
Bottleneck Transformers for Visual Recognition

Aravind Srinivas1 Tsung-Yi Lin2 Niki Parmar2 Jonathon Shlens2 Pieter Abbeel1 Ashish Vaswani2

1UC Berkeley 2Google Research

{aravind}@cs.berkeley.edu

Abstract

We present BoTNet, a conceptually simple yet powerful

backbone architecture that incorporates self-attention for

multiple computer vision tasks including image classifica-

tion, object detection and instance segmentation. By just

replacing the spatial convolutions with global self-attention

in the final three bottleneck blocks of a ResNet and no other

changes, our approach improves upon the baselines signifi-

cantly on instance segmentation and object detection while

also reducing the parameters, with minimal overhead in la-

tency. Through the design of BoTNet, we also point out how

ResNet bottleneck blocks with self-attention can be viewed as

Transformer blocks. Without any bells and whistles, BoTNet

achieves 44.4% Mask AP and 49.7% Box AP on the COCO

Instance Segmentation benchmark using the Mask R-CNN

framework; surpassing the previous best published single

model and single scale results of ResNeSt [67] evaluated

on the COCO validation set. Finally, we present a simple

adaptation of the BoTNet design for image classification,

resulting in models that achieve a strong performance of

84.7% top-1 accuracy on the ImageNet benchmark while

being up to 1.64x faster in “compute”1 time than the popu-

lar EfficientNet models on TPU-v3 hardware. We hope our

simple and effective approach will serve as a strong baseline

for future research in self-attention models for vision.2

1. Introduction

Deep convolutional backbone architectures [37, 54, 28,

66, 56] have enabled significant progress in image classifi-

cation [52], object detection [17, 40, 21, 20, 50], instance

segmentation [25, 13, 27]. Most landmark backbone archi-

tectures [37, 54, 28] use multiple layers of 3×3 convolutions.

While the convolution operation can effectively capture

local information, vision tasks such as object detection, in-

stance segmentation, keypoint detection require modeling

long range dependencies. For example, in instance segmen-

1Forward and backward propagation for batch size 32
2Please refer to https://arxiv.org/abs/2101.11605 for a

longer version.

Figure 1: Left: A ResNet Bottleneck Block, Right: A Bot-

tleneck Transformer (BoT) block. The only difference is

the replacement of the spatial 3× 3 convolution layer with

Multi-Head Self-Attention (MHSA). The structure of the

self-attention layer is described in Figure 4.

tation, being able to collect and associate scene information

from a large neighborhood can be useful in learning relation-

ships across objects [32]. In order to globally aggregate the

locally captured filter responses, convolution based archi-

tectures require stacking multiple layers [54, 28]. Although

stacking more layers indeed improves the performance of

these backbones [67], an explicit mechanism to model global

(non-local) dependencies could be a more powerful and scal-

able solution without requiring as many layers.

Modeling long-range dependencies is critical to natural

language processing (NLP) tasks as well. Self-attention

is a computational primitive [61] that implements pairwise

entity interactions with a content-based addressing mecha-

nism, thereby learning a rich hierarchy of associative features

across long sequences. This has now become a standard tool

in the form of Transformer [61] blocks in NLP with promi-

nent examples being GPT [46, 5] and BERT [14, 42] models.

A simple approach to using self-attention in vision is to

replace spatial convolutional layers with the multi-head self-

attention (MHSA) layer proposed in the Transformer [61]

(Figure 1). This approach has seen progress on two seem-

ingly different approaches in the recent past. On the one

hand, we have models such as SASA [49], AACN [4],

16519

Figure 2: A taxonomy of deep learning architectures using self-attention for visual recognition. Our proposed architecture

BoTNet is a hybrid model that uses both convolutions and self-attention. The specific implementation of self-attention could

either resemble a Transformer block [61] or a Non-Local block [63] (difference highlighted in Figure 4). BoTNet is different

from architectures such as DETR [10], VideoBERT [55], VILBERT [44], CCNet [34], etc by employing self-attention within

the backbone architecture, in contrast to using them outside the backbone architecture. Being a hybrid model, BoTNet differs

from pure attention models such as SASA [49], LRNet [33], SANet [68], Axial-SASA [31, 62] and ViT [15]. AA-ResNet [4]

also attempted to replace a fraction of spatial convolution channels with self-attention.

SANet [68], Axial-SASA [62], etc that propose to replace

spatial convolutions in ResNet botleneck blocks [28] with

different forms of self-attention (local, global, vector, axial,

etc). On the other hand, we have the Vision Transformer

(ViT) [15], that proposes to stack Transformer blocks [61]

operating on linear projections of non-overlapping patches.

It may appear that these approaches present two different

classes of architectures. We point out that it is not the case.

Rather, ResNet botteneck blocks with the MHSA layer can

be viewed as Transformer blocks with a bottleneck struc-

ture, modulo minor differences such as the residual connec-

tions, choice of normalization layers, etc. (Figure 3). Given

this equivalence, we call ResNet bottleneck blocks with the

MHSA layer as Bottleneck Transformer (BoT) blocks.

Here are a few challenges when using self-attention in

vision: (1) Image sizes are much larger (1024× 1024) in ob-

ject detection and instance segmentation compared to image

classification (224 × 224). (2) The memory and computa-

tion for self-attention scale quadratically with spatial dimen-

sions [58], causing overheads for training and inference.

To overcome these challenges, we consider the following

design: (1) Use convolutions to efficiently learn abstract and

low resolution featuremaps from large images; (2) Use global

(all2all) self-attention to process and aggregate the informa-

tion contained in the featuremaps captured by convolutions.

