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Abstract

We present a novel framework named NeuralRecon for
real-time 3D scene reconstruction from a monocular video.
Unlike previous methods that estimate single-view depth
maps separately on each key-frame and fuse them later, we
propose to directly reconstruct local surfaces represented
as sparse TSDF volumes for each video fragment sequen-
tially by a neural network. A learning-based TSDF fusion
module based on gated recurrent units is used to guide the
network to fuse features from previous fragments. This de-
sign allows the network to capture local smoothness prior
and global shape prior of 3D surfaces when sequentially
reconstructing the surfaces, resulting in accurate, coher-
ent, and real-time surface reconstruction. The experiments
on ScanNet and 7-Scenes datasets show that our system
outperforms state-of-the-art methods in terms of both ac-
curacy and speed. To the best of our knowledge, this is
the first learning-based system that is able to reconstruct
dense coherent 3D geometry in real-time. Code is avail-
able at the project page: https://zju3dv.github.io/
neuralrecon/.

1. Introduction

3D scene reconstruction is one of the central tasks in 3D
computer vision with many applications. In augmented re-
ality (AR) for example, to enable realistic and immersive
interactions between AR effects and the surrounding phys-
ical scene, 3D reconstruction needs to be accurate, coher-
ent and performed in real-time. While camera motion can
be tracked accurately with state-of-the-art visual-inertial
SLAM systems [3, 35, 1], real-time image-based dense re-
construction remains to be a challenging problem due to low
reconstruction quality and high computation demands.

Most image-based real-time 3D reconstruction pipelines
[38, 52] adopt the depth map fusion approach, which re-
semble RGB-D reconstruction methods like KinectFusion
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Figure 1. Comparison between depth-based 3D reconstruction
methods and the proposed method. In depth-based methods,
key-frame depths are estimated separately from each key frame,
and later fused into a TSDF volume. In the proposed method, the
TSDF volume is directly predicted with all the key frames in a
local window. This design leads to a much more coherent recon-
struction and real-time speed.

[31]. Single-view depth maps from each key frame are first
estimated with real-time multi-view depth estimation meth-
ods like [48, 24, 13, 46]. The estimated depth maps are later
filtered with criteria like multi-view consistency and tempo-
ral smoothness, and fused into a Truncated Signed Distance
Function (TSDF) volume. The reconstructed mesh can be
extracted from the fused TSDF volume with the Marching
Cubes algorithm [27]. This depth-based pipeline has two
major drawbacks. First, since single-view depth maps are
estimated individually on each key frame, each depth esti-
mation is from scratch instead of conditioned on the pre-
vious estimations even the view-overlapping is substantial.
As a result, the scale-factor may vary even with the correct
camera ego-motion. Due to depth inconsistencies between
different views, the reconstruction result is prone to be ei-
ther layered or scattered. One example is shown in the red
boxes in Fig. 1, where the depth-based method struggles to
produce coherent depth estimations on the chairs and wall.
Second, since key-frame depth maps need to be estimated
separately in overlapped local windows, geometry of the
same 3D surface is estimated multiple times in different key
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frames, causing redundant computation.

In this paper, we propose a novel framework for real-
time monocular reconstruction named NeuralRecon that
jointly reconstructs and fuses the 3D geometry directly in
the volumetric TSDF representation. Given a sequence of
monocular images and their corresponding camera poses
estimated by a SLAM system, NeuralRecon incrementally
reconstructs local geometry in a view-independent 3D vol-
ume instead of view-dependent depth maps. Specifically,
it unprojects the image features to form a 3D feature vol-
ume and then uses sparse convolutions to process the feature
volume to output a sparse TSDF volume. With a coarse-
to-fine design, the predicted TSDF is gradually refined at
each level. By directly reconstructing the implicit surface
(TSDF), the network is able to learn the local smoothness
and global shape prior of natural 3D surfaces. Different
from depth-based methods that predict depth maps for each
key frame separately, the surface geometry within a local
fragment window is jointly predicted in NeuralRecon, and
thus locally coherent geometry estimation can be produced.
To make the current-fragment reconstruction to be globally
consistent with the previously reconstructed fragments, a
learning-based TSDF fusion module using the Gated Re-
current Unit (GRU) is proposed. The GRU fusion makes
the current-fragment reconstruction conditioned on the pre-
viously reconstructed global volume, yielding a joint recon-
struction and fusion approach. As a result, the reconstructed
mesh is dense, accurate and globally coherent in scale. Fur-
thermore, predicting the volumetric representation also re-
moves the redundant computation in depth-based methods,
which allows us to use a larger 3D CNN while maintaining
the real-time performance.

