures that features corresponding to local details just

have a relatively small contribution to the concatenation.

Discriminator. For natural images with ground-truth

saliency maps provided, the decoder can be trained with the

saliency loss LS , which enables an effective learning of im-

age saliency. However, such saliency maps are not avail-

able for projected 2D views of 3D objects which appear

highly different from natural images as shown in Fig. 2.

This means that a specific mechanism is needed to guide

the learning process of the decoder so that it can also effec-

tively learn the saliency of projected 2D views. Considering

the observation that image saliency and mesh saliency have

some attributes in common, we propose a discriminator to

form a GAN architecture, in order to impose consistency

between the two types of saliency. In other words, although

projected 2D views of 3D objects and natural images are

visually different, the discriminator tends to make the gen-

erated saliency maps of projected views indistinguishable

from those of natural images in the learned feature space.

As shown in Fig. 2, the discriminator consists of four

convolutional blocks and one FC layer activated by the sig-

moid function. In each convolutional block, a convolutional

layer with ReLU activation and stride 2 for downsampling

is followed by an instance normalisation (IN) layer. Exper-

imentally, we found that IN outperforms batch normalisa-

tion. This finding is in accordance with many style transfer

papers [31, 8] suggesting that IN is a good choice for a gen-

erative network as it is more adaptive to individual images.

3.3. 2D-to-3D saliency mapping

Given that MIMO-GAN generates a 2D saliency map

I(V ) for a projected 2D view V of a 3D mesh, we em-

ploy the 2D-to-3D saliency mapping scheme proposed by

Song et al. [27] to output a 3D saliency map. The saliency

Sm(V ) of a 3D vertex m visible in V is computed as

Sm(V ) = exp(1− Z(m))/ exp(1− Ii(V )) (1)

where Ii(V ) denotes the saliency of the pixel i closest to

the 2D projection of m in V . Z(m) is the average of the

normalised distances between m and its 1-ring neighbours,

which reflects the local density of vertices. The rationale of

Eq. (1) is that if the local density around the vertex is low,

then the 2D projection of a 3D vertex is more ambiguous

and thus the 2D-to-3D correspondence is less reliable.
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3.4. Implementation

Training. We first render a mesh representing a 3D ob-

ject as multiple projected 2D images as described in Sec-

tion 3.1 using a standard OpenGL renderer with perspective

projection mode. The strengths of the ambient light, the dif-

fuse light and the specular reflection are set to 0.3, 0.6 and

0 respectively. We apply the light uniformly across each tri-

angular face of the mesh (i.e. flat shading). Using different

illumination models or shading coefficients does not affect

our method due to the invariance of the learned convolu-

tional filters to illumination changes. All projected images

are then printed at 200 dpi, also in the OpenGL mode, and

further resized to the resolution of 224×224. Then we feed

the projected 2D images of a collection of 3D objects and

a set of natural images into the MIMO-GAN. As shown in

Fig. 2, the MIMO-GAN is trained with four loss functions.

LC denotes the loss of object classification based on a

projected 2D view V , calculated as the cross-entropy loss:

LC = −

C∑

c=1

Qc(V ) · log (Pc(V )) (2)

where Q denotes the ground-truth class label of each 3D ob-

ject inherited by its 2D projected views and P is the output

of the final FC layer in the classification path of MIMO-

GAN. Here C = 40 as we trained MIMO-GAN with Mod-

elNet40 [37] which collected 3D objects of 40 classes.

LS denotes the loss for predicting the saliency of a nat-

ural image I containing n pixels, calculated as the L2 loss:

LS =
1

n

n∑

i=1

(S(Ii)−G(E(Ii)))
2

(3)

where S denotes the ground truth saliency map of each nat-

ural image. G and E represent the generator and the en-

coder of the MIMO-GAN respectively.