Such a hybrid design [4] (1) uses existing and well optimized

primitives for both convolutions and all2all self-attention; (2)

can deal with large images efficiently by having convolutions

do the spatial downsampling and letting attention work on

smaller resolutions. Here is a simple practical instantiation

of this hybrid design: Replace only the final three bottle-

neck blocks of a ResNet with BoT blocks without any other

changes. Or in other words, take a ResNet and only replace

the final three 3 × 3 convolutions with MHSA layers (Fig

1, Table 1). This simple change improves the mask AP by

1.2% on the COCO instance segmentation benchmark [40]

over our canonical baseline that uses ResNet-50 in the Mask

R-CNN framework [27] with no hyperparameter differences

and minimal overheads for training and inference. Moving

forward, we call this simple instantiation as BoTNet given

its connections to the Transformer through the BoT blocks.

While we note that there is no novelty in its construction,

we believe the simplicity and performance make it a useful

reference backbone architecture that is worth studying.

Using BoTNet, we demonstrate significantly improved re-

sults on instance segmentation without any bells and whistles

such as Cascade R-CNN [7], FPN changes [41, 19, 43, 57],

hyperparameter changes [56], etc. A few key results from

BoTNet are: (1) Performance gains across various training

configurations (Section 4.1), data augmentations (Section

4.2) and ResNet family backbones (Section 4.4); (2) Signif-

icant boost from BoTNet on small objects (+2.4 Mask AP

and +2.6 Box AP) (Appendix); (3) Performance gains over

Non-Local layers (Section 4.6); (4) Gains that scale well

with larger images resulting in 44.4% mask AP, competitive

with state-of-the-art performance among entries that only

study backbone architectures with modest training schedules

(up to 72 epochs) and no extra data or augmentations.3.

3SoTA is based on https://paperswithcode.com/sota/

instance-segmentation-on-coco-minival.

16520

Lastly, we scale BoTNets, taking inspiration from the

training and scaling strategies in [56, 49, 38, 51, 48, 67, 3],

after noting that BoTNets do not provide substantial gains in

a smaller scale training regime. We design a family of BoT-

Net models that achieve up to 84.7% top-1 accuracy on the

ImageNet validation set, while being upto 1.64x faster than

the popular EfficientNet models in terms of compute time

on TPU-v3 hardware. By providing strong results through

BoTNet, we hope that self-attention becomes a widely used

primitive in future vision architectures.

2. Related Work

A taxonomy of deep learning architectures that employ

self-attention for vision is presented in Figure 2. In this

section, we focus on: (1) Transformer vs BoTNet; (2) DETR

vs BoTNet; (3) Non-Local vs BoTNet.

Figure 3: Left: Canonical view of the Transformer with the

boundaries depicting the definition of a Transformer block as

described in Vaswani et. al [61]. Middle: Bottleneck view

of the Transformer with boundaries depicting what we define

as the Bottleneck Transformer (BoT) block in this work. The

architectural structure that already exists in the Transformer

can be interpreted a ResNet bottleneck block [28] with Multi-

Head Self-Attention (MHSA) [61] with a different notion of

block boundary as illustrated. Right: An instantiation of the

Bottleneck Transformer as a ResNet bottleneck block [28]

with the difference from a canonical ResNet block being the

replacement of 3× 3 convolution with MHSA.

Connection to the Transformer: As the title of the pa-

per suggests, one key message in this paper is that ResNet

bottleneck blocks with Multi-Head Self-Attention (MHSA)

layers can be viewed as Transformer blocks with a bottle-

neck structure. This is visually explained in Figure 3 and

we name this block as Bottleneck Transformer (BoT). We

note that the architectural design of the BoT block is not

our contribution. Rather, we point out the relationship be-

tween MHSA ResNet bottleneck blocks and the Transformer

with the hope that it improves our understanding of archi-

tecture design spaces [47, 48] for self-attention in computer

vision. There are still a few differences aside from the ones

already visible in the figure (residual connections and block

boundaries): (1) Normalization: Transformers use Layer

Normalization [1] while BoT blocks use Batch Normaliza-

tion [35] as is typical in ResNet bottleneck blocks [28]; (2)

Non-Linearities: Transformers use one non-linearity in the

FFN block, while the ResNet structure allows BoT block to

use three non-linearities; (3) Output projections: The MHSA

block in a Transformer contains an output projection while

the MHSA layer (Fig 4) in a BoT block (Fig 1) does not;

(4) We use the SGD with momentum optimizer typically

used in computer vision [28, 27, 22] while Transformers are

generally trained with the Adam optimizer [36, 61, 10, 15].

Connection to DETR: Detection Transformer (DETR)

is a detection framework that uses a Transformer to implicitly

perform region proposals and localization of objects instead

of using an R-CNN [21, 20, 50, 27]. Both DETR and BoT-

Net attempt to use self-attention to improve the performance

on object detection and instance (or panoptic) segmentation.

The difference lies in the fact that DETR uses Transformer

blocks outside the backbone architecture with the motivation

to get rid of region proposals and non-maximal suppression

for simplicity. On the other hand, the goal in BoTNet is to

provide a backbone architecture that uses Transformer-like

blocks for detection and instance segmentation. We are ag-

nostic to the detection framework (be it DETR or R-CNN).

We perform our experiments with the Mask [27] and Faster

R-CNN [50] systems and leave it for future work to integrate

BoTNet as the backbone in the DETR framework. With

visibly good gains on small objects in BoTNet, we believe

there maybe an opportunity to address the lack of gain on

small objects found in DETR, in future (refer to Appendix).