We validate our system on the ScanNet and 7-Scenes
datasets. The experimental results show that NeuralRe-
con outperforms multiple state-of-the-art multi-view depth
estimation methods and the volume-based reconstruction
method Atlas [30] by a large margin, while achieving a real-
time performance at 33 key frames per second, ~10x faster
compared to Atlas. As shown in the supplementary video,
our method is able to reconstruct large-scale 3D scenes from
a video stream on a laptop GPU in real-time. To the best of
our knowledge, this is the first learning-based system that is
able to reconstruct dense and coherent 3D scene geometry
in real-time.

2. Related Work

Multi-view Depth Estimation. The most related line of
research is real-time methods for multi-view depth estima-
tion. Before the age of deep learning, many renowned
works in monocular 3D reconstruction [47, 21, 38, 34] have
achieved good performance with plane-sweeping stereo and
depth filters under the assumption of photo-consistency.

[46, 51] optimize this line of research towards low power
consumption on mobile platforms. Learning-based meth-
ods on real-time multi-view depth estimation try to alle-
viate the photo-consistency assumption with a data-driven
approach. Notably, MVDepthNet [48] and Neural RGB-
>D [24] use 2D CNNs to process the 2D depth cost vol-
ume constructed from multi-view image features. CNMNet
[26] further leverages the planar structure in indoor scenes
to constrain the surface normals calculated from the pre-
dicted depth maps to obtain smooth depth estimation. These
learning-based methods use 2D CNNs to process the depth
cost volume to maintain a low computational cost for near
real-time performance.

When the input images are high-resolution and offline
computation is allowed, multi-view depth estimation is
also known as the Multiple View Stereo (MVS) problem.
PatchMatch-based methods [56, 37] have achieved impres-
sive accuracy and are still the most popular methods ap-
plicable to high-resolution images. Learning-based ap-
proaches in MVS have recently dominated several bench-
marks [2, 20] in terms of accuracy, but are only limited to
processing mid-resolution images due to the GPU memory
constraint. Different from the real-time methods, 3D cost
volumes are constructed and 3D CNNs are used to process
the cost volume as proposed in MVSNet [53]. Some recent
works [12, 4] improve this pipeline with a coarse-to-fine ap-
proach. Similar design can also be found in many learning-
based SLAM systems [45, 57, 42, 44].

All the above-mentioned works adopt single-view depth
maps as intermediate representations. SurfaceNet [15, 16]
takes a different approach and uses a unified volumetric rep-
resentation to predict the volume occupancy. Recently, At-
las [30] also proposes a volumetric design and direct pre-
dicts TSDF and semantic labels with 3D CNN. As an offline
method, Atlas aggregates the image features of the entire
sequence and then predicts the global TSDF volume only
once with a decoder module. We further elaborate the rela-
tionship between the proposed method and Atlas in the sup-
plementary material. The proposed method is also related to
[5, 18] in terms of using recurrent networks for multi-view
feature fusion. However, their recurrent fusion is applied
to only the global features and their focus is to reconstruct
single objects.