The GAN loss comprises the generator loss LG and the

discriminator loss LD, calculated as

LG = log(1−D(G(E(V )))) and

LD = − log(D(G(E(I)))− log(1–D(G(E(V ))))
(4)

where D denotes the discriminator of the MIMO-GAN.

The overall loss is a weighted sum of the four losses:

Lall = λ1LC + λ2LS + λ3LG + λ4LD (5)

where λ1, λ2, λ3 and λ4 are set to 0.2, 1, 0.01 and 0.01
respectively through empirical observations.

We trained the MIMO-GAN with learning rate 0.001
through stochastic gradient descent and observed that it usu-

ally converged within 100 epochs.

Inference. Once the MIMO-GAN is trained, we only

need its encoder and decoder for inference as shown in

Fig. 1. First, we produce a set of projected images for a test-

ing mesh with designated viewpoints using the same ren-

dering settings as those in training. Then the projected im-

ages are fed into the MIMO-GAN to infer 2D saliency maps

(output by the layer coloured purple in Fig. 2). Finally, each

2D saliency map is converted into a view-dependent mesh

saliency map by the scheme described in Section 3.3.

Note that our method can also be used to produce view-

independent mesh saliency while human eye fixations de-

pend on the viewpoint. In this set-up, we render a mesh

as multiple projected views as described in Section 3.1 and

generate a 2D saliency map for each of them. After map-

ping these 2D saliency maps to 3D mesh saliency maps, we

compute the view-independent mesh saliency as the average

over the mesh saliency maps across all views.

4. Experimental results

All experiments were conducted on a computer with an

Intel Core i9-9900K CPU, 64GB of RAM and a NVIDIA

RTX 2080Ti GPU. Unless otherwise specified, we use the

24-view set-up for the MIMO-GAN. More experimental re-

sults are available in the supplementary material.

4.1. Training and testing datasets

We train the MIMO-GAN using two publicly available

datasets. One is the Princeton ModelNet40 dataset [37] con-

taining 4, 000 meshes from 40 common object categories

where all meshes are upright oriented by the method pro-

posed in either [4] or [22]. The other is the training set

of the SALICON Dataset [10] comprising 10, 000 natural

scene images with ground-truth saliency annotations.

We select the 3D visual attention (3DVA) dataset [15]

containing 32 meshes for testing. To the best of our knowl-

edge, it is the largest dataset (by the number of 3D objects)

for evaluating mesh saliency methods with ground-truth fix-

ation maps on 3D meshes. In the 3DVA dataset, the fixa-

tions of each mesh are gathered from three designated view-

points and are view-dependent. It is noteworthy that Wang

et al. [33] concluded that “salient features exhibit a ten-

dency to be view-dependent”. Nevertheless, to address the

concern over the performance of our method for predicting

view-independent mesh saliency, we also evaluate it with

the Schelling dataset [2] which provides view-independent

3D interest points selected by human subjects for a collec-

tion of 400 meshes belonging to 20 object categories.

4.2. Evaluation with the 3DVA dataset

Fig. 3 shows the saliency maps of various 3D objects

produced by our method and the corresponding human fix-

ation maps. One observation is that these saliency maps are

highly consistent with the human eye fixations. We can see

that our method typically detects one or two large “blob-

like” areas as salient, which accords with the ground truth.

In comparison, Fig. 4 shows that other methods highlight

disconnected small-scale local features such as the small

rings on the wings of the gargoyle, the ears and the feet

of the horse, and the fingers and the toes of the human. An-

other observation is that some objects of the same class have
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Figure 3. A gallery of mesh saliency detected by our method (top half) with the ground truth fixation maps (provided by the 3DVA dataset

[15]) of the corresponding meshes (bottom half). Warmer colours show higher saliency.

analogous saliency distributions. For instance, facial areas

of human and animal objects are usually detected as salient.

