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Abstract

One-shot neural architecture search (NAS) methods sig-

nificantly reduce the search cost by considering the whole

search space as one network, which only needs to be trained

once. However, current methods select each operation in-

dependently without considering previous layers. Besides,

the historical information obtained with huge computation

costs is usually used only once and then discarded. In this

paper, we introduce a sampling strategy based on Monte

Carlo tree search (MCTS) with the search space modeled

as a Monte Carlo tree (MCT), which captures the depen-

dency among layers. Furthermore, intermediate results

are stored in the MCT for future decisions and a better

exploration-exploitation balance. Concretely, MCT is up-

dated using the training loss as a reward to the architec-

ture performance; for accurately evaluating the numerous

nodes, we propose node communication and hierarchical

node selection methods in the training and search stages,

respectively, making better uses of the operation rewards

and hierarchical information. Moreover, for a fair com-

parison of different NAS methods, we construct an open-

source NAS benchmark of a macro search space evaluated

on CIFAR-10, namely NAS-Bench-Macro. Extensive ex-

periments on NAS-Bench-Macro and ImageNet demonstrate

that our method significantly improves search efficiency and

performance. For example, by only searching 20 architec-

tures, our obtained architecture achieves 78.0% top-1 ac-

curacy with 442M FLOPs on ImageNet. Code (Benchmark)

is available at: https://github.com/xiusu/NAS-

Bench-Macro.

*Equal contributions.
†Corresponding authors.
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Figure 1. Comparison between existing methods (left) and our

method (right). The existing method treats each layer indepen-

dently in training (top-left) and search (bottom-left) stages, while

our method models the search space with dependencies to a unified

tree structure.

1. Introduction

Deep learning has not only thrived in various tasks as im-

age recognition and object detection [18, 32, 11], but also

achieved remarkable performance on mobile edge devices

[23, 12, 36, 28, 5, 10]. Neural architecture search (NAS)

makes a step further; it even liberates the reliance on expert

knowledge and obtains higher performance by developing

more promising and cost-effective architectures [27, 24, 7].

Despite the inspiring success of NAS, the search space of

conventional NAS algorithms is extremely large, leading

the exhaustive search for the optimal network will be com-

putation prohibited. To accommodate the searching budget,

heuristic searching methods are usually leveraged and can

be mainly categorized into reinforcement learning-based

[25, 26], evolution-based [9, 35], Bayesian optimization-
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based [37, 29], and gradient-based methods [19, 1, 34, 14].

Among these methods, one-shot NAS methods enjoy

significant efficiency since they only train the whole search

space(i.e., supernet) simultaneously. In current mainstream

methods of one-shot NAS, a supernet is usually considered

as a performance evaluator for all architectures within it,

and the optimal architecture is obtained by evaluating the

architectures with a validation set. Since it is unrealistic

to evaluate all the architectures in the search space, current

methods usually deal with a restricted search number, e.g.,

1000 vs. 1321. For the sake of efficiently searching a good

architecture with this limited search number, several heuris-

tic search methods have been developed [9, 35], e.g., evolu-

tionary algorithms (EA), Bayesian optimization.

Though existing one-shot NAS methods have achieved

impressive performance, they often consider each layer sep-

arately while ignoring the dependencies between the oper-

ation choices on different layers, which leads to an inaccu-

rate description and evaluation of the neural architectures

during the search. For example, Gaussian Processes (GP)

in Bayesian optimization requires that the input attributes

(OPs) are independent of each other [37, 29], and the cross

mutations of OPs in evolutionary search are often carried

out separately in each layer [9, 35]. In fact, for a feed-

forward neural network, the choice of a specific layer relates

to its previous layers and contributes to its post layers.

In this paper, we highlight the dependencies between op-

erations on different layers through establishing a Monte

Carlo Tree (MCT) in the architecture search space and de-

velop an effective sampling strategy based on Monte Carlo

Tree Search (MCTS) for NAS (see Figure 1), The training

loss is considered as a reward representation of each node

(OP) in MCT, which is used for determining which archi-

tecture to be explored. Meanwhile, for a better evaluation

of numerous posterior nodes, we propose a node commu-

nication technique to share the rewards among nodes with

the same operation and depth. The dependencies between

different operations on different layers can be accurately

modeled with MCT. During searching on the supernet, to

evaluate the nodes more accurately, we propose a hierarchi-

cal node selection of MCT, which hierarchically updates the

rewards on those less-visited nodes using validation data.