3D Surface Reconstruction. After depth maps are esti-
mated and converted to point clouds, the remaining task for
3D reconstruction is to estimate the 3D surface position and
produce the reconstructed mesh. In an offline MVS pipeline
[37], Poisson reconstruction [19] and Delaunay triagula-
tion [22] are often used to fulfill this purpose. Proposed
by the seminal work KinectFusion [31], incremental volu-
metric TSDF fusion [7] gets widely adopted in real-time re-
construction scenarios due to its simplicity and paralleliza-
tion capability. [32, 10] improve KinectFusion by making it
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Figure 2. NeuralRecon architecture. NeuralRecon predicts TSDF with a three-level coarse-to-fine approach that gradually increases the
density of sparse voxels. Key-frame images in the local fragment are first passed through the image backbone to extract the multi-level
features. These image features are later back-projected along each ray and aggregated into a 3D feature volume F*, where [ represents the
level index. At the first level (I = 1), a dense TSDF volume S; is predicted. At the second and third levels, the upsampled Sifl from the

last level is concatenated with F! and used as the input for the GRU Fusion and

modules. A feature volume defined in the world

frame is maintained at each level as the global hidden state of the GRU. At the last level, the output S} is used to replace corresponding
voxels in the global TSDF volume S, yielding the final reconstruction at time ¢.

more scalable and robust. RoutedFusion [49, 50] changes
the fusion operation from a simple linear addition into a
data-dependent process.

Neural Implicit Representations. Recently, neural im-
plicit representations [29, 33, 36, 17, 54, 25] have gained
significant advances. Our work also learns a neural implicit
representation by predicting SDF with the neural network
from the encoded image features similar to PIFu [36]. The
key difference is that we are using sparse 3D convolution
to predict a discrete TSDF volume, instead of querying the
MLP network with image features and 3D coordinates.

3. Methods

Given a sequence of monocular images {I;} and camera
pose trajectory {&;} € SE(3) provided by a SLAM system,
the goal is to reconstruct dense 3D scene geometry accu-
rately in real-time. We denote the global TSDF volume to
reconstruct as S?, where ¢ represents the current time step.
The system architecture is illustrated in Fig. 2.

3.1. Key Frame Selection

To achieve real-time 3D reconstruction that is suit-
able for interactive applications, the reconstruction process
needs to be incremental and the input images should be pro-
cessed sequentially in local fragments [40]. We seek to find
a set of suitable key frames from the incoming image stream

as input for the networks. To provide enough motion par-
allax while keeping multi-view co-visibility for reconstruc-
tion, the selected key frames should be neither too close
nor far from each other. Following [13], a new incoming
frame is selected as a key frame if its relative translation is
greater than ¢,,,, and the relative rotation angle is greater
Ryaz- A window with N key frames is defined as a lo-
cal fragment. After key frames are selected, a cubic-shaped
fragment bounding volume (FBV) that encloses all the key
frame view-frustums is computed with a fixed max depth
range d,,q. in each view. Only the region within the FBV
is considered during the reconstruction of each fragment.

3.2. Joint Fragment Reconstruction and Fusion

We propose to simultaneously reconstruct the TSDF vol-
ume of a local fragment S, and fuse it with global TSDF
volume SY with a learning-based approach. The joint re-
construction and fusion is carried out in the local coordinate
system. The definition of the local and global coordinate
systems as well as the construction of FBV are illustrated in
Fig. 1 of the supplementary material.

Image Feature Volume Construction. The N images in
the local fragment are first passed through the image back-
bone to extract the multi-level features. Similar to previ-
ous works on volumetric reconstruction [18, 15, 30], the
extracted features are back-projected along each ray into
the 3D feature volume. The image feature volume F! is
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Figure 3. 2D toy examples to illustrate the unprojection, GRU fusion and sparse TSDF representation. In figure i and ii, the colored
grids mean different features. In figure iii, the colored grids mean different TSDF values. Best viewed in color.

obtained by averaging the features from different views ac-
cording to the visibility weight of each voxel. The visibil-
ity weight is defined as the number of views from which a
voxel can be observed in the local fragment. A visualization
of this unprojection process can be found in Fig.3 i.