We use linear correlation coefficient (LCC) and area un-

der the ROC curve (AUC) as suggested by [15] to quanti-

tatively measure the similarity between a saliency map pro-

duced by a competing method and a ground truth fixation

map. According to [15], to calculate the AUC scores, the

ground truth fixation maps are thresholded to be converted

into binary maps so that 20% of visible vertices are con-

sidered as fixations. The saliency map is then treated as a

binary classifier of these fixations. The ROC curve repre-

sents the relationship between the probability of false posi-

tives and the probability of true positives and is obtained by

varying the decision threshold on the saliency map.

Tables 1 and 2 show the overall performance of a se-

lection of competing methods for mesh saliency and our

MIMO-GAN with different ablation (see Section 4.4 for de-

tails) and multi-view (see Section 3.1) set-ups on the 3DVA

dataset in terms of LCC and AUC. For LCC, 1 represents

perfect positive linear relation, 0 represents no relation and

−1 represents perfect negative relation. For AUC, 1 repre-

sents a perfect classification while 0.5 represents a random

one. Both metrics demonstrate the overwhelming superior-

ity of our method over all competing methods. It can be

seen that the 24-view set-up outperforms the 12-view set-

up. Adding further views is trivial, however, we found that

our MIMO-GAN with the 24-view set-up already achieved

high performance and using more views cannot further lead

to a significant improvement. Specifically, it outperforms

the current state-of-the-art method (i.e. CfS-CNN [27]) by

116% and 21% in terms of LCC and AUC, respectively.

The quantitative results indicate that 1) mesh saliency that

predicts human visual attention on 3D surfaces might be

perceptually related to 2D image saliency and categorical

information of 3D objects, and 2) our method that combines

the two types of knowledge via a GAN framework for de-

tecting mesh saliency is computationally effective.

We have conducted tests by adding Gaussian noise

with σ = 0.001B, 0.002B and 0.004B respectively to all

meshes in the 3DVA dataset where B is the length of the

diagonal of the bounding box of the mesh. Table. 3 lists the

results of detecting saliency on the noisy meshes using our

method, which demonstrates its robustness against noise.

4.3. Evaluation with the Schelling dataset

Apart from human eye fixations, human-picked 3D inter-

est points have also been used for evaluating mesh saliency

methods [3, 27]. The Schelling dataset [2] collected 3D

interest points by asking people to “select points on the sur-

face of a 3D object likely to be selected by other people”.

To generate a view-independent saliency map from the scat-

tered interest points for quantitative evaluation, we employ

a strategy widely used for evaluating image saliency meth-

ods [1, 10]: we project a Gaussian distribution on a mesh

where each vertex is labelled by either 1 (representing in-

terest point) or 0 (representing non-interest point) and vary

the standard deviation to generate different versions of the

ground truth saliency maps. When we evaluate our method
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Figure 4. Comparisons of mesh saliency detected by different methods. From left to right: Multi-Scale Gaussian [16], Diffusion Wavelets

[6], Spectral Processing [26], Point Clustering [19], Salient Regions [17], CfS-CNN [27], the proposed MIMO-GAN and the ground truth

fixation maps provided by the 3DVA dataset [15]. Comparative results of more objects are available in the supplementary material.

Method mean LCC SD of LCC

Multi-Scale Gaussian [16] 0.131 0.265

Diffusion Wavelets [6] 0.088 0.222

Spectral Processing [26] 0.078 0.253

Point Clustering [19] 0.132 0.300

Salient Regions [17] 0.215 0.245

CfS-CNN [27] 0.226 0.243

MIMO-GAN-A1 0.329 0.254

MIMO-GAN-A2 0.134 0.193

MIMO-GAN-A3 0.477 0.221

MIMO-GAN w/ 12 views 0.451 0.226

MIMO-GAN w/ 24 views 0.489 0.212

Table 1. Performance of mesh saliency methods on the 3DVA

dataset [15] in terms of the mean and the standard deviation (SD)

of linear correlation coefficient (LCC).

on these ground truth maps, we essentially estimate whether

it can detect saliency at different scales.

