
Neural Geometric Level of Detail:

Real-time Rendering with Implicit 3D Shapes

Towaki Takikawa1,2,4* Joey Litalien1,3* Kangxue Yin1 Karsten Kreis1 Charles Loop1

Derek Nowrouzezahrai3 Alec Jacobson2 Morgan McGuire1,3 Sanja Fidler1,2,4

1NVIDIA 2University of Toronto 3McGill University 4Vector Institute

nv-tlabs.github.io/nglod

Abstract

Neural signed distance functions (SDFs) are emerging

as an effective representation for 3D shapes. State-of-the-

art methods typically encode the SDF with a large, fixed-

size neural network to approximate complex shapes with

implicit surfaces. Rendering with these large networks is,

however, computationally expensive since it requires many

forward passes through the network for every pixel, making

these representations impractical for real-time graphics.

We introduce an efficient neural representation that, for

the first time, enables real-time rendering of high-fidelity

neural SDFs, while achieving state-of-the-art geometry

reconstruction quality. We represent implicit surfaces

using an octree-based feature volume which adaptively

fits shapes with multiple discrete levels of detail (LODs),

and enables continuous LOD with SDF interpolation. We

further develop an efficient algorithm to directly render our

novel neural SDF representation in real-time by querying

only the necessary LODs with sparse octree traversal. We

show that our representation is 2–3 orders of magnitude

more efficient in terms of rendering speed compared to

previous works. Furthermore, it produces state-of-the-art

reconstruction quality for complex shapes under both 3D

geometric and 2D image-space metrics.

1. Introduction

Advanced geometric modeling and rendering techniques

in computer graphics use 3D shapes with complex details,

arbitrary topology, and quality, usually leveraging polygon

meshes. However, it is non-trivial to adapt those represen-

tations to learning-based approaches since they lack differ-

entiability, and thus cannot easily be used in computer vi-

sion applications such as learned image-based 3D recon-

struction. Recently, neural approximations of signed dis-

tance functions (neural SDFs) have emerged as an attrac-

*Authors contributed equally.

7.63 KB 19.25 KB

56.00 KB 210.75 KB

903.63 KB

2 2.5 3 3.5 4

Figure 1: Levels of Detail. Our representation pools features from

multiple scales to adaptively reconstruct high-fidelity geometry

with continuous level of detail (LOD). The subfigures show sur-

faces (blue) at varying LODs, superimposed on the corresponding

coarse, sparse octrees (orange) which contain the features of the

learned signed distance functions. These were directly rendered in

real-time using our efficient sparse sphere tracing algorithm.

tive choice to scale up computer vision and graphics appli-

cations. Prior works [36, 31, 6, 8] have shown that neural

networks can encode accurate 3D geometry without restric-

tions on topology or resolution by learning the SDF, which

defines a surface by its zero level-set. These works com-

monly use a large, fixed-size multi-layer perceptron (MLP)

as the learned distance function.

Directly rendering and probing neural SDFs typically re-

lies on sphere tracing [17], a root-finding algorithm that can

11358

Figure 2: We are able to fit shapes of varying complexity, style, scale, with consistently good quality, while being able to leverage the

geometry for shading, ambient occlusion [11], and even shadows with secondary rays. Best viewed zoomed in.

require hundreds of SDF evaluations per pixel to converge.

As a single forward pass through a large MLP-based SDF

can require millions of operations, neural SDFs quickly be-

come impractical for real-time graphics applications as the

cost of computing a single pixel inflates to hundreds of mil-

lions of operations. Works such as Davies et al. [8] circum-

vent this issue by using a small neural network to overfit

single shapes, but this comes at the cost of generality and

reconstruction quality. Previous approaches also use fixed-

size neural networks, making them unable to express geom-

etry with complexity exceeding the capacity of the network.

In this paper, we present a novel representation for neu-

ral SDFs that can adaptively scale to different levels of de-

tail (LODs) and reconstruct highly detailed geometry. Our

method can smoothly interpolate between different scales

of geometry (see Figure 1) and can be rendered in real-time

with a reasonable memory footprint. Similar to Davies et

al. [8], we also use a small MLP to make sphere tracing

practical, but without sacrificing quality or generality.

We take inspiration from classic surface extraction

mechanisms [26, 12] which use quadrature and spatial data

structures storing distance values to finely discretize the Eu-

clidean space such that simple, linear basis functions can re-

construct the geometry. In such works, the resolution or tree

depth determines the geometric level of detail (LOD) and

different LODs can be blended with interpolation. How-

ever, they usually require high tree depths to recreate a so-

lution with satisfying quality.

In contrast, we discretize the space by using a sparse

voxel octree (SVO) and we store learned feature vectors in-

stead of signed distance values. These vectors can be de-

coded into scalar distances using a shallow MLP, allowing

us to truncate the tree depth while inheriting the advantages

of classic approaches (e.g., LOD). We additionally develop

a ray traversal algorithm tailored to our architecture, which

allows us to render geometry close to 100× faster than

DeepSDF [36]. Although direct comparisons with neural

volumetric rendering methods are not possible, we report

frametimes over 500× faster than NeRF [32] and 50× faster

than NSVF [24] in similar experimental settings.

In summary, our contributions are as follows:

• We introduce the first real-time rendering approach for

complex geometry with neural SDFs.

• We propose a neural SDF representation that can ef-

ficiently capture multiple LODs, and reconstruct 3D

geometry with state-of-the-art quality (see Figure 2).

• We show that our architecture can represent 3D shapes

in a compressed format with higher visual fidelity than

traditional methods, and generalizes across different

geometries even from a single learned example.

Due to the real-time nature of our approach, we en-

vision this as a modular building block for many down-

stream applications, such as scene reconstruction from im-

ages, robotics navigation, and shape analysis.

2. Related Work

Our work is most related to prior research on mesh sim-

plification for level of detail, 3D neural shape representa-

tions, and implicit neural rendering.