For a better comparison between different NAS meth-

ods, we propose a NAS benchmark on macro search space

named NAS-Bench-Macro, which trains 6561 networks iso-

latedly on CIFAR-10 dataset. Experiments on NAS-Bench-

Macro show our superiority in efficiently searching the op-

timal architectures. We also implement our MCTS-NAS

on the large-scale benchmark dataset ImageNet [22] with

extensive experiments. Under the same FLOPs budgets or

acceleration, our method significantly improves the search

efficiency with better performances compared to other one-

shot NAS methods [9, 35]. For example, we decrease the

search number of sub-networks (subnets) from 1000 to 20,

which reduces a large amount of search cost. Besides, the

obtained architecture achieves 78.0% Top-1 accuracy with

the MobileNetV2 search space with only 442M FLOPs.

2. Related work

One-shot NAS. The recent emerging one-shot ap-

proaches significantly reduce the search cost of NAS by

considering architectures as sub-graphs of a densely con-

nected supernet. DARTS [19, 33] relaxes the discrete op-

eration selection as a continuous probability distribution,

which can be directly optimized with gradient descent.

Training all operation candidates in parallel is memory-

consuming and computationally inefficient. To address

such a challenge, Single Path One-Shot [9] proposes to train

each architecture alternately and adopt a two-stage search

schema, where network training is first performed by uni-

form path sampling. Then the final architecture is searched

using a validation dataset.

Targeting at minimizing the evaluation gap between a

weight-sharing subnet and a standalone network, Greedy-

NAS [35] introduces a progressive search space reduction

strategy. A greedy path filtering technique is introduced to

let the supernet pay more attention to those potentially-good

paths. Similarly, SGAS [17] propose to prune operation

candidates in the search space in a greedy manner. With the

low-ranked candidates being removed, the search space is

reduced, and the supernet can focus on the remaining ones

for sufficient training and proper evaluation.

The greedy search [35] can be arbitrary and might be

trapped by the local optimum. In contrast, the evolution-

ary algorithm [4] works as a heuristic search method that

leverages the prior information of the searched subnets that

have achieved profound success in NAS. For example, Sin-

gle Path One-shot [9] searched the optimal subnets from

supernet with the evolutionary algorithm. Afterward, many

algorithms [35, 2] follow this strategy by leveraging the

evolutionary algorithm to search for optimal subnets from

the designed supernet. However, the evolutionary algorithm

only allows mutation and crossover over operations, which

fails to consider the relations over layers, leading to sub-

optimal results.

To solve this issue, many methods involve tree-based

MCTS [20, 30, 29, 31] into NAS. However, these methods

only explore MCTS as a simple sampler with a huge search

space. For example, the AlphaX [31] trains each searched

architecture independently for evaluation, which is compu-

tationally expensive. LaNAS [30] only adopts MCTS on the

search stage, while on training, it trains the supernet with

random masks. Compared to the above methods, with a

macro one-shot search space, our MCT-NAS stores much

more information for efficient and accurate searching on

both the training and search stage, which promotes an ac-
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Figure 2. The overall framework of MCT-NAS, which models the search space into a MCT (left), then updates the tree with a prioritized

sampling strategy during training (middle), finally searches the optimal architecture using hierarchical node selection (right).

curate evaluation of the numerous nodes.

3. Methodology

In this paper, we conduct architecture search on a macro

NAS search space, in which the searching layers are stacked

sequentially, and each layer selects one operation from the

operation setO = {oi} with size N . With a search spaceA
of L layers, an architecture α ∈ A can be uniquely repre-

sented by a set of operations, where α = {o(l)}l∈{1,...,L}.

