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Abstract

We propose a simple, intuitive yet powerful method for

human-object interaction (HOI) detection. HOIs are so

diverse in spatial distribution in an image that existing

CNN-based methods face the following three major draw-

backs; they cannot leverage image-wide features due to

CNN’s locality, they rely on a manually defined location-

of-interest for the feature aggregation, which sometimes

does not cover contextually important regions, and they

cannot help but mix up the features for multiple HOI in-

stances if they are located closely. To overcome these draw-

backs, we propose a transformer-based feature extractor,

in which an attention mechanism and query-based detec-

tion play key roles. The attention mechanism is effective

in aggregating contextually important information image-

wide, while the queries, which we design in such a way

that each query captures at most one human-object pair,

can avoid mixing up the features from multiple instances.

This transformer-based feature extractor produces so effec-

tive embeddings that the subsequent detection heads may

be fairly simple and intuitive. The extensive analysis re-

veals that the proposed method successfully extracts con-

textually important features, and thus outperforms existing

methods by large margins (5.37 mAP on HICO-DET, and

5.6 mAP on V-COCO). The source codes are available at

https://github.com/hitachi-rd-cv/qpic.

1. Introduction

Human-object interaction (HOI) detection has attracted

enormous interest in recent years for its potential in deeper

scene understanding [3–6,8,11–13,15–17,19–21,24,27,29–

37]. Given an image, the task of HOI detection is to localize

a human and object, and identify the interactions between

them, typically represented as 〈human bounding box, object

bounding box, object class, action class〉.

Conventional HOI detection methods can be roughly di-
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Figure 1. Observed failure cases of conventional methods. The

ground-truth human bounding boxes, object bounding boxes, ob-

ject classes, and action classes are drawn with red boxes, blue

boxes, blue characters, and yellow characters, respectively.

vided into two types: two-stage methods [3–6, 8, 11, 13,

15, 16, 19–21, 24, 27, 29–31, 33–37] and single-stage meth-

ods [12, 17, 32]. In the two-stage methods, humans and ob-

jects are first individually localized by off-the-shelf object

detectors, and then the region features from the localized

area are used to predict action classes. To incorporate con-

textual information, auxiliary features such as the features

from the union region of a human and object bounding box,

and locations of the bounding boxes in an image are often

utilized. The single-stage methods predict interactions us-

ing the features of a heuristically-defined position such as a

midpoint between a human and object center [17].

While both two- and single-stage methods have shown

significant improvement, they often suffer from errors at-

tributed to the nature of convolutional neural networks

(CNNs) and the heuristic way of using CNN features. Fig-

ure 1 shows observed failure cases of conventional methods.

In Fig. 1a, we can easily recognize from an entire image
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that a boy is washing a car. It is difficult, however, for two-

stage methods to predict the action class “wash” since they

typically use only the cropped bounding-box regions. The

regions sometimes miss contextually important cues located

outside the human and object bounding box such as the hose

in Fig. 1a. Even though the features of union regions may

contain such cues, these regions are frequently dominated

by disturbing contents such as background and irrelevant

humans and objects. Figure 1b shows an example where

multiple HOI instances are overlapped. In this example, the

region features of the catching person inevitably contain the

features of the blocking person because the hand of the lat-

ter, which is important to predict “block”, is in the bounding

box of the former, ending up in contaminated features. The

detection based on the contaminated features easily results

in failures. The single-stage methods attempt to capture the

contextual information by pairing a target human and object

from an early stage in feature extraction and extracting inte-

grated features rather than individually treating the targets.

To determine the regions from which integrated features are

extracted, they rely on heuristically-designed location-of-

interest such as a midpoint between a human and object

center [17]. However, such reliance sometimes causes a

problem. Fig. 1c shows an example where a target human

and object are located distantly. In this example, the mid-

point is located close to the man in the middle, who is not

relevant to the target HOI instance. Therefore, it is diffi-

cult to detect the target on the basis of the features around

the midpoint. Fig. 1d is an example where the midpoints of

multiple HOI instances are close to each other. In this case,

CNN-based methods tend to make mis-detection due to the

contaminated features as they do in the case of Fig. 1b.

To overcome these drawbacks, we propose QPIC, a

query-based HOI detector that detects a human and object in

a pairwise manner with image-wide contextual information.

QPIC is extended from a recently proposed object detec-

tor, DETR [2], and has the attention mechanism and query-

based detection in a transformer [28] as key components.

The attention mechanism scans through the entire area of an

image and is expected to selectively aggregate contextually

important features according to the contents of an image.