Level of Detail. Level of Detail (LOD) [27] in computer

graphics refers to 3D shapes that are filtered to limit feature

variations, usually to approximately twice the pixel size in

image space. This mitigates flickering caused by aliasing,

and accelerates rendering by reducing model complexity.

While signal processing techniques can filter textures [46],

geometry filtering is representation-specific and challeng-

ing. One approach is mesh decimation, where a mesh is

simplified to a budgeted number of faces, vertices, or edges.

Classic methods [14, 18] greedily remove mesh elements

with the smallest impact on geometric accuracy. More re-

cent methods optimize for perceptual metrics [23, 22, 7] or

focus on topology [29]. Meshes suffer from discretization

errors under low memory constraints and have difficulty

blending between LODs. In contrast, SDFs can represent

smooth surfaces with less memory and smoothly blend be-

tween LODs to reduce aliasing. Past works [40, 44] have

also shown impressive performance on compressing grid

SDFs. Our neural SDFs inherit these properties.

Neural Implicit Surfaces. Implicit surface-based meth-

ods encode geometry in latent vectors or neural network

weights, which parameterize surfaces through level-sets.

11359

Query point Octree feature volume Voxel feature retrieval Trilinear interpolation Predicted

distance

Summed

features

Surface

extractor

Figure 3: Architecture. We encode our neural SDF using a sparse voxel octree (SVO) which holds a collection of features Z . The levels of

the SVO define LODs and the voxel corners contain feature vectors defining local surface segments. Given query point x and LOD L, we

find corresponding voxels V1:L, trilinearly interpolate their corners z
(j)
V up to L and sum to obtain a feature vector z(x). Together with x,

this feature is fed into a small MLP fθL to obtain a signed distance d̂L. We jointly optimize MLP parameters θ and features Z end-to-end.

Seminal works [36, 31, 6] learn these iso-surfaces by encod-

ing the shapes into latent vectors using an auto-decoder—a

large MLP which outputs a scalar value conditional on the

latent vector and position. Another concurrent line of work

[43, 41] uses periodic functions resulting in large improve-

ments in reconstruction quality. Davies et al. [8] proposes

to overfit neural networks to single shapes, allowing a com-

pact MLP to represent the geometry. Works like Curriculum

DeepSDF [10] encode geometry in a progressively grow-

ing network, but discard intermediate representations. BSP-

Net and CvxNet [5, 9] learn implicit geometry with space-

partitioning trees. PIFu [38, 39] learns features on a dense

2D grid with depth as an additional input parameter, while

other works learn these on sparse regular [15, 3, 20] or de-

formed [13] 3D grids. PatchNets [45] learn surface patches,

defined by a point cloud of features. Most of these works

rely on an iso-surface extraction algorithm like Marching

Cubes [26] to create a dense surface mesh to render the ob-

ject. In contrast, in this paper we present a method that

directly renders the shape at interactive rates.

Neural Rendering for Implicit Surfaces. Many works fo-

cus on rendering neural implicit representations. SRN [42]

renders implicit surfaces by directly predicting depth.

Niemeyer et al. [34] proposes a differentiable renderer for

implicit surfaces using ray marching. DIST [25] and SDFD-

iff [21] present differentiable renderers for SDFs using

sphere tracing. These differentiable renderers are agnos-

tic to the ray-tracing algorithm; they only require the dif-

ferentiability with respect to the ray-surface intersection.

As such, we can leverage the same techniques proposed in

these works to make our renderer also differentiable. NeRF

[32] learns geometry as density fields and uses ray marching

to visualize them. IDR [47] attaches an MLP-based shading

function to a neural SDF, disentangling geometry and shad-

ing. NSVF [24] is similar to our work in the sense that it

also encodes feature representations with a sparse octree. In

contrast to NSVF, our work enables level of detail and uses

sphere tracing, which allows us to separate out the geometry

from shading and therefore optimize ray tracing, something

not possible in a volumetric rendering framework. As men-

tioned previously, our renderer is two orders of magnitude

faster compared to numbers reported in NSVF [24].

3. Method

Our goal is to design a representation which reconstructs

detailed geometry and enables continuous level of detail,

all whilst being able to render at interactive rates. Figure 3

shows a visual overview of our method. Section 3.1 pro-

vides a background on neural SDFs and its limitations. We

then present our method which encodes the neural SDF in a

sparse voxel octree in Section 3.2 and provide training de-

tails in Section 3.3. Our rendering algorithm tailored to our

representation is described in Section 3.4.

3.1. Neural Signed Distance Functions (SDFs)

SDFs are functions f : R
3 → R where d = f(x)

is the shortest signed distance from a point x to a surface

S = ∂M of a volumeM ⊂ R
3, where the sign indicates

whether x is inside or outside ofM. As such, S is implicitly

represented as the zero level-set of f :

S =
{
x ∈ R

3
∣∣ f(x) = 0

}
. (1)

+

–

A neural SDF encodes the SDF as the

parameters θ of a neural network fθ.

Retrieving the signed distance for a

point x ∈ R
3 amounts to computing

fθ(x) = d̂. The parameters θ are optimized with the

loss J(θ) = Ex,dL
(
fθ(x), d

)
, where d is the ground-truth

signed distance and L is some distance metric such as L2-

distance. An optional input “shape” feature vector z ∈ R
m

can be used to condition the network to fit different shapes

with a fixed θ.

To render neural SDFs directly, ray-tracing can be done

with a root-finding algorithm such as sphere tracing [17].

This algorithm can perform up to a hundred distance queries

per ray, making standard neural SDFs prohibitively expen-

sive if the network is large and the distance query is too

slow. Using small networks can speed up this iterative ren-

dering process, but the reconstructed shape may be inaccu-

rate. Moreover, fixed-size networks are unable to fit highly

complex shapes and cannot adapt to simple or far-away ob-

jects where visual details are unnecessary.