To search for the optimal architecture α
∗ ∈ A, as illus-

trated in Figure 2, we use a two-stage procedure consists of

training and search. First, in the training stage (see the left

and middle sub-figures in Figure 2), we sample and train

architectures in the search space alternately. Different from

the uniform sampling strategy adopted in previous works,

we sample architectures with the help of the Monte Carlo

tree (MCT), which well balances the exploration and ex-

ploitation of the search space, and the training loss of each

architecture is stored in the MCT for future decision. Sec-

ond, after the supernet is well trained, we adopt a node com-

munication strategy to evaluate the less-visited nodes in the

constructed MCT using a validation set; thus, the nodes can

be searched more efficiently and accurately in the search

stage. Then we search architectures using a hierarchical

node selection method and then obtain the final architecture

with the highest validation accuracy.

3.1. Search Space Modeling with MCT

In one-shot NAS, the over-parameterized weight-sharing

supernet is usually trained with a sampling strategy, in

which only one subnet will be sampled and optimized each

iteration. While at the search stage, the subnets are also

sampled and evaluated standalone. So the sampling strategy

highly determines the performance of obtained architecture.

Existing NAS methods treat different layers independently

on sampling; however, in this paper, we highlight the depen-

dency modeling and propose to sample the subnets from a

MCT-based distribution.

We first analyze the common sampling strategy in exist-

ing NAS methods that select each operation independently.

Therefore, the probability distribution of sampling an archi-

tecture α can be formulated as

P (α) = P (o(1), . . . , o(L)) =

L∏

l=1

P (o(l)), (1)

where P (o(l)) denotes the probability distribution of the op-

eration selection in the layer l. In Eq. (1), the probability of

selecting an operation is solely determined by the layer l in-

dependently. However, we argue that in a chain-structured

network, the selection of operation at each layer should de-

pend on operations in the previous layers.

To capture the dependency among layers and leverage

the limited combinations of operations for better under-

standing of the search space, we replace P (o(l)) in Eq.(1)

with a conditional distribution for each 2 ≤ l ≤ L. There-

fore, we reformulate Eq. (1) as follows:

P (α) = P (o(1), . . . , o(L))

= P (o(1)) ·
L∏

l=2

P (o(l)|o(l), . . . , o(l−1)),
(2)

where P (o(l)|o(1), . . . , o(l−1)) is the conditional probability

distribution of the operation selection in the layer l condi-

tioned on its previous layers 1 to l − 1. Note that l = 1 has

no previous layer, so P (o(1)) is still independent.
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Inspired by Eq.(2), we find this conditional probability

distribution of search space can be naturally modeled into

a tree-based structure; the MCTS is targeting this struc-

ture for a better exploration-exploitation trade-off. As a re-

sult, we propose to model the search space with a MCT

T . In MCT, each node v
(l)
i ∈ T corresponds to select-

ing an operation o
(l)
i ∈ O for the layer l under the con-

dition of its ancestor nodes, so the architecture representa-

tion α = {o(l)}l∈{1,...,L} can also be uniquely identified

in the MCT. As Figure 2 shows, the architectures are inde-

pendently represented by paths in the MCT, and different

choices of operations lead to different child trees; thus, the

dependencies of all the operation selections can be naturally

formed.

3.2. Training with Prioritized Sampling

With the MCT T , we can perform a prioritized sampling

of architectures and store the searching knowledge in it. For

each node v
(l)
i , there are two values stored in T , including

a Q-value Q(v
(l)
i ) measuring the quality of selection and a

number of visits n
(l)
i counting how many times this selec-

tion occurs. For the sake of efficiency, we use the training

loss Ltr as a representation of selection quality (Q-value).