Connection to Non-Local Neural Nets:4 Non-Local

(NL) Nets [63] make a connection between the Transformer

and the Non-Local-Means algorithm [6]. They insert NL

blocks into the final one (or) two blockgroups (c4,c5) in a

ResNet and improve the performance on video recognition

and instance segmentation. Like NL-Nets [63, 8], BoTNet is

a hybrid design using convolutions and global self-attention.

4The replacement vs insertion contrast has previously been pointed out

in AA-ResNet (Bello et. al) [4]. The difference in our work is the complete

replacement as opposed to fractional replacement in Bello et al.

16521

(1) Three differences between a NL layer and a MHSA layer

(illustrated in Figure 4): use of multiple heads, value pro-

jection and position encodings in MHSA; (2) NL blocks

use a bottleneck with channel factor reduction of 2 (instead

of 4 in BoT blocks which adopt the ResNet structure); (3)

NL blocks are inserted as additional blocks into a ResNet

backbone as opposed to replacing existing convolutional

blocks as done by BoTNet. Section 4.6 offers a comparison

between BoTNet, NLNet as well as a NL-like version of

BoTNet where we insert BoT blocks in the same manner as

NL blocks instead of replacing.

3. Method

stage output ResNet-50 BoTNet-50

c1 512× 512 7×7, 64, stride 2 7×7, 64, stride 2

c2 256× 256

3×3 max pool, stride 2 3×3 max pool, stride 2






1×1, 64

3×3, 64

1×1, 256






×3







1×1, 64

3×3, 64

1×1, 256






×3

c3 128× 128







1×1, 128

3×3, 128

1×1, 512






×4







1×1, 128

3×3, 128

1×1, 512






×4

c4 64× 64







1×1, 256

3×3, 256

1×1, 1024






×6







1×1, 256

3×3, 256

1×1, 1024






×6

c5 32× 32







1×1, 512

3×3, 512

1×1, 2048






×3







1×1, 512

MHSA, 512

1×1, 2048






×3

params. 25.5×106 20.8×106

M.Adds 85.4×109 102.98×109

TPU steptime 786.5 ms 1032.66 ms

Table 1: Architecture of BoTNet-50 (BoT50): The only

difference in BoT50 from ResNet-50 (R50) is the use of

MHSA layer (Figure 4) in c5. For an input resolution of

1024× 1024, the MHSA layer in the first block of c5 oper-

ates on 64× 64 while the remaining two operate on 32× 32.

We also report the parameters, multiply-adds (m. adds)

and training time throughput (TPU-v3 steptime on a v3-8

Cloud-TPU). BoT50 has only 1.2x more m.adds. than R50.

The overhead in training throughout is 1.3x. BoT50 also has

1.2x fewer parameters than R50. While it may appear that it

is simply the aspect of performing slightly more computa-

tions that might help BoT50 over the baseline, we show that

it is not the case in Section 4.4.

BoTNet by design is simple: replace the final three spa-

tial (3× 3) convolutions in a ResNet with Multi-Head Self-

Attention (MHSA) layers that implement global (all2all)

self-attention over a 2D featuremap (Fig 4). A ResNet typ-

ically has 4 stages (or blockgroups) commonly referred to

as [c2,c3,c4,c5] with strides [4,8,16,32] relative

to the input image, respectively. Stacks [c2,c3,c4,c5]

consist of multiple bottleneck blocks with residual connec-

tions (e.g, R50 has [3,4,6,3] bottleneck blocks).

H x W x d H x W x dH x W x d

H*W x d

H x 1 x d 1 x W x d

H*W x H*W H*W x H*W

z

H*W x H*W

H x W x d

softmax

Rh

H x W x d

Rw

Self-Attention Layer

WV : 1 x 1

H x W x d

WK : 1 x 1WQ : 1 x 1

x

qr k v

qkTqrT
content-contentcontent-position

Figure 4: Multi-Head Self-Attention (MHSA) layer used

in the BoT block. While we use 4 heads, we do not show

them on the figure for simplicity. all2all attention is

performed on a 2D featuremap with split relative position

encodings Rh and Rw for height and width respectively. The

attention logits are qkT + qrT where q, k, r represent query,

key and position encodings respectively (we use relative dis-

tance encodings [53, 4, 49]).
⊕

and
⊗

represent element

wise sum and matrix multiplication respectively, while 1× 1
represents a pointwise convolution. Along with the use of

multiple heads, the highlighted blue boxes (position encod-

ings and the value projection are the only three elements that

are not present in the Non-Local Layer [63, 65].

Approaches that use self-attention throughout the back-

bone [49, 4, 68, 15] are feasible for input resolutions

(224 × 224 (for classification) and 640 × 640 (for detec-

tion experiments in SASA [49])) considered in these papers.

Our goal is to use attention in more realistic settings of high

performance instance segmentation models, where typically

images of larger resolution (1024 × 1024) are used. Con-

sidering that self-attention when performed globally across

n entities requires O(n2d) memory and computation [61],

we believe that the simplest setting that adheres to the above

factors would be to incorporate self-attention at the low-

est resolution featuremaps in the backbone, ie, the residual

blocks in the c5 stack. The c5 stack in a ResNet backbone

typically uses 3 blocks with one spatial 3 × 3 convolution

in each. Replacing them with MHSA layers forms the basis

of the BoTNet architecture. The first block in c5 uses a

3× 3 convolution of stride 2 while the other two use a stride

of 1. Since all2all attention is not a strided operation,

we use a 2× 2 average-pooling with a stride 2 for the first

BoT block. The BoTNet architecture is described in Table 1

and the MHSA layer is presented in Figure 4. The strided

16522

version of the BoT block is presented in the Appendix.