Note that as demonstrated in [15], Schelling/interest

points and human fixations are not correlated. Although

we do not intend to argue which kind of data is more

suitable for evaluating mesh saliency methods, this means

that a method which performs well on the 3DVA dataset is

likely to have a relatively poor performance on the Schelling

dataset. However, Table 4 demonstrates that our MIMO-

GAN for predicting view-independent mesh saliency is still

the top performing method on the Schelling dataset. In par-

ticular, the results show that compared to other methods, the

MIMO-GAN is effective at detecting saliency at relatively

large scales. This finding is consistent with the qualitative

results shown in Figs. 3 and 4 where our method often high-

lights one or two large areas. We also provide quantitative

evaluation per category in the supplementary material.

Interestingly, Fig. 5 shows that apart from facial areas,

Method mean AUC SD of AUC

Multi-Scale Gaussian [16] 0.593 0.170

Diffusion Wavelets [6] 0.558 0.143

Spectral Processing [26] 0.553 0.154

Point Clustering [19] 0.583 0.183

Salient Regions [17] 0.628 0.149

CfS-CNN [27] 0.643 0.150

MIMO-GAN-A1 0.699 0.137

MIMO-GAN-A2 0.599 0.126

MIMO-GAN-A3 0.763 0.120

MIMO-GAN w/ 12 views 0.741 0.123

MIMO-GAN w/ 24 views 0.780 0.112

Table 2. Performance of mesh saliency methods on the 3DVA

dataset [15] in terms of the mean and the standard deviation (SD)

of area under the ROC curve (AUC).

Noise amount no noise 0.001B 0.002B 0.004B
mean LCC 0.489 0.480 0.472 0.457

mean AUC 0.780 0.768 0.768 0.761

Table 3. Evaluation of the robustness of our method against noise.

our method also tends to concentrate on some long pro-

trusions of 3D objects in a view-independent set-up. This

is because our method computes view-independent mesh

saliency as the average over the saliency maps across all

views as mentioned in the end of Section 3.4. Since long

protrusions are likely to be visible in most views, their

saliency are usually high due to such a ‘visibility bias’,

which might result in poor saliency computation for objects

with many highly occluded regions.

4.4. Is mesh saliency a derivative of image saliency?

In this section, we evaluate different configurations

of MIMO-GAN with the 24-view set-up to understand
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Method σ = 0.1B σ = 0.12B σ = 0.14B σ = 0.16B σ = 0.18B σ = 0.2B
Multi-Scale Gaussian [16] 0.223 0.213 0.202 0.193 0.186 0.179

Diffusion Wavelets [6] 0.101 0.091 0.082 0.074 0.068 0.063

Spectral Processing[26] 0.324 0.322 0.313 0.301 0.293 0.284

Salient Regions [17] 0.437 0.421 0.402 0.376 0.360 0.340

CfS-CNN [27] 0.455 0.457 0.454 0.447 0.439 0.427

MIMO-GAN w/ 24 views 0.447 0.462 0.470 0.472 0.470 0.463

Table 4. Performance of saliency methods on the Schelling dataset [2] in terms of linear correlation coefficient (LCC). σ is the standard

deviation of the Gaussian used to generate the pseudo ground truth. B is the length of the diagonal of the bounding box of the mesh.

Figure 5. View-independent mesh saliency detected by our method

and the human-picked interest points (Schelling points [2]).

whether and to what degree mesh saliency is a derivative

of image saliency. We thus conduct three ablation studies:

(1) Remove the FC layers and the classification loss LC

from the MIMO-GAN so that its training relies only

on the saliency loss and the GAN loss.

(2) Remove the saliency loss LS so that the training relies

only on the classification loss and the GAN loss.

(3) Remove the discriminator as well as the GAN loss in-

cluding the generator loss LG and the discriminator

loss LD so that the training relies only on LC and LS .