However, since the supernet’s network weights are contin-

uously optimized during the search, the performance of a

certain architecture will be enhanced along with the opti-

mization procedure. As a result, it is unfair to directly com-

pare architectures evaluated at different iterations. An intu-

itive and effective way to solve this issue is to introduce a

normalized performance ranking factor. We use a moving

average of losses L̃t as the baseline:

L̃t = β · L̃t−1 + (1− β) · Ltr(αt), (3)

where β ∈ [0, 1] is the reduction ratio of the moving av-

erage, and Ltr(αt) denotes the training loss of the current

architecture αt in iteration t. L̃t represents the convergence

status of supernet at iteration t, so we can compare Ltr(αt)
with it to get a relative performance of the architecture, thus

the Q-value of the selected nodes are updated with,

Q(v
(l)
i ) =

L̃t

Ltr(αt)
. (4)

In the sampling, for a better exploration-exploitation bal-

ance, we select node in the MCT based on the Upper Con-

fidence Bounds for Trees (UCT) [16]. Given a parent node

v
(l−1)
p ∈ T with a number of visits n

(l−1)
p , we select its

child nodes according to the UCT function. The UCT func-

tion of a child node v
(l)
i ∈ T is calculated by

UCT(v
(l)
i ) =

Q(v
(l)
i )

n
(l)
i

+ C1

√√√√ log(n
(l−1)
p )

n
(l)
i

, (5)
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Figure 3. Node communication with the same selected operation.

where C1 ∈ R+ is a constant controlling the trade-off be-

tween exploration and exploitation.

In general, only the node with the highest UCT score will

be selected by MCT, but it prevents the sampling method

from exploring more diverse architectures. Instead of di-

rectly selecting the node with the maximum UCT function,

we propose MCT-NAS to relax the operation selection in

one layer to a probability distribution using softmax func-

tion, i.e.,

Pt(v
(l)
i ) =

exp
(
UCT(v

(l)
i )/τ

)

∑
j≤N l exp

(
UCT(v

(l)
j )/τ

) , (6)

where N l denotes the total node number in depth l, and τ
is a temperature term. Note that when τ → 0, it becomes

an approximated categorical distribution that almost always

selects the operation with the maximal UCT score. We set

τ to 0.0025 in all of our experiments.

In the end, during training, the sampling distribution is

changed from uniform distribution to our prioritized sam-

pling distribution. We investigate the dependence between

operations on different layers and promote the exploration

and exploitation of good architectures. Note that, in this pa-

per, we also use uniform sampling at the beginning of the

training for a warm-up start.

3.3. Node Communication

In MCT, each architecture in the search space corre-

sponds to a unique path. As the increment of the depth,

the number of nodes grows exponentially. For example, the

MCT will have NL leaf nodes with a search space of size

NL. It is, therefore, impossible to explore all these numer-

ous nodes. However, as in the supernet, the same operations

in a layer share the same weights, inspiring that the nodes

have some common knowledge from their operation type.

For a better reward representation on the nodes in posterior

depth, we propose a node communication technique to share

the rewards for nodes with the same operation and depth.

Concretely, to represent the reward of an operation in a

specific layer, we use a moving average of all the rewards

of its corresponding nodes, denoted as node communication

score G in Figure 3. For each operation in layer l, denoted

as o
(l)
j , its score G is updated by the Q-value of correspond-
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ing nodes v
(l)
i , i.e.,

G(oj)
(l) ← γ ·G(oj)

(l) + (1− γ) ·Q(v
(l)
i ), (7)

where γ ∈ [0, 1] is a reduction ratio.

As a result, a node’s reward can be jointly represented

by the Q-value of this node and the node communication

score G of its corresponding operation. By adding Eq.(7),

the UCT function in Eq.(5) can be reformulate as

UCT(v
(l)
i ) =

Q(v
(l)
i )

n
(l)
i

+C1

√

√

√

√

log(n
(l−1)
p )

n
(l)
i

+C2 ·G(oj)
(l)
, (8)

where C2 ∈ R+ is a hyperparameter controlling the weight

of the node communication term.

3.4. Hierarchical Node Selection

In the search stage, the constructed MCT can be natu-

rally used to find optimal architecture. With the stored Q-

value, we can directly sample the architecture with the high-

est reward as the final result. However, the architecture that

performs the best on the training set might not always be

the best on the validation set. We thus resort to a search

stage to evaluate a small pool of the architectures of higher

rewards, and then the one with the highest validation ac-

curacy will be exported. Moreover, to accurately evaluate

those nodes with small numbers of visits, we propose a hi-

erarchical node selection method to select the node hierar-

chically and re-evaluate those less-visited nodes.