Coarse-to-fine TSDF Reconstruction. We adopt a coarse-
to-fine approach to gradually refine the predicted TSDF vol-
ume at each level. We use 3D sparse convolution to effi-
ciently process the feature volume F!. The sparse volumet-
ric representation also naturally integrates with the coarse-
to-fine design. Specifically, each voxel in the TSDF volume
Sé contains two values, the occupancy score o and the SDF
value x. At each level, both o and x are predicted by the
MLP. The occupancy score represents the confidence of a
voxel being within the TSDF truncation distance A. The
voxel whose occupancy score is lower than the sparsifica-
tion threshold 6 is defined as void space and will be sparsi-
fied. This representation of sparse TSDF volume is visually
illustrated in Fig.3 iii. After the sparsification, S! is upsam-
pled by 2x and concatenated with the Fi‘H as the input for
the GRU Fusion module (introduced later) in the next level.

Instead of estimating single-view depth maps for each
key frame, NeuralRecon jointly reconstructs the implicit
surface within the bounding volume of the local fragment
window. This design guides the network to learn the natu-
ral surface prior directly from the training data. As a result,
the reconstructed surface is locally smooth and coherent in
scale. Notably, this design also leads to less redundant com-
putation compared to depth-based methods since each area
on the 3D surface is estimated only once during the frag-
ment reconstruction.

GRU Fusion. To make the reconstruction consistent be-
tween fragments, we propose to make the current-fragment
reconstruction to be conditioned on the reconstructions in
previous fragments. We use a 3D convolutional variant of
Gated Recurrent Unit (GRU) [6] module for this purpose.
As illustrated in Fig.3 ii, at each level the image feature
volume F! is first passed through the 3D sparse convolu-

tion layers to extract 3D geometric features G!. The hidden
state H! | is extracted from the global hidden state HY
within the fragment bounding volume. GRU fuses G with
hidden state H!_; and produces the updated hidden state
H!, which will be passed through the MLP layers to predict
the TSDF volume S! at this level. The hidden state H. will
also be updated to global hidden state H{ by directly replac-
ing the corresponding voxels. Formally, denoting z; as the
update gate, r; as the reset gate, o as the sigmoid function
and W, as the weight for sparse convolution, GRU fuses G.
with hidden state H} | with the following operations:

2, = o(SparseConv([H._,, GL], W)

7y = o(SparseConv([H._,, GL], W,.))

H! = tanh(SparseConv([r; ® H!_,, G, W4))
H =(1-2z)0H_, +z0H

Intuitively, in the context of joint reconstruction and fu-
sion of TSDF, the update gate z; and forget gate 7, in
the GRU determine how much information from the pre-
vious reconstructions (i.e. hidden state H._,) is fused to
the current-fragment geometric feature Gé, as well as how
much information from the current-fragment will be fused
into the hidden state H.. As a data-driven approach, the
GRU serves as a selective attention mechanism that replaces
the linear running-average operation in conventional TSDF
fusion [31]. By predicting S! after the GRU, the MLP
network can leverage the context information accumulated
from history fragments to produce consistent surface geom-
etry across local fragments. This is also conceptually anal-
ogous to the depth filter in a non-learning-based 3D recon-
struction pipeline [38, 34], where the current observation
and the temporally-fused depths are fused with the Bayesian
filter. The effectiveness of joint reconstruction and fusion is
validated in the ablation study.

Integration to the Global TSDF Volume. At the last
coarse-to-fine level, S? is predicted and further sparsified
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to S!. Since the fusion between S} and S{ has been done in
GRU Fusion, S! is integrated into S{ by directly replacing
the corresponding voxels after being transformed into the
global coordinate. At each time step ¢, Marching Cubes is
performed on S{ to reconstruct the mesh.