With a slight abuse of terminology, the three ablated

versions of MIMO-GAN are named as MIMO-GAN-A1,

MIMO-GAN-A2 and MIMO-GAN-A3 respectively.

According to the quantitative results listed in Tables 1

and 2, we can see that all ablated methods suffer from

a degraded performance compared to the full version of

MIMO-GAN. Among them, MIMO-GAN-A2 is the worst

affected one although it still outperforms most of the com-

peting methods for mesh saliency. In comparison, MIMO-

GAN-A1 performs significantly better than it, which indi-

cates that image saliency has a much greater impact than ob-

ject categorical information on mesh saliency. Particularly,

we can see that MIMO-GAN-A1 which essentially learns

mesh saliency from image saliency already outperforms

all competing methods. This suggests that mesh saliency

which predicts human visual attention on 3D objects de-

pends heavily on image saliency which predicts where hu-

man observers look in natural scene images. However, the

considerable superiority of MIMO-GAN-A3 over MIMO-

GAN-A2 as shown in Tables 1 and 2 demonstrates that cat-

egorical information of 3D objects also brings in a signif-

icant performance gain for mesh saliency on top of image

saliency. One explanation is that the human perception sys-

tem tends to capture the most informative features as salient

[29] since it can help humans to recognise an object swiftly

without the need for scrutinizing all of its details. Thus

we argue that the informative features important for dis-

tinguishing a 3D object from others belonging to different

classes are highly likely to be detected as salient.

Hence, our view is that although the prediction of mesh

saliency benefits substantially from image saliency, it can-

not be regarded as a derivative of image saliency as it is

also influenced by other factors such as object categorical

information which provides useful knowledge largely inde-

pendent of image saliency for mesh saliency.

5. Conclusions

Aiming at the fact that existing methods for mesh

saliency are poor at predicting human fixations on 3D ob-

jects, we propose the MIMO-GAN that combines image

saliency and object category labels to effectively solve this

problem. The MIMO-GAN is trained with publicly avail-

able datasets of image saliency and 3D object classification

in a weakly supervised manner and thus does not require the

expensive collection of fixation data for 3D objects. There-

fore, it is potentially of broad interest in the community.

Importantly, our work reveals and demonstrates that mesh

saliency cannot be simply viewed as a derivative of im-

age saliency although it is significantly influenced by image

saliency. This is because the categorical information of 3D

objects also has a great impact on it. We believe that these

new insights into mesh saliency will further stimulate re-

search on human visual perception for 3D objects and even

scenes that contain multiple objects.
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[15] Guillaume Lavoué, Frédéric Cordier, Hyewon Seo, and

Mohamed-Chaker Larabi. Visual attention for rendered 3d

shapes. Comput. Graph. Forum (Proc. Eurographics), pages

414–421, 2018. 1, 2, 5, 6, 7

[16] Chang Ha Lee, Amitabh Varshney, and David W Jacobs.

Mesh saliency. ACM Trans. Graph. (Proc. SIGGRAPH),

24(3):659–666, 2005. 1, 2, 7, 8

[17] George Leifman, Elizabeth Shtrom, and Ayellet Tal. Surface

regions of interest for viewpoint selection. IEEE Trans. Pat-

tern Anal. Mach. Intell., 38(12):2544–2556, 2016. 1, 2, 7,

8

[18] Xianzhi Li, Lequan Yu, Chi-Wing Fu, Daniel Cohen-Or, and

Pheng-Ann Heng. Unsupervised detection of distinctive re-

gions on 3d shapes. ACM Trans. Graph., 39(5):1–14, 2020.