Moreover, we design QPIC’s queries in such a way that they

can separately extract features of multiple HOI instances

without contaminating them even when the instances are lo-

cated closely. We realize this by making each query capture

at most one human-object pair. This enables to calculate

attentions query-wise as opposed to location-wise, and to

clarify each query’s target human-object-pair through the

self-attention mechanism. These key designs of the atten-

tion mechanism and query-based pairwise detection make

QPIC robust even under the difficult conditions such as the

case where contextually important information appears out-

side the human and object bounding box (Fig. 1a), the target

human and object are located distantly (Fig. 1c), and multi-

ple instances are close to each other (Fig. 1b and 1d). The

key designs produce so effective embeddings that the sub-

sequent detection heads may be fairly simple and intuitive.

To summarize, our contributions are three-fold: (1) We

propose a simple yet effective query-based HOI detector,

QPIC. To the best of our knowledge, this is the first work

to introduce an attention- and query-based method to HOI

detection. (2) We achieve significantly better performance

than state-of-the-art methods on two challenging HOI de-

tection benchmarks. (3) We conduct detailed analysis on the

behavior of QPIC, and reveal some of the important charac-

teristics of HOI detection tasks that conventional methods

could not capture, but QPIC does relatively well.

2. Related Work

Two-stage HOI detection methods [3–6, 8, 11, 13, 15, 16,

19–21, 24, 27, 29–31, 33–37] utilize Faster R-CNN [25] or

Mask R-CNN [9] to localize targets. Then, they crop fea-

tures of backbone networks inside the localized regions.

The cropped features are typically processed with multi-

stream networks. Each stream processes features of target

humans, those of objects, and some auxiliary features such

as spatial configurations of the targets, and human poses ei-

ther alone or in combination. Some of the two-stage meth-

ods [21, 24, 27, 30, 34, 36] utilize graph neural networks to

refine the features. These methods mainly focus on the sec-

ond stage architecture, which uses cropped features to pre-

dict action classes. However, the cropped features some-

times lack contextual information outside the cropped re-

gions or are contaminated by features of irrelevant targets,

which results in the degradation of the performance.

Recently, single-stage methods [12, 17, 32] that utilize

integrated features from a pair of a human and object have

been proposed to solve the problem in the individually

cropped features. Liao et al. [17] and Wang et al. [32] pro-

posed a point-based interaction detection method that uti-

lizes CenterNet [38] as a base detector. This method pre-

dicts action classes using integrated features collected at a

midpoint between a human and object center. In particular,

Liao et al.’s PPDM [17] achieves simultaneous object and

interaction detection training, which is the most similar to

our training approach. Kim et al. [12] proposed UnionDet,

which predicts the union bounding box of a human-object

pair to extract integrated features. Although these meth-

ods attempt to capture contextual information by integrated

features, they are still insufficient and sometimes contami-

nated due to the CNN’s locality and heuristically-designed

location-of-interests.

Our method differs from conventional methods in that

we leverage a transformer in DETR [2] to aggregate image-

wide contextual features in a pairwise manner.
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Figure 2. Overall architecture of the proposed QPIC.

3. Proposed Method

To effectively extract important features for each HOI

instance taking image-wide contexts into account, we pro-

pose to leverage transformer-based architecture as a base

feature extractor. Because of the limited space, we explain

our method with a transformer as a module. For the details

of the calculation in a transformer, we encourage readers to

refer to the paper of DETR [2].

3.1. Overall Architecture

Figure 2 illustrates the overall architecture of QPIC.

Given an input image x ∈ R
3×H×W , a feature map

zb ∈ R
Db×H′×W ′

is calculated by an arbitrary off-the-

shelf backbone network, where H and W are the height and

width of the input image, H ′ and W ′ are those of the output

feature map, and Db is the number of channels. Typically

H ′ < H and W ′ < W . zb is then input to a projection

convolution layer with a kernel size of 1 × 1 to reduce the

dimension from Db to Dc.

The transformer encoder takes this feature map with the

reduced dimension zc ∈ R
Dc×H′×W ′

to produce another

feature map with richer contextual information on the basis

of the self-attention mechanism. A fixed positional encod-

ing p ∈ R
Dc×H′×W ′

[1, 2, 23] is additionally input to the

encoder to supplement the positional information, which the

self-attention mechanism alone cannot inherently incorpo-

rate. The encoded feature map ze ∈ R
Dc×H′×W ′

is then

obtained as ze = fenc (zc,p), where fenc (·, ·) is a set of

stacked transformer encoder layers.