In MCT, the number of nodes increases exponentially

with the depth. It is impossible to visit all the posterior

nodes sufficiently during training. Fortunately, as our con-

ditional probability modeling of search space, the sub-trees

whose parents have low rewards could be directly trimmed,

and we only need to focus on those good sub-trees.

Concretely, as illustrated in the right of Figure 2, our

selection starts hierarchically from the root node of MCT.

If the average number of visits of its child nodes is larger

than a threshold constant nthrd, we think it is promising

to its reward, and thus the child node can be sampled us-

ing the same probabilistic distribution as Eq.(6). On the

other hand, if the average number is lower than the nthrd,

we randomly sample paths consisting of those child nodes

and then evaluate the paths using a batch of validation data

until the threshold reached. Then we have enough confi-

dence to continue moving to the next depth. After selecting

the leaf nodes, the specific architecture is obtained, we then

evaluate it with the full validation set. We repeat this pro-

cedure with search number times and then report the one

with the highest validation accuracy as the final architec-

ture. Since the “exploration” of architectures is not needed

in the search stage, the UCT function then becomes:

UCTs(v
(l)
i ) =

Q(v
(l)
i )

n
(l)
i

+ C2 ·G(oj). (9)

Algorithm 1: Architecture Search with Hierarchi-

cal Node Selection

Input: the root node v(0) of tree T , layer number L,

search number K, validation dataset Dval.

1 Init E = {}, k = 0 ;

2 while k ≤ K do

3 Init α = {}, l = 0 ;

4 while l ≤ L do

5 while 1
N

∑
v
(l)
i

∈child(v(l−1))
n
(l)
i ≥ nthrd do

6 sample one path α̃ randomly with

ancestor nodes α;

7 evaluate α̃ with one batch data from

Dval;

8 update UCT scores corresponding to α̃;

9 end

10 sample a node v
(l)
j according to Eq.(6);

11 α = α ∪ {o
(l)
j };

12 end

13 evaluate α with validation dataset Dval;

14 E = E ∪ {α};

15 end

Output: architecture with highest accuracy in E

Our iterative procedure of searching with hierarchical

node selection is shown in Algorithm 1.

4. Experiments

In this section, we conduct extensive experiments on

the proposed NAS benchmark NAS-Bench-Macro and Ima-

geNet dataset. Detailed experimental settings are elaborated

in supplementary materials.

4.1. Proposed benchmark: NAS­Bench­Macro

For a better comparison between our MCT-NAS and

other methods, we propose an open source NAS benchmark

on macro structures with CIFAR-10 dataset, named NAS-

Bench-Macro. The NAS-Bench-Macro consists of 6561
networks and their test accuracies, parameter numbers, and

FLOPs on CIFAR-10.

Search space. The search space of NAS-Bench-Macro

is conducted with 8 searching layers; each layer con-

tains 3 candidate blocks, marked as Identity, MB3 K3 and

MB6 K5. Thus the total size of the search space is 38 =
6561. However, the architectures with the same Identity

number in each stage exactly have the same structures and

can be mapped together so that the total search space can be

mapped to 3969 architectures. Detailed structure configura-

tions can be found in Supplementary Materials.

Benchmarking architectures on CIFAR-10. We train

all architectures isolatedly on CIFAR-10 dataset. Each ar-
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Table 1. Rank correlations between each supernet and NAS-

Bench-Macro.
training method Spearman rho (%) Kendall tau (%)

uniform 88.96 72.41

MCTS 90.63 74.66

uniform + MCTS 91.87 76.22

chitecture is trained with a batch size of 256 and SGD opti-

mizer, a cosine learning rate strategy that decays 50 epochs

is adopted with an initial value 0.1. We train each archi-

tecture 3 times with different random seeds and report their

mean accuracies on the test set.