Relative Position Encodings: In order to make the atten-

tion operation position aware, Transformer based architec-

tures typically make use of a position encoding [61]. It has

been observed lately that relative-distance-aware position

encodings [53] are better suited for vision tasks [4, 49, 68].

This can be attributed to attention not only taking into ac-

count the content information but also relative distances

between features at different locations, thereby, being able

to effectively associate information across objects with po-

sitional awareness. In BoTNet, we adopt the 2D relative

position self-attention implementation from [49, 4].

4. Experiments

We study the benefits of BoTNet for instance segmen-

tation and object detection. We perform a thorough abla-

tion study of various design choices through experiments

on the COCO dataset [40]. We report the standard COCO

metrics including the APbb (averaged over IoU thresholds),

APbb
50, APbb

75, APmk; APmk
50 , APmk

75 for box and mask respec-

tively. As is common practice these days, we train using

the COCO train set and report results on the COCO val

(or minival) set as followed in Detectron [22]5. Our ex-

periments are based on the Google Cloud TPU detection

codebase6. We run all the baselines and ablations with

the same codebase. Unless explicitly specified, our train-

ing infrastructure uses v3-8 Cloud-TPU which contains

8 cores with 16 GB memory per core. We train with the

bfloat16 precision and cross-replica batch normaliza-

tion [35, 64, 27, 22, 45] using a batch size of 64.

4.1. BoTNet improves over ResNet on COCO In­
stance Segmentation with Mask R­CNN

We consider the simplest and most widely used setting:

ResNet-507 backbone with FPN8. We use images of resolu-

tion 1024× 1024 with a multi-scale jitter of [0.8, 1.25] (scal-

ing the image dimension between 820 and 1280, in order to

be consistent with the Detectron setting of using 800×1300).

In this setting, we benchmark both the ResNet-50 (R50) and

BoT ResNet-50 (BoT50) as the backbone architectures for

multiple training schedules: 1x: 12 epochs, 2x: 24 epochs,

3x: 36 epochs, 6x: 72 epochs9, all using the same hyper-

5train - 118K images, val - 5K images
6https://github.com/tensorflow/tpu/tree/master/

models/official/detection
7We use the ResNet backbones pre-trained on ImageNet classification as

is common practice. For BoTNet, the replacement layers are not pre-trained

but randomly initialized for simplicity; the remaining layers are initialized

from a pre-trained ResNet.
8FPN refers to Feature Pyramid Network [39]. We use it in every

experiment we report results on, and our FPN levels from 2 to 6 (p2 to p6)

similar to Detectron [22].
91x, 2x, 3x and 6x convention is adopted from MoCo [26].

Backbone epochs APbb APmk

R50 12 39.0 35.0

BoT50 12 39.4 (+ 0.4) 35.3 (+ 0.3)

R50 24 41.2 36.9

BoT50 24 42.8 (+ 1.6) 38.0 (+ 1.1)

R50 36 42.1 37.7

BoT50 36 43.6 (+ 1.5) 38.9 (+ 1.2)

R50 72 42.8 37.9

BoT50 72 43.7 (+ 0.9) 38.7 (+ 0.8)

Table 2: Comparing R50 and BoT50 under the 1x (12

epochs), 3x (36 epochs) and 6x (72 epochs) settings, trained

with image resolution 1024× 1024 and multi-scale jitter of

[0.8, 1.25].

parameters for both the backbones across all the training

schedules (Table 2). We clearly see that BoT50 is a signifi-

cant improvement on top of R50 barring the 1x schedule (12

epochs). This suggests that BoT50 warrants longer training

in order to show significant improvement over R50. We also

see that the improvement from BoT50 in the 6x schedule (72

epochs) is worse than its improvement in the 3x schedule

(32 epochs). This suggests that training much longer with

the default scale jitter hurts. We address this by using a more

aggressive scale jitter (Section 4.2).

4.2. Scale Jitter helps BoTNet more than ResNet

Backbone jitter APbb APmk

R50 [0.8, 1.25] 42.8 37.9

BoT50 [0.8, 1.25] 43.7 (+ 0.9) 38.7 (+ 0.8)

R50 [0.5, 2.0] 43.7 39.1

BoT50 [0.5, 2.0] 45.3 (+ 1.8) 40.5 (+ 1.4)

R50 [0.1, 2.0] 43.8 39.2

BoT50 [0.1, 2.0] 45.9 (+ 2.1) 40.7 (+ 1.5)

Table 3: Comparing R50 and BoT50 under three settings of

multi-scale jitter, all trained with image resolution 1024×
1024 for 72 epochs (6x training schedule).

In Section 4.1, we saw that training much longer (72

epochs) reduced the gains for BoT50. One way to address

this is to increase the amount of multi-scale jitter which has

been known to improve the performance of detection and

segmentation systems [16, 18]. Table 3 shows that BoT50

is significantly better than R50 (+ 2.1% on APbb and +

1.7% on APmk) for multi-scale jitter of [0.5, 2.0], while also

showing significant gains (+ 2.2% on APbb and + 1.6% on

APmk) for scale jitter of [0.1, 2.0], suggesting that BoTNet

(self-attention) benefits more from extra augmentations such

as multi-scale jitter compared to ResNet (pure convolutions).

16523

4.3. Relative Position Encodings Boost Performance

BoTNet uses relative position encodings [53]. We present

an ablation for the use of relative position encodings by

benchmarking the individual gains from content-content in-

teraction (qkT) and content-position interaction (qrT) where

q, k, r represent the query, key and relative position encod-

ings respectively. The ablations (Table 4) are performed

with the canonical setting10. We see that the gains from qrT

and qkT are complementary with qrT more important, ie,

qkT standalone contributes to 0.6% APbb and 0.6% APmk

improvement over the R50 baseline, while qrT standalone

contributes to 1.0% APbb and 0.7 % APmk improvement.