Supervision. Following [9], two loss functions are used
to supervise the network. The occupancy loss is defined
as the binary cross-entropy (BCE) between the predicted
occupancy values and the ground-truth occupancy values.
The SDF loss is defined as the ¢; distance between the pre-
dicted SDF values and the ground-truth SDF values. We
log-transform the SDF values of predictions and ground-
truth before applying the ¢; loss. The supervision is applied
to all the coarse-to-fine levels.

3.3. Implementation Details

We use torchsparse [43] as the implementation of 3D
sparse convolution. The image backbone is a variant of
MnasNet [41] and is initialized with the weights pretrained
from ImageNet. Feature Pyramid Network [23] is used in
the backbone to extract more representative multi-level fea-
tures. The entire network is trained end-to-end with ran-
domly initialized weights except for the image backbone.
The occupancy score o is predicted with a Sigmoid layer.
The voxel size of the last level is 4cm and the TSDF trun-
cation distance A is set to 12c¢m. dopq. 1 set to 3m. R,,qx
and t,,4, are set to 15°and 0.1m respectively. 6 is set to
0.5. Nearest-neighbor interpolation is used in the upsam-
pling between coarse-to-fine levels.

4. Experiments

In this section, we conduct a series of experiments to
evaluate the reconstruction quality and different design con-
siderations of NeuralRecon.

4.1. Datasets, Metrics, Baselines and Protocols.

Datasets. We perform the experiments on two indoor
datasets, ScanNet (V2) [8] and 7-Scenes [39]. The ScanNet
dataset contains 1613 indoor scenes with ground-truth cam-
era poses, surface reconstructions, and semantic segmenta-
tion labels. There are two training/validation splits com-
monly used in previous works (defined in [30] and [42]) for
the ScanNet dataset. We use the same training and valida-
tion data with the corresponding baseline methods to make
a fair comparison. The 7-Scenes dataset is another chal-
lenging RGB-D dataset captured in indoor scenes. Follow-
ing the baseline method [26], we use the model trained on
ScanNet to perform the validation on 7-Scenes.

Metrics. The 3D reconstruction quality is evaluated using
3D geometry metrics presented in [30], as well as standard
2D depth metrics defined in [11]. The definitions of these
metrics are detailed in the supplementary material. Among

these 3D and 2D metrics, we consider F-score as the most
suitable metrics to measure 3D reconstruction quality since
both the accuracy and completeness of the reconstruction
are considered.

Baselines. We compare our method with the following
baseline methods in three categories: 1) Real-time meth-
ods for multi-view depth estimation [48, 13, 24, 26]. Due
to the efficiency constraints, the estimated depth accuracy
by these methods is rather limited. We compare with these
methods to demonstrate the better reconstruction accuracy
of NeuralRecon given the same efficiency. 2) Multiple View
Stereo methods [37, 14, 53, 30, 28]. These offline methods
have much higher accuracy compared to real-time methods.
These baselines are used to demonstrate that NeuralRecon
achieves a reconstruction quality on-par with offline meth-
ods but runs in real-time. 3) Learning-based SLAM meth-
ods [45, 42, 44]. These monocular SLAM methods estimate
camera poses and perform reconstruction simultaneously,
thus the scale factor of pose and depth is usually not ac-
curately estimated. For a fair comparison, we use ground-
truth camera poses for these methods and apply a scaling
factor to the predicted depth map using ground-truth depth.
Among all these baseline methods, GPMVS [13] and At-
las [30] are the most relevant real-time and offline methods,
respectively.

Evaluation Protocols. Since our method does not estimate
depth maps explicitly, we render the reconstructed mesh to
the image plane and obtain depth map estimations [30]. Key
frames used for evaluation are sampled from the video se-
quence with an interval of 10 frames for both depth-based
methods and Atlas. Following [30, 26], [53, 48, 14, 13] are
fine-tuned on ScanNet. To evaluate depth-based methods
[37, 48, 13, 14] in 3D, we use the point cloud fusion to ob-
tain the 3D reconstruction following Atlas. For other depth-
based methods, we use the standard TSDF fusion proposed
in [31, 7]. For the reasons we detailed in the supplementary
material, in order to make a fair comparison with Atlas, we
also report the evaluation results using the double-layered
mesh (same as Atlas). The evaluation of 3D geometry on 7-
Scenes uses the single-layered mesh. We also evaluate the
depth filtering operation with multi-view consistency check,
which will be elaborated in the supplementary material.