Rank correlations between each search method and

NAS-Bench-Macro. In MCT-NAS, during training, the

MCTS also participates in the architecture sampling; with

UCT function in MCTS, the good architectures can be ef-

ficiently explored and trained. Thus, the supernet trained

with MCTS should have a more accurate ranking on sub-

nets. We adopt experiments to measure the ranking con-

fidences of these two evaluators trained by uniform sam-

pling and MCTS. Concretely, we calculate the ranking

correlation coefficients between the validation accuracies

on weight-sharing subnets and their ground-truth perfor-

mances in NAS-Bench-Macro; the supernets are trained

with uniform sampling and MCTS, respectively. The re-

sults illustrated in Table 1 indicates the supernet trained

with our MCTS is more promising to the validation accu-

racies. However, using MCTS in the whole training stage

performs worse than adding uniform sampling for warm-

up(uniform+MCTS) since the subnets are not converged ini-

tially. To adopt an effective exploration in MCTS, we use

uniform sampling for warm-up in all our experiments.

Comparison between different search numbers. Be-

fore searching, the MCT has already stored the reward of

each subnet, so we can directly use the subnet with the

highest reward as the final architecture. However, these re-

wards are restricted to the training loss, thus not accurate

enough to the performances, so the subnets still need to be

evaluated on the validation set for better results. We adopt

experiments with different search numbers and report the

top accuracy and average percentile rank with NAS-Bench-

Macro. The result illustrated in Figure 4 shows that, by

directly using the max-rewarded architecture in MCT, our

MCT-NAS can also obtain higher performance compared

to random search and evolutionary algorithm. However,

more explorations obtain even better results, and only with

a search number of 50, our MCT-NAS can find the best ar-

chitecture in NAS-Bench-Macro. Meanwhile, as Figure 4

(b) shows, the lower average percentile rank indicates the

better average performance of networks. Since our MCT-

NAS stores an accurate ranking of architectures, good ar-

chitectures are usually explored in the early stage; with the

search number’s increment, the average performance will
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Figure 4. Top accuracies (a) and average percentile rank (b) of

searched architectures with different search numbers in NAS-

Bench-Macro.

drop. However, the evolution shows a reverse trend since it

starts with a random population and utilizes the new popu-

lation’s evaluation results. According to the results, we set

the search number to 20 in all experiments to a better trade-

off between performance and search efficiency.

4.2. Search on ImageNet

Dataset. We conduct the architecture search on the

large-scale dataset ImageNet (ILSVRC-12), consisting of

1.28 million training images and 50k validation images

from 1000 categories. To facilitate the search, we randomly

sample 50k images from the training dataset as the valida-

tion dataset, and the rest of the data is used for training. For

comparison with other methods, we use the original valida-

tion dataset as a test dataset to report the accuracy.

Search space. For a fair comparison, we conduct our

MCTS-NAS with the same space as [35, 2, 1] to exam-

ine the performance of other one-shot NAS methods with

macro search space. We construct the supernet with 21
search blocks, and each block is a MobileNetV2 inverted

bottleneck [23] with an optional SE [13] module. For

each search block, the convolutional kernel size is within

{3, 5, 7}, and the expansion ratio is selected in {3, 6}, and

each block can choose to use SE module or not. With an

additional identity block for network depth search, the total
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Table 2. Comparison of searched architectures w.r.t. different state-of-the-art NAS methods. Search number means the number of evaluated

architectures during searching; our MCT-NAS involves additional evaluation cost in hierarchical node selection method, and costs ∼ 5×
on evaluating one architecture compared to other methods. ‡: TPU, ⋆: reported by [9].

Methods
Top-1

(%)

Top-5

(%)

FLOPs

(M)

Params

(M)
Memory cost

training cost

(GPU days)
search number

search cost

(GPU days)

SCARLET-C [2] 75.6 92.6 280 6.0 single path 10 8400 12

MobileNetV2 1.0 [23] 72.0 91.0 300 3.4 - - - -

MnasNet-A1 [25] 75.2 92.5 312 3.9 single path + RL 288‡ 8000 -

GreedyNAS-C [35] 76.2 92.5 284 4.7 single path 7 1000 < 1
MCT-NAS-C 76.3 92.6 280 4.9 single path 12 20×5 < 1