11360

In the next section, we describe a framework that ad-

dresses these issues by encoding the SDF using a sparse

voxel octree, allowing the representation to adapt to differ-

ent levels of detail and to use shallow neural networks to

encode geometry whilst maintaining geometric accuracy.

3.2. Neural Geometric Levels of Detail

Framework. Similar to standard neural SDFs, we repre-

sent SDFs using parameters of a neural network and an ad-

ditional learned input feature which encodes the shape. In-

stead of encoding shapes using a single feature vector z as

in DeepSDF [36], we use a feature volume which contains

a collection of feature vectors, which we denote by Z .

We store Z in a sparse voxel octree (SVO) spanning the

bounding volume B = [−1, 1]3. Each voxel V in the SVO

holds a learnable feature vector z
(j)
V ∈ Z at each of its eight

corners (indexed by j), which are shared if neighbour voxels

exist. Voxels are allocated only if the voxel V contains a

surface, making the SVO sparse.

Each level L ∈ N of the SVO defines a LOD for the ge-

ometry. As the tree depth L in the SVO increases, the sur-

face is represented with finer discretization, allowing recon-

struction quality to scale with memory usage. We denote

the maximum tree depth as Lmax. We additionally employ

small MLP neural networks fθ1:Lmax
, denoted as decoders,

with parameters θ1:Lmax
= {θ1, . . . , θLmax

} for each LOD.

To compute an SDF for a query point x ∈ R
3 at the

desired LOD L, we traverse the tree up to level L to find

all voxels V1:L = {V1, . . . , VL} containing x. For each

level ℓ ∈ {1, . . . , L}, we compute a per-voxel shape vec-

tor ψ(x; ℓ,Z) by trilinearly interpolating the corner features

of the voxels at x. We sum the features across the levels

to get z(x;L,Z) =
∑L

ℓ=1 ψ(x; ℓ,Z), and pass them into

the MLP with LOD-specific parameters θL. Concretely, we

compute the SDF as

d̂L = fθL
(
[x , z(x;L,Z)]

)
, (2)

where [· , ·] denotes concatenation. This summation across

LODs allows meaningful gradients to propagate across

LODs, helping especially coarser LODs.

Since our shape vectors z
(j)
V now only represent small

surface segments instead of entire shapes, we can move the

computational complexity out of the neural network fθ and

into the feature vector query ψ : R3 → R
m, which amounts

to a SVO traversal and a trilinear interpolation of the voxel

features. This key design decision allows us to use very

small MLPs, enabling significant speed-ups without sacri-

ficing reconstruction quality.

Level Blending. Although the levels of the octree are dis-

crete, we are able to smoothly interpolate between them. To

obtain a desired continuous LOD L̃ ≥ 1, we blend between

different discrete octree LODs L by linearly interpolating

the corresponding predicted distances:

d̂L̃ = (1− α) d̂L∗ + α d̂L∗+1, (3)

where L∗ = ⌊L̃⌋ and α = L̃ − ⌊L̃⌋ is the fractional part,

allowing us to smoothly transition between LODs (see Fig-

ure 1). This simple blending scheme only works for SDFs,

and does not work well for density or occupancy and is ill-

defined for meshes and point clouds. We discuss how we

set the continuous LOD L̃ at render-time in Section 3.4.

3.3. Training

We ensure that each discrete level L of the SVO repre-

sents valid geometry by jointly training each LOD. We do

so by computing individual losses at each level and sum-

ming them across levels:

J(θ,Z) = Ex,d

Lmax∑

L=1

∥∥fθL
(
[x , z(x;L,Z)]

)
− d

∥∥2. (4)

We then stochastically optimize the loss function with re-

spect to both θ1:Lmax
and Z . The expectation is estimated

with importance sampling for the points x ∈ B. We use

samples from a mixture of three distributions: uniform sam-

ples in B, surface samples, and perturbed surface samples.

We detail these sampling algorithms and specific training

hyperparameters in the supplementary materials.

3.4. Interactive Rendering

Sphere Tracing. We use sphere tracing [17] to render our

representation directly. Rendering an SVO-based SDF us-

ing sphere tracing, however, raises some technical implica-

tions that need to be addressed. Typical SDFs are defined

on all of R3. In contrast, our SVO SDFs are defined only for

voxels V which intersect the surface geometry. Therefore,

proper handling of distance queries made in empty space is

required. One option is to use a constant step size, i.e. ray

marching, but there is no guarantee the trace will converge

because the step can overshoot.

Instead, at the beginning of the frame we first perform a

ray-SVO intersection (details below) to retrieve every voxel

V at each resolution ℓ that intersects with the ray. Formally,

if r(t) = x0 + td, t > 0 is a ray with origin x0 ∈ R
3 and

direction d ∈ R
3, we let Vℓ(r) denote the depth-ordered set

of intersected voxels by r at level ℓ.
Each voxel in Vℓ(r) contains the intersected ray index,

voxel position, parent voxel, and pointers to the eight corner

feature vectors z
(j)
V . We retrieve pointers instead of feature

vectors to save memory. The feature vectors are stored in

a flattened array, and the pointers are precalculated in an

initialization step by iterating over all voxels and finding

corresponding indices to the features in each corner.

Adaptive Ray Stepping. For a given ray in a sphere

trace iteration k, we perform a ray-AABB intersection [28]

11361

Octree intersection Sphere tracing

Skip

No hit

Figure 4: Adaptive Ray Steps. When the query point is inside

a voxel (e.g., x), trilinear interpolation is performed on all cor-

responding voxels up to the base octree resolution to compute a

sphere tracing step (right). When the query point is outside a voxel

(e.g., y), ray-AABB intersection is used to skip to the next voxel.

against the voxels in the target LOD level L to retrieve the

first voxel V ∗

L ∈ VL(r) that hits. If xk /∈ V
∗

L , we advance x

to the ray-AABB intersection point. If xk ∈ V
∗

L , we query

our feature volume. We recursively retrieve all parent vox-

els V ∗

ℓ corresponding to the coarser levels ℓ ∈ {1, ..., L−1},
resulting in a collection of voxels V ∗

1:L. We then sum the tri-

linearly interpolated features at each node. Note the parent

nodes always exist by construction. The MLP fθL then pro-

duces a conservative distance d̂L to move in direction d, and

we take a standard sphere tracing step: xk+1 ← xk + d̂Ld.