The transformer decoder transforms a set of learnable

query vectors Q = {qi|qi ∈ R
Dc}

Nq

i=1 into a set of em-

beddings D = {di|di ∈ R
Dc}

Nq

i=1 that contain image-

wide contextual information for HOI detection, referring

to the encoded feature map ze using the attention mech-

anism. Nq is the number of query vectors. The queries

are designed in such a way that one query captures at most

one human-object pair and an interaction(s) between them.

Nq is therefore set to be large enough so that it is al-

ways larger than the number of actual human-object pairs

in an image. The decoded embeddings are then obtained as

D = fdec (ze,p,Q), where fdec (·, ·, ·) is a set of stacked

transformer decoder layers. We use a positional encoding p

again to incorporate the spatial information.

The subsequent interaction detection heads further pro-

cesses the decoded embeddings to produce Nq prediction

results. Here, we note that one or more HOIs correspond-

ing to a human-object pair are mathematically defined by

the following four vectors: a human-bounding-box vector

normalized by the corresponding image size b(h) ∈ [0, 1]4,

a normalized object-bounding-box vector b(o) ∈ [0, 1]4, an

object-class one-hot vector c ∈ {0, 1}Nobj , where Nobj

is the number of object classes, and an action-class vec-

tor a ∈ {0, 1}Nact , where Nact is the number of action

classes. Note that a is not necessarily a one-hot vector

because there may be multiple actions that correspond to

a human-object pair. Our interaction detection heads are

composed of four small feed-forward networks (FFNs):

human-bounding-box FFN fh, object-bounding-box FFN

fo, object-class FFN fc, and action-class FFN fa, each of

which is dedicated to predict one of the aforementioned

4 vectors, respectively. This design of the interaction de-

tection heads is fairly intuitive and simple compared with

a number of state-of-the-art methods such as the point-

detection and point-matching branch in PPDM [17] and the

human, object, and spatial-semantic stream in DRG [4].

Thanks to the powerful embeddings that contain image-

wide contextual information, QPIC does not have to rely

on a rather complicated and heuristic design to produce the

prediction. One thing to note is that unlike many existing

methods [3–6, 8, 11, 13, 15, 16, 19, 20, 24, 27, 29–31, 33–37],

which first attempt to detect humans and objects individ-

ually and later pair them to find interactions, it is crucial

to design queries in such a way that one query directly cap-

tures a human and object as a pair to more effectively extract

features for interactions. We will experimentally verify this

claim in Sec. 4.4.1.

The prediction of normalized human bounding boxes

{b̂
(h)
i |b̂

(h)
i ∈ [0, 1]4}

Nq

i=1, that of object bounding boxes

{b̂
(o)
i |b̂

(o)
i ∈ [0, 1]4}

Nq

i=1, the probability of object classes

{ĉi|ĉi ∈ [0, 1]Nobj+1,
∑Nobj+1

j=1 ĉi(j) = 1}
Nq

i=1, where v(j)
denotes the j-th element of v, and the probability of action

classes {âi|âi ∈ [0, 1]Nact}
Nq

i=1, are calculated as b̂
(h)
i =

σ (fh (di)) , b̂
(o)
i = σ (fo (di)) , ĉi = ς (fc (di)) , âi =

σ (fa (di)) , respectively. σ, ς are the sigmoid and softmax

functions, respectively. Note that ĉi has the (Nobj + 1)-th
element to indicate that the i-th query has no correspond-
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ing human-object pair, while an additional element of âi to

indicate “no action” is not necessary because we use the sig-

moid function rather than the softmax function to calculate

the action-class probabilities for co-occuring actions.

3.2. Loss Calculation

The loss calculation is composed of two stages: the

bipartite matching stage between predictions and ground

truths, and the loss calculation stage for the matched pairs.

For the bipartite matching, we follow the training pro-

cedure of DETR [2] and use the Hungarian algorithm [14].

Note that this design obviates the process of suppressing

over-detection as described in [2]. We first pad the ground-

truth set of human-object pairs with φ (no pairs) so that the

ground-truth set size becomes Nq . We then leverage the

Hungarian algorithm to determine the optimal assignment

ω̂ among the set of all possible permutations of Nq elements

ΩNq
, i.e. ω̂ = argminω∈ΩNq

∑Nq

i=1 Hi,ω(i), where Hi,j is

the matching cost for the pair of i-th ground truth and j-th

prediction. The matching cost Hi,j consists of four types of

costs: the box-regression cost H
(b)
i,j , intersection-over-union

(IoU) cost H
(u)
i,j , object-class cost H

(c)
i,j , and action-class

cost H
(a)
i,j . Denoting i-th ground truth for the normalized

human bounding box by b
(h)
i ∈ [0, 1]4, normalized object

bounding box by b
(o)
i ∈ [0, 1]4, object-class one-hot vector

by ci ∈ {0, 1}Nobj , and action class by ai ∈ {0, 1}Nact , the

aforementioned costs are formulated as follows.