2

[19] Flora Ponjou Tasse, Jiri Kosinka, and Neil Dodgson. Cluster-

based point set saliency. In Proc. ICCV, pages 163–171,

2015. 1, 7

[20] Charles Ruizhongtai Qi, Hao Su, Matthias Nießner, Angela

Dai, Mengyuan Yan, and Leonidas Guibas. Volumetric and

multi-view CNNs for object classification on 3d data. In

Proc. CVPR, pages 5648–5656, 2016. 3

[21] Manolis Savva, Angel X Chang, and Pat Hanrahan.

Semantically-enriched 3D models for common-sense knowl-

edge. In Proc. CVPR Workshops, pages 24–31, 2015. 1

[22] Nima Sedaghat, Mohammadreza Zolfaghari, Ehsan Amiri,

and Thomas Brox. Orientation-boosted voxel nets for 3d ob-

ject recognition. In Proc. BMVC, 2017. 5

[23] Philip Shilane and Thomas Funkhouser. Distinctive regions

of 3d surfaces. ACM Trans. Graph., 26(2):7, 2007. 1, 2

[24] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In Proc.

ICLR, 2015. 3

[25] Ran Song, Yonghuai Liu, Ralph R. Martin, and Paul L.

Rosin. Saliency-guided integration of multiple scans. In

Proc. CVPR, pages 1474–1481, 2012. 1

[26] Ran Song, Yonghuai Liu, Ralph R. Martin, and Paul L.

Rosin. Mesh saliency via spectral processing. ACM Trans.

on Graph., 33(1), 2014. 1, 2, 7, 8

[27] Ran Song, Yonghuai Liu, and Paul L. Rosin. Mesh

saliency via weakly supervised classification-for-saliency

CNN. IEEE Trans. Vis. Comput. Graph., 21(1):151–164,

2021. 1, 2, 3, 4, 6, 7, 8

[28] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and

Erik G. Learned-Miller. Multi-view convolutional neural

networks for 3d shape recognition. In Proc. ICCV, pages

945–953, 2015. 3

[29] Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise

and provably informative multi-scale signature based on heat

diffusion. In Proc. SGP, pages 1383–1392, 2009. 8

[30] Anne M. Treisman and Garry Gelade. A feature-integration

theory of attention. Cogn. Psychol., 12(1):97–136, 1980. 2

[31] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Im-

proved texture networks: Maximizing quality and diversity

in feed-forward stylization and texture synthesis. In Proc.

CVPR, pages 6924–6932, 2017. 4

[32] Shengfa Wang, Nannan Li, Shuai Li, Zhongxuan Luo,

Zhixun Su, and Hong Qin. Multi-scale mesh saliency based

on low-rank and sparse analysis in shape feature space. Com-

put. Aided Geom. Des., 35:206–214, 2015. 2

[33] Xi Wang, Sebastian Koch, Kenneth Holmqvist, and Marc

Alexa. Tracking the gaze on objects in 3d: how do peo-

ple really look at the bunny? ACM Trans. Graph. (Proc.

SIGGRAPH Asia), 37(6):1–18, 2018. 1, 2, 5

8861



[34] Xi Wang, David Lindlbauer, Christian Lessig, Marianne

Maertens, and Marc Alexa. Measuring the visual salience of

3d printed objects. IEEE Comput. Graph. Appl., 36(4):46–

55, 2016. 1

[35] Jeremy M. Wolfe. Guided search 2.0 a revised model of

visual search. Psychonomic Bulletin & Review, 1(2):202–

238, 1994. 2

[36] Jinliang Wu, Xiaoyong Shen, Wei Zhu, and Ligang Liu.

Mesh saliency with global rarity. Graph. Models, 46:264–

274, 2013. 2

[37] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D

shapenets: A deep representation for volumetric shapes. In

Proc. CVPR, pages 1912–1920, 2015. 1, 5

[38] Chuan Yang, Lihe Zhang, Huchuan Lu, Xiang Ruan, and

Ming-Hsuan Yang. Saliency detection via graph-based man-

ifold ranking. In Proc. CVPR, pages 3166–3173, 2013. 1

8862