If xk+1 is now in empty space, we skip to the next voxel

in VL(r) along the ray and discard the ray r if none exists.

If xk+1 is inside a voxel, we perform a sphere trace step.

This repeats until all rays miss or if a stopping criterion is

reached to recover a hit point x∗ ∈ S . The process is il-

lustrated in Figure 4. This adaptive stepping enables voxel

sparsity by never having to query in empty space, allow-

ing a minimal storage for our representation. We detail the

stopping criterion in the supplementary material.

Sparse Ray-Octree Intersection. We now describe our

novel ray-octree intersection algorithm that makes use of a

breadth-first traversal strategy and parallel scan kernels [30]

to achieve high performance on modern graphics hardware.

Algorithm 1 provides pseudocode of our algorithm. We

provide subroutine details in the supplemental material.

Algorithm 1 Iterative, parallel, breadth-first octree traversal

1: procedure RAYTRACEOCTREE(L,R)

2: N
(0)
i ← {i, 0}, i = 0, . . . , |R| − 1

3: for ℓ = 0 to L do

4: D← DECIDE(R,N(ℓ), ℓ)
5: S← EXCLUSIVESUM(D)
6: if ℓ = L then

7: N
(ℓ) ← COMPACTIFY(N(ℓ),D,S)

8: else

9: N
(ℓ+1) ← SUBDIVIDE(N(ℓ),D,S)

This algorithm first generates a set of raysR (indexed by

i) and stores them in an array N
(0) of ray-voxel pairs, which

are proposals for ray-voxel intersections. We initialize each

N
(0)
i ∈ N

(0) with the root node, the octree’s top-level voxel

(line 2). Next, we iterate over the octree levels ℓ (line 3). In

each iteration, we determine the ray-voxel pairs that result

in intersections in DECIDE, which returns a list of decisions

D with Dj = 1 if the ray intersects the voxel and Dj = 0
otherwise (line 4). Then, we use EXCLUSIVESUM to com-

pute the exclusive sum S of list D, which we feed into the

next two subroutines (line 5). If we have not yet reached

our desired LOD level L, we use SUBDIVIDE to populate

the next list N(ℓ+1) with child voxels of those N
(ℓ)
j that the

ray intersects and continue the iteration (line 9). Otherwise,

we use COMPACTIFY to remove all N
(ℓ)
j that do not result

in an intersection (line 7). The result is a compact, depth-

ordered list of ray-voxel intersections for each level of the

octree. Note that by analyzing the octant of space that the

ray origin falls into inside the voxel, we can order the child

voxels so that the list of ray-voxel pairs N
(L) will be or-

dered by distance to the ray origin.

LOD Selection. We choose the LOD L̃ for rendering with

a depth heuristic, where L̃ transitions linearly with user-

defined thresholds based on distance to object. More prin-

cipled approaches exist [2], but we leave the details up to

the user to choose an algorithm that best suits their needs.

4. Experiments

We perform several experiments to showcase the ef-

fectiveness of our architecture. We first fit our model to

3D mesh models from datasets including ShapeNet [4],

Thingi10K [48], and select models from TurboSquid1, and

evaluate them based on both 3D geometry-based metrics as

well as rendered image-space metrics. We also demonstrate

that our model is able to fit complex analytic signed distance

functions with unique properties from Shadertoy2. We addi-

tionally show results on real-time rendering, generalization

to multiple shapes, and geometry simplification.

The MLP used in our experiments has only a single hid-

den layer with dimension h = 128 with a ReLU activation

in the intermediate layer, thereby being significantly smaller

and faster to run than the networks used in the baselines we

compare against, as shown in our experiments. We use a

SVO feature dimension of m = 32. We initialize voxel

features z ∈ Z using a Gaussian prior with σ = 0.01.

4.1. Reconstructing 3D Datasets

We fit our architecture on several different 3D datasets,

to evaluate the quality of the reconstructed surfaces. We

compare against baselines including DeepSDF [36], Fourier

Feature Networks [43], SIREN [41], and Neural Implic-

1https://www.turbosquid.com
2https://www.shadertoy.com

11362

ShapeNet150 [4] Thingi32 [48] TurboSquid16

Storage (KB) # Inference Param. gIoU ↑ Chamfer-L1 ↓ gIoU ↑ Chamfer-L1 ↓ iIoU ↓ Normal-L2 ↓ gIoU ↑ Chamfer-L1 ↓

DeepSDF [36] 7 186 1 839 614 86.9 0.316 96.8 0.0533 97.6 0.180 93.7 0.211

FFN [43] 2 059 526 977 88.5 0.077 97.7 0.0329 95.5 0.181 92.2 0.362

SIREN [41] 1 033 264 449 78.4 0.381 95.1 0.0773 92.9 0.208 82.1 0.488

Neural Implicits [8] 30 7 553 82.2 0.500 96.0 0.0919 93.5 0.211 82.7 0.354

Ours / LOD 1 96 4 737 84.6 0.343 96.8 0.0786 91.9 0.224 79.7 0.471

Ours / LOD 2 111 4 737 88.3 0.198 98.2 0.0408 94.2 0.201 87.3 0.283

Ours / LOD 3 163 4 737 90.4 0.112 99.0 0.0299 96.1 0.184 91.3 0.162

Ours / LOD 4 391 4 737 91.6 0.069 99.3 0.0273 97.1 0.170 94.3 0.111

Ours / LOD 5 1 356 4 737 91.7 0.062 99.4 0.0271 98.3 0.166 95.8 0.085

Ours / LOD 6 9 826 4 737 – – – – 98.5 0.167 96.7 0.076

Table 1: Mesh Reconstruction. This table shows architectural and per-shape reconstruction comparisons against three different datasets.