When combined together (qkT + qrT), the gains on both

APbb and APmk are additive (1.5% and 1.2% respectively).

We also see that using absolute position encodings (qrTabs)

does not provide as much gain as relative. This suggests that

introducing relative position encodings into architectures

like DETR [10] is an interesting direction for future work.

Backbone Att. Type APbb APmk

R50 - 42.1 37.7

BoT50 qkT 42.7 (+ 0.6) 38.3 (+ 0.6)

BoT50 qrTrelative 43.1 (+ 1.0) 38.4 (+ 0.7)

BoT50 qkT + qrTrelative 43.6 (+ 1.5) 38.9 (+ 1.2)

BoT50 qkT + qrTabs 42.5 (+ 0.4) 38.1 (+ 0.4)

Table 4: Ablation for Relative Position Encoding: Gains

from the two types of interactions in the MHSA layers,

content-content (qkT) and content-position (qrT).

4.4. BoTNet improves backbones in ResNet Family

How well does the replacement setup of BoTNet work

for other backbones in the ResNet family? Table 5 presents

the results for BoTNet with R50, R101, and R152. All

these experiments use the canonical training setting (refer

to footnote in 4.3). These results demonstrate that BoTNet

is applicable as a drop-in replacement for any ResNet back-

bone. Note that BoT50 is better than R101 (+ 0.3% APbb,

+ 0.5% APmk) while it is competitive with R152 on APmk.

Replacing 3 spatial convolutions with all2all attention

gives more improvement in the metrics compared to stacking

50 more layers of convolutions (R101), and is competitive

with stacking 100 more layers (R152), supporting our initial

hypothesis that long-range dependencies are better captured

through attention than stacking convolution layers.11

10res:1024x1024, 36 epochs (3x schedule),

multi-scale jitter:[0.8, 1.25]
11Note that while one may argue that the improvements of BoT50 over

R50 could be attributed to having 1.2x more M. Adds, BoT50 (121 ×

10
9 M.Adds) is also better than R101 (162.99 × 10

9 B M. Adds and

is competitive with R152 (240.56 × 10
9 M. Adds) despite performing

significantly less computation.

Backbone APbb APmk

R50 42.1 37.7

BoT50 43.6 (+ 1.5) 38.9 (+ 1.2)

R101 43.3 38.4

BoT101 45.5 (+ 2.2) 40.4 (+ 2.0)

R152 44.2 39.1

BoT152 46.0 (+ 1.8) 40.6 (+ 1.5)

Table 5: Comparing R50, R101, R152, BoT50, BoT101 and

BoT152; all 6 setups using the canonical training schedule of

36 epochs, 1024×1024 images, multi-scale jitter [0.8, 1.25].

4.5. BoTNet scales well with larger images

We benchmark BoTNet as well as baseline ResNet when

trained on 1280 × 1280 images in comparison to 1024 ×

1024 using the best config: multi-scale jitter of [0.1, 2.0] and

training for 72 epochs. Results are presented in Tables 6

and 8. Results in Table 6 suggest that BoTNet benefits from

training on larger images for all of R50, R101 and R152.

BoTNet trained on 1024× 1024 (leave alone 1280× 1280)

is significantly better than baseline ResNet trained on 1280×
1280. Further, BoT200 trained with 1280× 1280 achieves a

APbb of 49.7% and APmk of 44.4%. We believe this result

highlights the power of self-attention, in particular, because

it has been achieved without any bells and whistles such as

modified FPN [41, 19, 16, 57], cascade RCNN [7], etc. This

result surpasses the previous best published single model

single scale instance segmentation result from ResNeSt [67]

evaluated on the COCO minival (44.2% APmk).

Backbone res APbb APmk

R50 1280 44.0 39.5

BoT50 1024 45.9 (+ 1.9) 40.7 (+ 1.2)

BoT50 1280 46.1 (+ 2.1) 41.2 (+ 1.8)

R101 1280 46.4 41.2

BoT101 1024 47.4 (+ 1.0) 42.0 (+ 0.8)

BoT101 1280 47.9 (+ 1.5) 42.4 (+ 1.2)

Table 6: All the models are trained for 72 epochs with a

multi-scale jitter of [0.1, 2.0].

4.6. Comparison with Non­Local Neural Networks

How does BoTNet compare to Non-Local Neural Net-

works? NL ops are inserted into the c4 stack of a ResNet

backbone between the pre-final and final bottleneck blocks.

This adds more parameters to the model, whereas BoTNet

ends up reducing the model parameters (Table 5). In the

NL mould, we add ablations where we introduce BoT block

in the exact same manner as the NL block. We also run an

16524

Backbone Change in backbone APbb APmk

R50 - 42.1 37.7

R50 + NL [63] + 1 NL block in c4 43.1 38.4

R50 + BoT (c4) + 1 BoT block in c4 43.7 38.9

R50 + BoT (c4, c5) + 2 BoT blocks in c4,c5 44.9 39.7

BoT50 Replacement in c5 43.6 38.9

Table 7: Comparison between BoTNet and Non-Local (NL)

Nets: All models trained for 36 epochs with image size

1024× 1024, jitter [0.8, 1.25].

Backbone APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

BoT152 49.5 71.0 54.2 43.7 68.2 47.4

BoT200 49.7 71.3 54.6 44.4 68.9 48.2

Table 8: BoT152 and BoT200 trained for 72 epochs with a

multi-scale jitter of [0.1, 2.0].

ablation with the insertion of two BoT blocks, one each in

the c4,c5 stacks. Results are presented in Table 7. Adding

a NL improves APbb by 1.0 and APbb by 0.7, while adding a

BoT block gives +1.6 APbb and +1.2 APmk showing that BoT

block design is better than NL. Further, BoT-R50 (which

replaces instead of adding new blocks) provides +1.5 APbb

and + 1.2 APmk, as good as adding another BoT block and

better than adding one additional NL block.