4.2. Evaluation Results

ScanNet. 2D depth metrics and 3D geometry metrics are
used on the ScanNet dataset. The 3D geometry evalua-
tion results are shown in Tab. 1. Our method produces
much better performance than recent learning-based meth-
ods and achieves slightly better results than COLMAP. We
believe that the improvements come from the joint recon-
struction and fusion design achieved by the GRU Fusion
module. Compared to depth-based methods, NeuralRecon

15602



Method Layer Comp] Accl) RecallT Prect F-scoref{ Time (ms)|

MVDepthNet [48] single 0.040  0.240 0.831 0.208 0.329 48
GPMVS [13] single 0.031 0.879 0.871 0.188 0.304 51
DPSNet [14] single 0.045 0.284 0.793 0.223 0.344 322

COLMAP [37] single 0.069  0.135 0.634 0.505 0.558 2076
Ours single 0.128  0.054 0.479 0.684 0.562 30

Atlas [30] double  0.062  0.128 0.732 0.382 0.499 292
Ours double  0.106  0.073 0.609 0.450 0.516 30
DeepV2D [44] single 0.057  0.239 0.646 0.329 0.431 347

Consistent Depth [28]  single 0.091 0.344  0.461 0.266 0.331 2321
Ours single 0.120  0.062  0.428 0.592 0.494 30

Table 1. 3D geometry metrics on ScanNet. We use two different training/validation splits following Atlas [30] (top block) and BA-Net
[42] (bottom block). We elaborate the meaning of the single and double layer in the supplementary material.

Method AbsRel | AbsDiff | SqRell] RMSE | 0<1251 Comp?

COLMAP [37] 0.137 0.264 0.138 0.502 834 0.871

MVDepthNet [48] 0.098 0.191 0.061 0.293 89.6 0.928

GPMVS [13] 0.130 0.239 0.339 0.472 90.6 0.928

DPSNet [14] 0.087 0.158 0.035 0.232 92.5 0.928

Atlas [30] 0.065 0.123 0.045 0.251 93.6 0.999

Ours 0.065 0.106 0.031 0.195 94.8 0.909
Method AbsRel] SqRel] RMSE| RMSElog) Sclnv| -
DeMoN [45] 0.231 0.520 0.761 0.289 0.284 -
BA-Net [42] 0.161 0.092 0.346 0.214 0.184 -
DeepV2D [44] 0.057 0.010 0.168 0.080 0.077 -
Consistent Depth [28] 0.073 0.037 0.217 0.105 0.103 -
Ours 0.047 0.024 0.164 0.093 0.092 -

Table 2. 2D depth metrics on ScanNet. We use two different training/validation splits following Atlas [30] (top block) and BA-Net [42]

(bottom block).

can produce coherent reconstructions both locally and glob-
ally. Our method also surpasses the volumetric baseline
method Atlas [30] on the accuracy, precision, and F-score.
The improvements potentially come from the design of lo-
cal fragment separation in our method, which can act as a
view-selection mechanism that avoids irrelevant image fea-
tures to be fused into the 3D volume. In terms of complete-
ness and recall, the proposed method has an inferior perfor-
mance compared to both depth-based methods and Atlas.
Since depth-based methods predict pixel-wise depth maps
on each view, the coverage of their predictions is high by
nature, but with the cost of accuracy. Being an offline ap-
proach, Atlas has the advantage of having a global context
from the entire sequence before predicting the geometry. As
aresult, Atlas sometimes achieves even better completeness
compared to the ground-truth due to its TSDF completion
capability. However, Atlas tends to predict over-smoothed
geometries, and the completed regions may be inaccurate.
As for 2D depth metrics, NeuralRecon also outperforms
previous state-of-the-art methods for almost all 2D depth
metrics, as shown in Tab. 2.