We see that under all evaluation schemes, our architecture starting from LOD 3 performs much better despite having much lower storage

and inference parameters. The storage for our representation is calculated based on the average sparse voxel counts across all shapes in all

datasets plus the decoder size, and # Inference Param. measures network parameters used for a single distance query.

its (NI) [8]. These architectures show state-of-the-art per-

formance on overfitting to 3D shapes and also have source

code available. We reimplement these baselines to the best

of our ability using their source code as references, and pro-

vide details in the supplemental material.

Mesh Datasets. Table 1 shows overall results across

ShapeNet, Thingi10K, and TurboSquid. We sample 150,

32, and 16 shapes respectively from each dataset, and over-

fit to each shape using 100, 100 and 600 epochs respec-

tively. For ShapeNet150, we use 50 shapes each from the

car, airplane and chair categories. For Thingi32, we use

32 shapes tagged as scans. ShapeNet150 and Thingi32 are

evaluated using Chamfer-L1 distance (multiplied by 103)

and intersection over union over the uniformly sampled

points (gIoU). TurboSquid has much more interesting sur-

face features, so we use both the 3D geometry-based met-

rics as well as image-space metrics based on 32 multi-view

rendered images. Specifically, we calculate intersection

over union for the segmentation mask (iIoU) and image-

space normal alignment using L2-distance on the mask in-

tersection. The shape complexity roughly increases over the

datasets. We train 5 LODs for ShapeNet150 and Thingi32,

and 6 LODs for TurboSquid. For dataset preparation, we

follow DualSDF [16] and normalize the mesh, remove inter-

nal triangles, and sign the distances with ray stabbing [35].

Storage (KB) corresponds to the sum of the decoder size

and the representation, assuming 32-bit precision. For our

architecture, the decoder parameters consist of 90 KB of

the storage impact, so the effective storage size is smaller

for lower LODs since the decoder is able to generalize to

multiple shapes. The # Inference Params. are the number of

parameters required for the distance query, which roughly

correlates to the number of flops required for inference.

Across all datasets and metrics, we achieve state-of-the-

art results. Notably, our representation shows better results

starting at the third LOD, where we have minimal storage

impact. We also note our inference costs are fixed at 4 737

NI [8] FFN [43] Ours / LOD 6 Reference

Figure 5: Comparison on TurboSquid. We qualitatively compare

the mesh reconstructions. Only ours is able to recover fine details,

with speeds 50× faster than FFN and comparable to NI. We render

surface normals to highlight geometric details.

floats across all resolutions, requiring 99% less inference

parameters compared to FFN [43] and 37% less than Neural

Implicits [8], while showing better reconstruction quality

(see Figure 5 for a qualitative evaluation).

Special Case Analytic SDFs. We also evaluate reconstruc-

tion on two particularly difficult analytic SDFs collected

from Shadertoy. The Oldcar model is a highly non-metric

SDF, which does not satisfy the Eikonal equation |∇f | = 1
and contains discontinuities. This is a critical case to han-

dle, because non-metric SDFs are often exploited for spe-

cial effects and easier modeling of SDFs. The Mandelbulb

is a recursive fractal with infinite resolution. Both SDFs are

defined by mathematical expressions, which we extract and

sample distance values from. We train these analytic shapes

for 100 epochs against 5× 106 samples per epoch.

Only our architecture can capture the high-frequency de-

tails of these complex examples to reasonable accuracy. No-

11363

DeepSDF [36] FFN [43] SIREN [41] Neural Implicits [8] Ours / LOD 5 Reference

Figure 6: Analytic SDFs. We test against two difficult analytic SDF examples from Shadertoy; the Oldcar, which contains a highly

non-metric signed distance field, as well as the Mandelbulb, which is a recursive fractal structure that can only be expressed using implicit

surfaces. Only our architecture can reasonably reconstruct these hard cases. We render surface normals to highlight geometric details.

Method / LOD 1 2 3 4 5

DeepSDF (100 epochs) [36] 0.0533 0.0533 0.0533 0.0533 0.0533

FFN (100 epochs) [43] 0.0329 0.0329 0.0329 0.0329 0.0329

Ours (30 epochs) 0.1197 0.0572 0.0345 0.0285 0.0278

Ours (30 epochs, pretrained) 0.1018 0.0499 0.0332 0.0287 0.0279

Ours (100 epochs) 0.0786 0.0408 0.0299 0.0273 0.0271

Table 2: Chamfer-L1 Convergence. We evaluate the perfor-

mance of our architecture on the Thingi32 dataset under different

training settings and report faster convergence for higher LODs.

tably, both FFN [43] and SIREN [41] seem to fail entirely;

this is likely because both can only fit smooth distance fields

and are unable to handle discontinuities and recursive struc-

tures. See Figure 6 for a qualitative comparison.

Convergence. We perform experiments to evaluate training

convergence speeds of our architecture. Table 2 shows re-

construction results on Thingi32 on our model fully trained

for 100 epochs, trained for 30 epochs, and trained for 30

epochs from pretrained weights on the Stanford Lucy statue

(Figure 1). We find that our architecture converges quickly

and achieves better reconstruction even with roughly 45%

the training time of DeepSDF [36] and FFN [43], which are

trained for the full 100 epochs. Finetuning from pretrained

weights helps with lower LODs, but the difference is small.

Our representation swiftly converges to good solutions.