4.7. Image Classification on ImageNet

4.7.1 BoTNet-S1 architecture

While we motivated the design of BoTNet for detection and

segmentation, it is a natural question to ask whether the

BoTNet architecture design also helps improve the image

classification performance on the ImageNet [52] benchmark.

Prior work [65] has shown that adding Non-Local blocks

to ResNets and training them using canonical settings does

not provide substantial gains. We observe a similar find-

ing for BoTNet-50 when contrasted with ResNet-50, with

both models trained with the canonical hyperparameters for

ImageNet [48]: 100 epochs, batch size 1024, weight decay

1e-4, standard ResNet data augmentation, cosine learning

rate schedule (Table 9). BoT50 does not provide significant

gains over R50 on ImageNet though it does provide the bene-

fit of reducing the parameters while maintaining comparable

computation (M.Adds).

A simple method to fix this lack of gain is to take advan-

tage of the image sizes typically used for image classification.

In image classification, we often deal with much smaller im-

age sizes (224 × 224) compared to those used in object

detection and segmentation (1024×1024). The featuremaps

on which the BoT blocks operate are hence much smaller

(e.g 14× 14, 7× 7) compared to those in instance segmen-

tation and detection (e.g 64× 64, 32× 32). With the same

number of parameters, and, without a significant increase

in computation, the BoTNet design in the c5 blockgroup

can be changed to uniformly use a stride of 1 in all the final

MHSA layers. We call this design as BoTNet-S1 (S1 to

depict stride 1 in the final blockgroup). We note that this ar-

chitecture is similar in design to the hybrid models explored

in Vision Transformer (ViT) [15] that use a ResNet up to

stage c4 prior to stacking Transformer blocks. The main

difference between BoTNet-S1 and the hybrid ViT models

lies in the use of BoT blocks as opposed to regular Trans-

former blocks (other differences being normalization layer,

optimizer, etc as mentioned in the contrast to Transformer in

Related Work (Sec. 2). The architectural distinction amongst

ResNet, BoTNet and BoTNet-S1, in the final blockgroup, is

visually explained in the Appendix). The strided BoT block

is visually explained in the Appendix.

4.7.2 Evaluation in the standard training setting

We first evaluate this design for the 100 epoch setting along

with R50 and BoT50. We see that BoT-S1-50 improves on

top of R50 by 0.9% in the regular setting (Table 9). This

improvement does however come at the cost of more compu-

tation (m.adds). Nevertheless, the improvement is a promis-

ing signal for us to design models that scale well with larger

images and improved training conditions that have become

more commonly used since EfficientNets [56].

Backbone M.Adds Params top-1 acc.

R50 3.86G 25.5M 76.8

BoT50 3.79G 20.8M 77.0 (+0.2)

BoT-S1-50 4.27G 20.8M 77.7 (+ 0.9)

Table 9: ImageNet results in regular training setting: 100

epochs, batch size 1024, weight decay 1e-4, standard ResNet

augmentation, for all three models.

4.7.3 Effect of data augmentation and longer training

We saw from our instance segmentation experiments that

BoTNet and self-attention benefit more from regularization

such as data augmentation (in the case of segmentation, in-

creased multi-scale jitter) and longer training. It is natural

to expect that the gains from BoT and BoT-S1 could im-

prove when training under an improved setting: 200 epochs,

batch size 4096, weight decay 8e-5, RandAugment (2 layers,

magnitude 10), and label smoothing of 0.1. In line with our

intuition, the gains are much more significant in this setting

for both BoT50 (+ 0.6%) and BoT-S1-50 (+ 1.4%) compared

to the baseline R50 (Table 10).

16525

Backbone top-1 acc. top-5 acc.

R50 77.7 93.9

BoT50 78.3 (+ 0.6) 94.2 (+ 0.3)

BoT-S1-50 79.1 (+ 1.4) 94.4 (+ 0.5)

Table 10: ImageNet results in an improved training setting:

200 epochs, batch size 4096, weight decay 8e-5, RandAug-

ment (2 layers, magnitude 10), and label smoothing of 0.1

4.7.4 Scaling BoTNets

0 200 400 600 800 1000 1200 1400
TPU-v3 Compute Steptime for Batch Size 32 (milliseconds)

81.0

81.5

82.0

82.5

83.0

83.5

84.0

84.5

85.0

To
p-

1
A

cc
ur

ac
y

(%
)

T3

T4

T5

T6

T7

B3

B4

B5

B6

B7

B7-RA

S5

S3

S2

S4

ViT Regularized (DeiT-384)

T7-320

BoTNets (T)
EfficientNets (B)
SENets (S)

Figure 5: All backbones along with ViT and DeiT summa-

rized in the form of scatter-plot and Pareto curves. SENets

and BoTNets were trained while the accuracy of other mod-

els have been reported from corresponding papers.

The previous ablations show the BoNets performance

with a ResNet-50 backbone and 224× 224 image resolution.

Here we study BoTNets when scaling up the model capacity

and image resolution. There have been several works improv-

ing the performance of ConvNets on ImageNet [67, 56, 3].