Proxyless-R (mobile) [1] 74.6 92.2 320 4.0 two paths 15⋆ 1000 -

Single-path [9] 76.2 - 328 - single path 12 1000 < 1
ST-NAS-A [8] 76.4 93.1 326 5.2 single path - 990 -

SCARLET-B [2] 76.3 93.0 329 6.5 single path 10 8400 12

GreedyNAS-B [35] 76.8 93.0 324 5.2 single path 7 1000 < 1
FairNAS-C [3] 76.7 93.3 325 5.6 single path - -

BetaNet-A [6] 75.9 92.8 333 4.1 single path 7 - -

MCT-NAS-B 76.9 93.4 327 6.3 single path 12 20× 5 < 1

ST-NAS-B [8] 77.9 93.8 503 7.8 single path - 990 -

BetaNet-A × 1.4 [6] 77.7 93.7 631 7.2 single path 7 - -

EfficientNet-B0 [26] 76.3 93.2 390 5.3 single path - - -

MCT-NAS-A 78.0 93.9 442 8.4 single path 12 20× 5 < 1

operation space size is 13, so the search space size is 1321.

Supernet training. Follow [35, 9]; we use the same

strategy for training supernet. Using a batch size of 1024,

the network is trained using a SGD optimizer with 0.9 mo-

mentum. A cosine annealing strategy is adopted with an

initial learning rate 0.12, which decays 120 epochs. For

sampling architectures, we use uniform sampling within the

first 60 epochs, then adopt our prioritized sampling with

MCT, and the temperature term τ is set to 0.0025 in all of

our experiments for appropriate sampling paths. We con-

duct experiments on three different FLOPs budgets 280M,

330M, and 440M. Note that for a better adaptation to the tar-

get FLOPs budgets, we only sample the architectures within

the target FLOPs, this reduction of search space results in a

better convergence and evaluation of potential architectures.

Searching. We use hierarchical selection with MCT

for the search, summarized in Algorithm 1. The number of

search architectures is set to 20 for efficiency.

Retraining. To train the obtain architectures from

scratch, we follow previous works [25, 35, 2], the network

is trained using RMSProp optimizer with 0.9 momentum,

and the learning rate is increased from 0 to 0.064 linearly in

the first 5 epochs with batch size 512, and then decays 0.03

every 2.4 epochs. Besides, the exponential moving average

on weights is also adopted with a decay rate 0.9999.

Performances of obtained architectures. We perform

the search with 3 different FLOPs budgets, i.e., 442M,

327M, and 280M. As shown in Table 2, our searched 442M

MCT-NAS-A achieves 78.0% on Top-1 accuracy, which

even outperforms other methods with larger FLOPs bud-

get (i.e., 503M and 631M). Besides, with other FLOPs (i.e.,

327M and 280M), our MCT-NAS also shows superiority

over other methods. Besides, MCT-NAS also achieves su-

periority in terms of searching efficiency, as in Table 2, we

perform the search with only 20 sampled paths with our pro-

posed MCT-NAS, which amounts to about one-tenth of the

paths of other algorithms.

4.3. Ablation Studies

Ablation on each proposed techniques in MCT-NAS.

In MCT-NAS, as summarized in Table 3, at the supernet

training stage, we propose to update MCT using the train-

ing loss, for sampling subnets, a UCT search strategy is

adopted. Besides, we further propose a node communica-

tion technique to make use of the rewards of operations.

While on search, we propose a hierarchical node selection

method for a more accurate search using MCT. We evalu-

ate the performances with different combinations of these

techniques on ImageNet and report the test accuracies in

Table 3. FLOPs’ reduction indicates removing the architec-

tures in MCT whose FLOPs are far smaller or bigger than

the target FLOPs. Comparing row 3 and row 4, we can infer

that, with UCT search, the obtained architecture achieves

higher performance. That might because sampling subnets

with UCT makes a better exploration-exploitation balance

and focus more on the good subnets compared to uniform

sampling. Comparing rows 1, 2, and 3, using MCTS dur-

ing search obtains better results compared to the evolution

search since extensive information in the training stage is

used. For row 5 and row 6, the architecture with hierar-

chical selection is significantly better because the hierarchi-

cal selection adopts additional evaluations using validation
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Table 3. The performance gain of each part in MCT-NAS with 330M FLOPs on MobileNet search space.
Training Searching Retraining