4.2. Rendering Performance

We also evaluate the inference performance of our archi-

tecture, both with and without our rendering algorithm. We

first evaluate the performance using a naive Python-based

sphere tracing algorithm in PyTorch [37], with the same im-

plementation across all baselines for fair comparison. For

the Python version of our representation, we store the fea-

tures on a dense voxel grid, since a naive sphere tracer can-

not handle sparsity. For the optimized implementation, we

show the performance of our representation using a renderer

implemented using libtorch [37], CUB [30], and CUDA.

Table 3 shows frametimes on the TurboSquid V Mech

scene with a variety of different resolutions. Here, we mea-

sure frametime as the CUDA time for the sphere trace and

normal computation. The # Visible Pixels column shows

the number of pixels occupied in the image by the model.

We see that both our naive PyTorch renderer and sparse-

optimized CUDA renderer perform better than the base-

lines. In particular, the sparse frametimes are more than

100× faster than DeepSDF while achieving better visual

quality with less parameters. We also notice that our frame-

times decrease significantly as LOD decreases for our naive

renderer but less so for our optimized renderer. This is be-

cause the bottleneck of the rendering is not in the ray-octree

intersect—which is dependent on the number of voxels—

but rather in the MLP inference and miscellaneous memory

I/O. We believe there is still significant room for improve-

ment by caching the small MLP decoder to minimize data

movement. Nonetheless, the lower LODs still benefit from

lower memory consumption and storage.

4.3. Generalization

We now show that our surface extraction mechanism can

generalize to multiple shapes, even from being trained on

a single shape. This is important because loading distinct

weights per object as in [8, 41] incurs large amounts of

memory movement, which is expensive. With a general sur-

face extraction mechanism, the weights can be pre-loaded

and multi-resolution voxels can be streamed-in on demand.

Table 4 shows results on Thingi32. DeepSDF [36], FFN

[43] and Ours (overfit) are all overfit per shape. Ours (gen-

eral) first overfits the architecture on the Stanford Lucy

model, fixes the surface extraction network weights, and

trains only the sparse features. We see that our representa-

tion fares better, even against large networks that are over-

fitting to each specific shape examples. At the lowest LOD,

11364

Frametimes (ms) / Improvement Factor

Resolution # Visible Pixels DeepSDF [36] FFN [43] SIREN [41] NI [8] Ours (N) / LOD 4 Ours (N) / LOD 6 Ours (S) / LOD 4 Ours (S) / LOD 6

640 × 480 94 624 1 693 / 57× 1 058 / 35× 595 / 20× 342 / 11× 164 / 5× 315 / 11× 28 30 / 1×
1 280 × 720 213 937 4 901 / 96× 2 760 / 54× 1 335 / 26 × 407 / 8× 263 / 5× 459 / 9× 50 51 / 1×

1 920 × 1 080 481 828 10 843 / 119× 5 702 / 62× 2 946 / 32× 701 / 8× 473 / 5× 784 / 9× 93 91 / 1×

Table 3: Rendering Frametimes. We show runtime comparisons between different representations, where (N) and (S) correspond to our

naive and sparse renderers, respectively. We compare baselines against Ours (Sparse) at LOD 6. # Visible Pixels shows the number of

pixels occupied by the benchmarked scene (TurboSquid V Mech), and frametime measures ray-tracing and surface normal computation.

Chamfer-L1 ↓

Method / L 1 2 3 4 5

DeepSDF (overfit per shape) [36] 0.0533 0.0533 0.0533 0.0533 0.0533

FFN (overfit per shape) [43] 0.0322 0.0322 0.0322 0.0322 0.0322

Ours (overfit per shape) 0.0786 0.0408 0.0299 0.0273 0.0271

Ours (general) 0.0613 0.0378 0.0297 0.0274 0.0272

Table 4: Generalization. We evaluate generalization on Thingi32.

Ours (general) freezes surface extractor weights pretrained on a

single shape, and only trains the feature volume. Even against

large overfit networks, we perform better at high LODs.

1 2 3 Ref

O
u

rs
E

d
g

e
 C

o
ll

a
p

se

L gIoU ↑ Chamfer-L1 ↓ iIoU ↑ Normal-L2 ↓

1 94.4 0.052 97.4 0.096

Decimation [14] 2 97.4 0.026 98.7 0.069

3 99.1 0.019 99.5 0.044

1 96.0 / +1.6 0.063 / +0.011 96.4 / −1.0 0.044 / −0.052

Ours 2 97.8 / +0.4 0.030 / +0.004 97.6 / −1.1 0.035 / −0.034

3 98.8 / −0.3 0.023 / +0.004 98.2 / −1.3 0.030 / −0.014

Figure 7: Comparison with Mesh Decimation. At low memory

budgets, our model is able to maintain visual details better than

mesh decimation, as seen from lower normal-L2 error.

the surface extractor struggles to reconstruct good surfaces,

as expected; the features become increasingly high-level

and complex for lower LODs.

4.4. Geometry Simplification

In this last experiment, we evaluate how our low LODs

perform against classic mesh decimation algorithms, in par-

ticular edge collapse [14] in libigl [19]. We compare against

mesh decimation instead of mesh compression algorithms

[1] because our model can also benefit from compression

and mesh decoding incurs additional runtime cost. We first

evaluate our memory impact, whichM = (m+1) |V1:Lmax
|

bytes where m + 1 is the feature dimension along with the

Z-order curve [33] for indexing, and |V1:Lmax
| is the octree

size. We then calculate the face budget as F = M/3 since

the connectivity can be arbitrary. As such, we choose a con-

servative budget to benefit the mesh representation.

Figure 7 shows results on the Lion statue from Thingi32.

We see that as the memory budget decreases, the relative ad-

vantage on the perceptual quality of our method increases,

as evidenced by the image-based normal error. The SDF

can represent smooth features easily, whereas the mesh suf-

fers from discretization errors as the face budget decreases.

Our representation can also smoothly blend between LODs

by construction, something difficult to do with meshes.