Bello et al. [3] recently propose scaling strategies that mainly

increase model depths and increase the image resolutions

much slower compared to the compound scaling rule pro-

posed in EfficientNets [56]. We use similar scaling rules

and design a family of BoTNets. The details of model

depth and image resolutions are in the Appendix. We com-

pare to the SENets baseline to understand the impact of the

BoT blocks. The BoTNets and SENets experiments are per-

formed under the same training settings (e.g., regularization

and data augmentation). We additionally show EfficientNet

and DeiT [60] (regularized version of ViT [15])12 to under-

stand the performance of BoTNets compared with popular

12ViT refers to Vision Transformer [15], while DeiT refers to Data-

Efficient Image Transformer [60]. DeiT can be viewed as a regularized

version of ViT with augmentations, better training hyperparameters tuned

for ImageNet, and knowledge distillation [30]. We do not compare to

the distilled version of DeiT since it’s an orthogonal axis of improvement

applicable to all models.

ConvNets and Transformer models. EfficientNets and DeiT

are trained under strong data augmentation, model regular-

ization, and long training schedules, similar to the training

settings of BoTNets in the experiments.

ResNets and SENets are strong baselines until 83%

top-1 accuracy. ResNets and SENets achieve strong perfor-

mance in the improved EfficientNet training setting. BoT-

Nets T3 and T4 do not outperform SENets, while T5 does

perform on par with S4. This suggests that pure convo-

lutional models such as ResNets and SENets are still the

best performing models until an accuracy regime of 83%.

BoTNets scale better beyond 83% top-1 accuracy. While

SENets are a powerful model class outperforms BoTNets

(up to T4), we found gains to diminish beyond SE-350 (350

layer SENet described in Appendix) trained with image size

384. This model is referred to as S5 and achieves 83.8%

top-1 accuracy. On the other hand, BoTNets scale well to

larger image sizes (corroborating with our results in instance

segmentation when the gains from self-attention were much

more visible for larger images). In particular, T7 achieves

84.7% top-1 acc., matching the accuracy of B7-RA, with a

1.64x speedup in efficiency. BoTNets perform better than

ViT-regularized (DeiT-384), showing the power of hybrid

models that make use of both convolutions and self-attention

compared to pure attention models on ImageNet-1K.

5. Conclusion

The design of vision backbone architectures that use

self-attention is an exciting topic. We hope that our

work helps in improving the understanding of architec-

ture design in this space. Incorporating self-attention for

other computer vision tasks such as keypoint detection [9]

and 3D shape prediction [23]; studying self-attention ar-

chitectures for self-supervised learning in computer vi-

sion [29, 26, 59, 11, 24, 12]; and scaling to much larger

datasets such as JFT, YFCC and Instagram, are ripe avenues

for future research. Comparing to, and incorporating al-

ternatives to self-attention such as lambda-layers [2] is an

important future direction as well.

6. Acknowledgements

We thank Ilija Radosavovic for several useful discus-

sions; Pengchong Jin and Xianzhi Du for help with the

TF Detection codebase; Irwan Bello, Barret Zoph, Neil

Houlsby, Alexey Dosovitskiy for feedback. We thank Zak

Stone for extensive compute support throughout this project

the through TFRC program providing Google Cloud TPUs

(https://www.tensorflow.org/tfrc).

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,

16526

2016.

[2] Irwan Bello. Lambdanetworks: Modeling long-range inter-

actions without attention. In International Conference on

Learning Representations, 2021.

[3] Irwan Bello, William Fedus, Xianzhi Du, Ekin D. Cubuk,

Aravind Srinivas, Tsung-Yi Lin, Jonathon Shlens, and Barret

Zoph. Revisiting ResNets: Improved Training and Scaling

Strategies, 2021.

[4] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens,

and Quoc V Le. Attention augmented convolutional networks.

In Proceedings of the IEEE International Conference on Com-

puter Vision, pages 3286–3295, 2019.

[5] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Sub-

biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-

tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.

Language models are few-shot learners. arXiv preprint

arXiv:2005.14165, 2020.

[6] Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local

algorithm for image denoising. In 2005 IEEE Computer Soci-

ety Conference on Computer Vision and Pattern Recognition

(CVPR’05), volume 2, pages 60–65. IEEE, 2005.

[7] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving

into high quality object detection. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages

6154–6162, 2018.

[8] Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, and Han

Hu. Gcnet: Non-local networks meet squeeze-excitation net-

works and beyond. In Proceedings of the IEEE International

Conference on Computer Vision Workshops, pages 0–0, 2019.

[9] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.

Realtime multi-person 2d pose estimation using part affinity

fields. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 7291–7299, 2017.

[10] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-

to-end object detection with transformers. arXiv preprint

arXiv:2005.12872, 2020.

[11] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. arXiv preprint arXiv:2002.05709,

2020.

[12] Xinlei Chen and Kaiming He. Exploring simple siamese

representation learning. arXiv preprint arXiv:2011.10566,

2020.

[13] Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware se-

mantic segmentation via multi-task network cascades. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3150–3158, 2016.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. BERT: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is

worth 16x16 words: Transformers for image recognition at

scale, 2020.

[16] Xianzhi Du, Tsung-Yi Lin, Pengchong Jin, Golnaz Ghiasi,

Mingxing Tan, Yin Cui, Quoc V Le, and Xiaodan Song.

Spinenet: Learning scale-permuted backbone for recognition

and localization. arXiv preprint arXiv:1912.05027, 2019.

[17] Mark Everingham, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The pascal visual object

classes (voc) challenge. International journal of computer

vision, 88(2):303–338, 2010.

[18] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-

Yi Lin, Ekin D. Cubuk, Quoc V. Le, and Barret Zoph. Simple

copy-paste is a strong data augmentation method for instance

segmentation, 2020.

[19] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn:

Learning scalable feature pyramid architecture for object de-

tection. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 7036–7045, 2019.