Uniform FLOPs Update MCT UCT Node Evolutionary MCTS Hierarchical
Top-1 Top-5

Sampling Reduction in Training Search Communication Search Search Updates

X X 75.94% 92.89%

X X X 76.44% 93.15%

X X X X 76.21% 93.11%

X X X X X 76.35% 93.17%

X X X X X X 76.62% 93.32%

X X X X X X X 76.94% 93.37%

50 51 52 53 56 57 58 5954 55 
Top-1 ACC (%)

0
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Figure 5. Histogram of accuracy of searched architectures on su-

pernet with different search methods.

data. With all the proposed methods equipped, our MCT-

NAS achieves the highest performance.

Comparison of different sampling methods. To ex-

amine the searching efficiency and results w.r.t. different

search methods, we searching for 330M-FLOPs paths by

evolution sampling, random sampling, and MCT-NAS, re-

spectively, using the same supernet trained by uniform sam-

pling on ImageNet. In this way, we examine the Top-1 ac-

curacy w.r.t. the 1000 search numbers with different search

methods and show their histogram in Figure 5. In detail,

MCT-NAS and evolution sampling both works as heuristic

searching methods with prior knowledge, which can search

for subnets with much higher Top-1 ACC than random sam-

pling. Besides, as in Figure 5, the paths searched by our

MCT-NAS can be more concentrated in areas with higher

Top-1 accuracy, while for evolution sampling, the perfor-

mance of searched subnets is distributed in a larger area,

which contains many paths with sub-optimal results. While

for MCT-NAS, the performance of searched paths is mostly

located at the area with good performance, which indicates

the effectiveness of our sampling method.

Interpretation and visualization of nodes selection.

As a tree-based structure, the MCT obtained in our method

captures the dependencies between different layers. We be-

lieve that the operation choice of one layer is related to

its previous layers, i.e., different choices of previous lay-

ers may result in different preferences of the layer. For an

intuitive understanding, we visualize the nodes with top-2

UCT scores of the first 3 layers in Figure 6. The visualiza-

tion shows that when the first layer selects different nodes

(i.e., MB3 K7 and MB3 K7 SE), the nodes with the Top-2

selection probability of the next layer are greatly affected.

root

MB3_K7

MB3_K7 MB3_K7
_SE

MB3_K5 ID

MB6_K3
_SE ID

MB3_K7
_SE

MB6_K3 MB3_K5 MB6_K3 ID

MB6_K3 ID

26.7% 35.9%

8.4% 57.2% 15.0% 65.1%

9.6% 75.3% 24.5% 49.7% 64.1% 17.9% 6.5% 67.0%

Figure 6. Interpretation and visualization of nodes selection. The

marked texts in circles denote candidate operations, which will be

introduced in supplementary materials.

As a result, MCTS works as a path level subnet sampling

method that naturally captures the dependencies between

operations of different layers and, thus, more efficiently se-

lect paths with global relations. Nevertheless, other sam-

pling methods are usually implemented at the node level,

which selects nodes separately and ignores the dependen-

cies between nodes, thus leading to sub-optimal results.

5. Conclusion

In this paper, we introduce a sampling strategy based on

Monte Carlo tree search (MCTS), which models the search

space as a Monte Carlo tree (MCT), and naturally captures

the dependencies between layers. Furthermore, with the ex-

tensive intermediate results updated in MCT during train-

ing, we propose node communication technique and hier-

archical selection of MCT to make better use of the infor-

mation, and thus the optimal architecture can be efficiently

obtained. To better compare different NAS methods, we

construct a NAS benchmark on macro search space with

CIFAR-10, named NAS-Bench-Macro. Extensive exper-

iments on NAS-Bench-Macro and ImageNet demonstrate

that our MCT-NAS significantly improves search efficiency

and performance.
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