5. Limitations and Future Work

In conclusion, we introduced Neural Geometric LOD,

a representation for implicit 3D shapes that achieves state-

of-the-art geometry reconstruction quality while allowing

real-time rendering with acceptable memory footprint. Our

model combines a small surface extraction neural network

with a sparse-octree data structure that encodes the geom-

etry and naturally enables LOD. Together with a tailored

sphere tracing algorithm, this results in a method that is both

computationally performant and highly expressive.

Our approach heavily depends on the point samples used

during training. Therefore, scaling our representation to ex-

tremely large scenes or very thin, volume-less geometry is

difficult. Furthermore, we are not able to easily animate or

deform our geometry using traditional methods. We iden-

tify these challenges as promising directions for future re-

search. Nonetheless, we believe our model represents a ma-

jor step forward in neural implicit function-based geometry,

being, to the best of our knowledge, the first representation

of this kind that can be rendered and queried in real-time.

We hope that it will serve as an important component for

many downstream applications, such as scene reconstruc-

tion, ultra-precise robotics path planning, interactive con-

tent creation, and more.

Acknowledgements. We thank Jean-Francois Lafleche, Pe-

ter Shirley, Kevin Xie, Jonathan Granskog, Alex Evans, and

Alex Bie for interesting discussions throughout the project.

We also thank Jacob Munkberg, Peter Shirley, Alexander

Majercik, David Luebke, Jonah Philion, and Jun Gao for

help with paper review.

11365

References

[1] Pierre Alliez and Craig Gotsman. Recent advances in com-

pression of 3D meshes. In Advances in Multiresolution for

Geometric Modelling, pages 3–26. Springer, 2005. 8

[2] John Amanatides. Ray tracing with cones. ACM SIGGRAPH

Computer Graphics, 18(3):129–135, 1984. 5

[3] Rohan Chabra, Jan Eric Lenssen, Eddy Ilg, Tanner Schmidt,

Julian Straub, Steven Lovegrove, and Richard Newcombe.

Deep local shapes: Learning local SDF priors for detailed

3D reconstruction. Eur. Conf. Comput. Vis., 2020. 3

[4] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. ShapeNet:

An information-rich 3D model repository. arXiv preprint

arXiv:1512.03012, 2015. 5, 6

[5] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. BSP-

Net: Generating compact meshes via binary space partition-

ing. In IEEE Conf. Comput. Vis. Pattern Recog., 2020. 3

[6] Zhiqin Chen and Hao Zhang. Learning implicit fields for

generative shape modeling. In IEEE Conf. Comput. Vis. Pat-

tern Recog., June 2019. 1, 3

[7] Massimiliano Corsini, Mohamed-Chaker Larabi, Guillaume

Lavoué, Oldřich Petřı́k, Libor Váša, and Kai Wang. Percep-

tual metrics for static and dynamic triangle meshes. In Com-

puter Graphics Forum, volume 32, pages 101–125, 2013. 2

[8] Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson.

On the effectiveness of weight-encoded neural implicit 3D

shapes. arXiv preprint arXiv:2009.09808, 2020. 1, 2, 3, 6,

7, 8

[9] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien

Bouaziz, Geoffrey Hinton, and Andrea Tagliasacchi.

CvxNet: Learnable convex decomposition. In IEEE Conf.

Comput. Vis. Pattern Recog., June 2020. 3

[10] Yueqi Duan, Haidong Zhu, He Wang, Li Yi, Ram Nevatia,

and Leonidas J. Guibas. Curriculum DeepSDF. Eur. Conf.

Comput. Vis., 2020. 3

[11] Alex Evans. Fast approximations for global illumination on

dynamic scenes. In ACM SIGGRAPH 2006 Courses, SIG-

GRAPH ’06, page 153–171, 2006. 2

[12] Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and

Thouis R. Jones. Adaptively sampled distance fields: A gen-

eral representation of shape for computer graphics. In Pro-

ceedings of the 27th annual Conference on Computer Graph-

ics and Interactive Techniques, pages 249–254, 2000. 2

[13] Jun Gao, Wenzheng Chen, Tommy Xiang, Alec Jacobson,

Morgan McGuire, and Sanja Fidler. Learning deformable

tetrahedral meshes for 3D reconstruction. In Adv. Neural

Inform. Process. Syst., 2020. 3

[14] Michael Garland and Paul S. Heckbert. Surface simplifica-

tion using quadric error metrics. In Proceedings of the 24th

Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’97, page 209–216, 1997. 2, 8

[15] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna,

and Thomas Funkhouser. Local deep implicit functions for

3D shape. In IEEE Conf. Comput. Vis. Pattern Recog., June

2020. 3

[16] Zekun Hao, Hadar Averbuch-Elor, Noah Snavely, and Serge

Belongie. DualSDF: Semantic shape manipulation using a

two-level representation. IEEE Conf. Comput. Vis. Pattern

Recog., 2020. 6

[17] John C. Hart. Sphere tracing: A geometric method for the

antialiased ray tracing of implicit surfaces. The Visual Com-

puter, 12(10):527–545, 1996. 1, 3, 4

[18] Hugues Hoppe. Progressive meshes. In Proceedings of the

23rd Annual Conference on Computer Graphics and Inter-

active Techniques, SIGGRAPH ’96, page 99–108, 1996. 2

[19] Alec Jacobson, Daniele Panozzo, et al. libigl: A simple C++

geometry processing library, 2018. https://libigl.github.io. 8

[20] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei

Huang, Matthias Niessner, and Thomas Funkhouser. Local

implicit grid representations for 3D scenes. In IEEE Conf.

Comput. Vis. Pattern Recog., June 2020. 3

[21] Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker.