[20] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-

national conference on computer vision, pages 1440–1448,

2015.

[21] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages

580–587, 2014.

[22] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr

Dollár, and Kaiming He. Detectron, 2018.

[23] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh

r-cnn. In Proceedings of the IEEE International Conference

on Computer Vision, pages 9785–9795, 2019.

[24] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin

Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Do-

ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-

mad Gheshlaghi Azar, et al. Bootstrap your own latent: A

new approach to self-supervised learning. arXiv preprint

arXiv:2006.07733, 2020.

[25] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Ji-

tendra Malik. Simultaneous detection and segmentation. In

European Conference on Computer Vision, pages 297–312.

Springer, 2014.

[26] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual repre-

sentation learning, 2019.

[27] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In ICCV, 2017.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[29] Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali

Razavi, Carl Doersch, SM Eslami, and Aaron van den Oord.

Data-efficient image recognition with contrastive predictive

coding. arXiv preprint arXiv:1905.09272, 2019.

[30] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015.

[31] Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim

Salimans. Axial attention in multidimensional transformers.

arXiv preprint arXiv:1912.12180, 2019.

16527

[32] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen

Wei. Relation networks for object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3588–3597, 2018.

[33] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local

relation networks for image recognition. In Proceedings of the

IEEE International Conference on Computer Vision, pages

3464–3473, 2019.

[34] Zilong Huang, Xinggang Wang, Lichao Huang, Chang Huang,

Yunchao Wei, and Wenyu Liu. Ccnet: Criss-cross attention

for semantic segmentation. In Proceedings of the IEEE In-

ternational Conference on Computer Vision, pages 603–612,

2019.

[35] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015.

[36] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-

agenet classification with deep convolutional neural networks.

In NeurIPS, 2012.

[38] Jungkyu Lee, Taeryun Won, Tae Kwan Lee, Hyemin Lee,

Geonmo Gu, and Kiho Hong. Compounding the performance

improvements of assembled techniques in a convolutional

neural network. arXiv preprint arXiv:2001.06268, 2020.

[39] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages

2117–2125, 2017.

[40] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014.

[41] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path

aggregation network for instance segmentation. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 8759–8768, 2018.

[42] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar

Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-

moyer, and Veselin Stoyanov. Roberta: A robustly optimized

bert pretraining approach. arXiv preprint arXiv:1907.11692,

2019.

[43] Yudong Liu, Yongtao Wang, Siwei Wang, TingTing Liang,

Qijie Zhao, Zhi Tang, and Haibin Ling. Cbnet: A novel

composite backbone network architecture for object detection.

arXiv preprint arXiv:1909.03625, 2019.

[44] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert:

Pretraining task-agnostic visiolinguistic representations for

vision-and-language tasks. In Advances in Neural Information

Processing Systems, pages 13–23, 2019.

[45] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu

Zhang, Kai Jia, Gang Yu, and Jian Sun. Megdet: A large mini-

batch object detector. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 6181–

6189, 2018.

[46] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario

Amodei, and Ilya Sutskever. Language models are unsuper-

vised multitask learners. OpenAI Blog, 1(8):9, 2019.

[47] Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo,

and Piotr Dollár. On network design spaces for visual recog-

nition. In Proceedings of the IEEE International Conference

on Computer Vision, pages 1882–1890, 2019.

[48] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaim-

ing He, and Piotr Dollár. Designing network design spaces.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 10428–10436, 2020.

[49] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan

Bello, Anselm Levskaya, and Jonathon Shlens. Stand-

alone self-attention in vision models. arXiv preprint

arXiv:1906.05909, 2019.

[50] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In NeurIPS, 2015.

[51] Tal Ridnik, Hussam Lawen, Asaf Noy, Emanuel Ben Baruch,

Gilad Sharir, and Itamar Friedman. Tresnet: High perfor-

mance gpu-dedicated architecture. In Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer

Vision, pages 1400–1409, 2021.

[52] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International journal of

computer vision, 115(3):211–252, 2015.

[53] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-

attention with relative position representations. arXiv preprint

arXiv:1803.02155, 2018.

[54] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[55] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and

Cordelia Schmid. Videobert: A joint model for video and

language representation learning. In Proceedings of the IEEE

International Conference on Computer Vision, pages 7464–

7473, 2019.

[56] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. arXiv preprint

arXiv:1905.11946, 2019.

[57] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficient-

det: Scalable and efficient object detection. arXiv preprint

arXiv:1911.09070, 2019.

[58] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Met-

zler. Efficient transformers: A survey. arXiv preprint

arXiv:2009.06732, 2020.

[59] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive

multiview coding. arXiv preprint arXiv:1906.05849, 2019.

[60] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco

Massa, Alexandre Sablayrolles, and Hervé Jégou. Training

data-efficient image transformers and distillation through at-

tention, 2021.

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In Advances in neural

information processing systems, pages 5998–6008, 2017.

16528

[62] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam,

Alan Yuille, and Liang-Chieh Chen. Axial-deeplab: Stand-

alone axial-attention for panoptic segmentation. arXiv

preprint arXiv:2003.07853, 2020.

[63] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming

He. Non-local neural networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages

7794–7803, 2018.

[64] Yuxin Wu and Kaiming He. Group normalization. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 3–19, 2018.

[65] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L

Yuille, and Kaiming He. Feature denoising for improving ad-

versarial robustness. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 501–509,

2019.

[66] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1492–1500,

2017.

[67] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi

Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Mueller, R.

Manmatha, Mu Li, and Alexander Smola. Resnest: Split-

attention networks, 2020.

[68] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring

self-attention for image recognition, 2020.

16529