7-Scenes. 2D depth metrics and 3D geometry metrics are
evaluated on the 7-Scenes dataset. As shown in Tab. 3,
our method achieves comparable performance to the state-
of-the-art method CNMNet [26] and outperforms all other
methods. We believe that the accuracy of the proposed
method can be further improved by leveraging the planar

structure information as in CNMNet. Since the model used
here is only trained on ScanNet, the results also demonstrate
that NeuralRecon can generalize well beyond the domain of
the training data.

Efficiency. We also report the average running time of the
baselines and our method in Tab. 1. Only the inference time
on key frames is computed. A detailed timing analysis for
each module of NeuralRecon is presented in Table 4. For
volumetric methods (Atlas and ours), the running time is
obtained by dividing the time of reconstructing the TSDF
volume of a local fragment by the number of key frames in
the local fragment. Notice that the time for TSDF fusion
is not included for depth-based methods. The running time
for [44, 28, 24, 26, 45] and NeuralRecon is measured on an
NVIDIA RTX 2080Ti GPU. We use running time reported
in [30] and [55] for [48, 14, 37, 13, 30] and [53], respec-
tively.

As shown in Tab. 1, our time cost is 30ms per key
frame, achieving real-time speed at 33 key frames per sec-
ond and outperforming all previous methods. Specifically,
our method runs ~10x faster than Atlas, and 77 x faster
than Consistent Depth. Predicting the volumetric represen-
tation removes the redundant computation in depth-based
methods, which contributes to the fast running speed of
our method. Compared to Atlas, incrementally reconstruct-
ing geometry in local fragment avoids processing a huge
3D volume, leading to a faster speed than Atlas. The use
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Method Comp | Acc | Recallt  Prect  F-score T
DeepV2D [44] 0.180 0.518 0.175 0.087 0.115
CNMNet [26] 0.150 0.398 0.246 0.111 0.149

Ours 0.228 0.100 0.227 0.389 0.282

Method §<1251 AbsRel| SqRel] RMSE| Time]|

DeMoN [45] 31.88 0.3888 0.4198 0.8549 110
MVSNet [53] 64.09 0.2339 0.1904 0.5078 1050
N-RGBD [24] 69.26 0.1758 0.1123 0.4408 202
MYVDNet [48] 71.79 0.1925 0.2350 0.4585 48
DPSNet [14] 70.96 0.1991 0.1420 0.4382 322
DeepV2D [44] 42.80 0.4370 0.5530 0.8690 347
CNMNet [26] 76.64 0.1612 0.0832 0.3614 80
Ours 82.00 0.1550 0.1040 0.3470 30

Table 3. 3D geometry metrics (top block) and 2D depth metrics
(bottom block) on 7-Scenes. Time is measured in milliseconds.

of sparse convolution also contributes to the superior effi-
ciency of NeuralRecon.

4.3. Ablation Study

In this section, we conduct several ablation experiments
on the ScanNet dataset to discuss the effectiveness of com-
ponents in our method.

GRU Fusion. We validate the GRU Fusion design by com-
paring rows from (i) to (iv) in Tab. 5.

To validate the benefit of feature fusion, we compare row
(1) and row (ii) in Tab. 5. Using feature fusion with the av-
erage operation obtains nearly 5% improvement for the pre-
cision metric than conventional linear TSDF fusion. Visual-
ization in Fig. 5 shows that feature fusion with the average
operation can reconstruct smoother geometry. These results
demonstrate that feature fusion can be more effective than
TSDF fusion using the same average operation.

Comparing row (ii) and row (iii) in Tab. 5 shows that
replacing average operation with GRU gives 4% improve-
ment in terms of recall. The mesh in Fig. 5 (iii) is also more
complete than that in Fig. 5 (ii). These results demonstrate
that the GRU is more effective to selectively integrate only
the consistent information from the current-fragment to the
hidden state.