SDFDiff: Differentiable rendering of signed distance fields

for 3D shape optimization. In IEEE Conf. Comput. Vis. Pat-

tern Recog., 2020. 3

[22] Michéal Larkin and Carol O’Sullivan. Perception of simpli-

fication artifacts for animated characters. In Proceedings of

the ACM SIGGRAPH Symposium on Applied Perception in

Graphics and Visualization, pages 93–100, 2011. 2

[23] Peter Lindstrom and Greg Turk. Image-driven simplification.

ACM Trans. Graph., 19(3):204–241, July 2000. 2

[24] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and

Christian Theobalt. Neural sparse voxel fields. Adv. Neural

Inform. Process. Syst., 2020. 2, 3

[25] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc

Pollefeys, and Zhaopeng Cui. DIST: Rendering deep im-

plicit signed distance function with differentiable sphere

tracing. In IEEE Conf. Comput. Vis. Pattern Recog., 2020.

3

[26] William E. Lorensen and Harvey E. Cline. Marching cubes:

A high resolution 3D surface construction algorithm. In

Proceedings of the 14th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’87, page

163–169, 1987. 2, 3

[27] David Luebke, Martin Reddy, Jonathan D. Cohen, Amitabh

Varshney, Benjamin Watson, and Robert Huebner. Level of

Detail for 3D Graphics. Morgan Kaufmann Publishers Inc.,

2002. 2

[28] Alexander Majercik, Cyril Crassin, Peter Shirley, and Mor-

gan McGuire. A ray-box intersection algorithm and efficient

dynamic voxel rendering. Journal of Computer Graphics

Techniques (JCGT), 7(3):66–81, September 2018. 4

[29] Ravish Mehra, Qingnan Zhou, Jeremy Long, Alla Sheffer,

Amy Gooch, and Niloy J. Mitra. Abstraction of man-made

shapes. ACM Trans. Graph., 28(5):1–10, Dec. 2009. 2

[30] Duane Merrill. CUB: a library of warp-wide, block-wide,

and device-wide GPU parallel primitives, 2017. 5, 7

[31] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy networks:

Learning 3D reconstruction in function space. In IEEE Conf.

Comput. Vis. Pattern Recog., June 2019. 1, 3

11366

[32] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:

Representing scenes as neural radiance fields for view syn-

thesis. In Eur. Conf. Comput. Vis., 2020. 2, 3

[33] Guy M. Morton. A computer oriented geodetic data base and

a new technique in file sequencing. Technical Report, 1966.

8

[34] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and

Andreas Geiger. Differentiable volumetric rendering: Learn-

ing implicit 3D representations without 3D supervision. In

IEEE Conf. Comput. Vis. Pattern Recog., 2020. 3

[35] Fakir S. Nooruddin and Greg Turk. Simplification and

repair of polygonal models using volumetric techniques.

IEEE Transactions on Visualization and Computer Graph-

ics, 9(2):191–205, Apr. 2003. 6

[36] Jeong Joon Park, Peter Florence, Julian Straub, Richard

Newcombe, and Steven Lovegrove. DeepSDF: Learning

continuous signed distance functions for shape representa-

tion. In IEEE Conf. Comput. Vis. Pattern Recog., June 2019.

1, 2, 3, 4, 5, 6, 7, 8

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An

imperative style, high-performance deep learning library. In

Adv. Neural Inform. Process. Syst., pages 8026–8037, 2019.

7

[38] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-

ishima, Angjoo Kanazawa, and Hao Li. PIFu: Pixel-aligned

implicit function for high-resolution clothed human digitiza-

tion. In Int. Conf. Comput. Vis., pages 2304–2314, 2019. 3

[39] Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul

Joo. PIFuHD: Multi-level pixel-aligned implicit function for

high-resolution 3D human digitization. In IEEE Conf. Com-

put. Vis. Pattern Recog., pages 84–93, 2020. 3

[40] Saurabh Singh, Danhang ”Danny” Tang, Phil Chou, Chris-

tian Haene, Mingsong Dou, Sean Fanello, Jonathan Taylor,

Onur Gonen Guleryuz, Yinda Zhang, Shahram Izadi, An-

drea Tagliasacchi, Sofien Bouaziz, and Cem Keskin. Deep

implicit volume compression. In CVPR, 2020. 2

[41] Vincent Sitzmann, Julien N. P. Martel, Alexander W.

Bergman, David B. Lindell, and Gordon Wetzstein. Implicit

neural representations with periodic activation functions. In

Adv. Neural Inform. Process. Syst., 2020. 3, 5, 6, 7, 8

[42] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-

zstein. Scene representation networks: Continuous 3d-

structure-aware neural scene representations. In Adv. Neural

Inform. Process. Syst., 2019. 3

[43] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara

Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-

mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-

tures let networks learn high frequency functions in low

dimensional domains. Adv. Neural Inform. Process. Syst.,

2020. 3, 5, 6, 7, 8

[44] Danhang Tang, Mingsong Dou, Peter Lincoln, Philip David-

son, Kaiwen Guo, Jonathan Taylor, Sean Fanello, Cem Ke-

skin, Adarsh Kowdle, Sofien Bouaziz, Shahram Izadi, and

Andrea Tagliasacchi. Real-time compression and streaming

of 4d performances. In ACM Trans. of Graph, 2018. 2

[45] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael

Zollhöfer, Carsten Stoll, and Christian Theobalt. PatchNets:

Patch-based generalizable deep implicit 3D shape represen-

tations. Eur. Conf. Comput. Vis., 2020. 3

[46] Lance Williams. Pyramidal parametrics. In Proceedings of

the 10th Annual Conference on Computer Graphics and In-

teractive Techniques, pages 1–11, 1983. 2

[47] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan

Atzmon, Ronen Basri, and Yaron Lipman. Multiview neu-

ral surface reconstruction with implicit lighting and material.

Adv. Neural Inform. Process. Syst., 2020. 3

[48] Qingnan Zhou and Alec Jacobson. Thingi10K: A

dataset of 10,000 3D-printing models. arXiv preprint

arXiv:1605.04797, 2016. 5, 6

11367