The recalls in row (iii) and row (iv) in Tab. 5 show that
fusion in the fragment bounding volume can produce much
more complete results. Visualization results in Fig. 5 (iii)
and (iv) show that, with fusion in the fragment bounding
volume, our method produces fewer artifacts on the ground.
Fusion in the fragment bounding volume can leverage the
context information in boundaries and produce more con-
sistent and complete surface estimation.

Number of views. We set 5, 7, 9 and 11 views as the
length of a fragment respectively. As shown in row (v) in
Tab. 5, the F-score has over 2% improvement when 9 views
are used as a fragment. As shown in visualization results in
Fig. 5 (v), with more views in a fragment, the geometry can
be reconstructed more accurately compared to Fig. 5 (iv).

Img. Enc. Unproj. Sparse Conv. GRU  Total
Level 1 1.27 3.70 2.18

4.03 Level 2 1.21 3.84 224 29.56
Level 3 2.18 5.11 3.80

Table 4. Timing analysis of NeuralRecon measured in millisec-
onds per key frame. The level number indicates the different
coarse-to-fine level. Img. Enc. stands for image encoder, Unproj.
stands for unprojection.

Fusion 3D Geometry Metrics
Area Method Recall Prec F-score
i 5 OCC Linear 0.576 0.386  0.462

#views

ii 5 oCC Avg 0.535 0432 0478
iii 5 OCC GRU 0.572 0426  0.488
v 5 FBV ~ GRU 0.613 0421 0.494
- 7 FBV ~ GRU 0.607 0.435  0.507
v 9 FBV GRU 0.609 0450 0.516
- 11 FBV GRU 0.593 0398  0.474

Table 5. Ablation study. We report 3D geometry metrics on Scan-
Net. OCC: fuse 3D geometric features G within the occupied
area where occupancy score o > 0. FBV: fuse 3D geometric fea-
tures G within the fragment bounding volume. Linear: remove
GRU-Fusion and use the conventional running-average-based lin-
ear TSDF fusion to update the global TSDF volume. Avg: fuse 3D
geometric features G with the average operation. GRU: fuse 3D
geometric features G| with GRU. We use row (v) in all other ex-
periments. More details about ablation experiments can be found
in the supplementary material.

Qualitative Results. We provide the qualitative results and
the corresponding analysis in Fig. 4.

5. Conclusion

In this paper, we introduced a novel system NeuralRecon
for real-time 3D reconstruction with monocular video. The
key idea is to jointly reconstruct and fuse sparse TSDF vol-
umes for each video fragment incrementally by 3D sparse
convolutions and GRU. This design enables NeuralRecon
to output accurate and coherent reconstruction in real-time.
Experiments show that NeuralRecon outperforms state-of-
the-art methods in both reconstruction quality and running
speed. The sparse TSDF volume reconstructed by Neural-
Recon can be directly used in downstream tasks like 3D
object detection, 3D semantic segmentation and neural ren-
dering. We believe that, by jointly training with the down-
stream tasks end-to-end, NeuralRecon enables new possi-
bilities in learning-based multi-view perception and recog-
nition systems.
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NSFC (No. 61806176), and ZJU-SenseTime Joint Lab of
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Ground Truth

= |

Figure 4. Qualitative results on ScanNet. Compared to depth-based methods, NeuralRecon can produce much more coherent recon-
struction results. Notice that our method also recovers sharper geometry compared to Atlas [30], which illustrates the effectiveness of
the local fragment design in our method. Reconstructing only within the local fragment window avoids irrelevant image features from
far-away camera views to be fused into the 3D volume. The color indicates surface normal. More qualitative results can be found in the
supplementary material and the project webpage. Zoom in for details.

Figure 5. Ablation study. The indications of Roman numerals are in Tab. 5. The analysis is presented in Sec. 4.3.
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