Hi,j = ✶{i 6∈Φ}

[

ηbH
(b)
i,j + ηuH

(u)
i,j + ηcH

(c)
i,j + ηaH

(a)
i,j

]

,

(1)

H
(b)
i,j = max

{
∥

∥

∥
b
(h)
i − b̂

(h)
j

∥

∥

∥

1
,
∥

∥

∥
b
(o)
i − b̂

(o)
j

∥

∥

∥

1

}

, (2)

H
(u)
i,j = max

{

−GIoU
(

b
(h)
i , b̂

(h)
j

)

,

−GIoU
(

b
(o)
i , b̂

(o)
j

)}

, (3)

H
(c)
i,j = − ĉj(k) s.t. ci(k) = 1, (4)

H
(a)
i,j = −

1

2

(

a
⊺

i âj

‖ai‖1 + ǫ
+

(1− ai)
⊺
(1− âj)

‖1− ai‖1 + ǫ

)

, (5)

where Φ is a set of ground-truth indices that correspond

to φ, GIoU (·, ·) is the generalized IoU [26], ǫ is a small

positive value introduced to avoid zero divide, and ηb, ηu,

ηc, and ηa are the hyper-parameters. We use two types of

bounding-box cost H
(b)
i,j and H

(u)
i,j following [2]. In calcu-

lating H
(b)
i,j and H

(u)
i,j , instead of minimizing the average of

a human and object-bounding-box cost, we minimize the

larger of the two to prevent the matching from being unde-

sirably biased to either if one cost is significantly lower than

the other. We design H
(a)
i,j so that the costs of both positive

and negative action classes are taken into account. In addi-

tion, we formulate it using the weighted average of the two

with the inverse number of nonzero elements as the weights

rather than using the vanilla average. This is necessary to

balance the effect from the two costs because the number of

positive action classes is typically much smaller than that of

negative action classes.

The loss to be minimized in the training phase is calcu-

lated on the basis of the matched pairs as follows.

L = λbLb + λuLu + λcLc + λaLa, (6)

Lb =
1

|Φ̄|

Nq
∑

i=1

✶{i 6∈Φ}

[∥

∥

∥
b
(h)
i − b̂

(h)
ω̂(i)

∥

∥

∥

1

+
∥

∥

∥
b
(o)
i − b̂

(o)
ω̂(i)

∥

∥

∥

1

]

, (7)

Lu =
1

|Φ̄|

Nq
∑

i=1

✶{i 6∈Φ}

[

2−GIoU
(

b
(h)
i , b̂

(h)
ω̂(i)

)

−GIoU
(

b
(o)
i , b̂

(o)
ω̂(i)

)]

, (8)

Lc =
1

Nq

Nq
∑

i=1

{

✶{i 6∈Φ}

[

− log ĉω̂(i)(k)
]

+✶{i∈Φ}

[

− log ĉω̂(i)(Nobj + 1)
]}

s.t. ci(k) = 1, (9)

La =
1

∑Nq

i=1 ✶{i 6∈Φ} ‖ai‖1

Nq
∑

i=1

{

✶{i 6∈Φ}

[

lf
(

ai, âω̂(i)

)]

+✶{i∈Φ}

[

lf
(

0, âω̂(i)

)]}

, (10)

where λb, λu, λc and λa are the hyper-parameters for ad-

justing the weights of each loss, and lf (·, ·) is the element-

wise focal loss function [18]. For the hyper-parameters of

the focal loss, we use the default settings described in [38].

3.3. Inference for Interaction Detection

As previously mentioned, the detection result of an HOI

is represented by the following four components, 〈human

bounding box, object bounding box, object class, action

class〉. Our interaction detection heads are designed so in-

tuitively that all we need to do is to pick up the correspond-

ing information from each head. Formally, we set the pre-

diction results corresponding to the i-th query and j-th ac-

tion as 〈b̂
(h)
i

, b̂
(o)
i

, argmaxk ĉi(k), j〉. We define a score

of the HOI instance as {maxk ĉi(k)} âi(j), and regard this

instance to be present if the score is higher than a threshold.

4. Experiments

4.1. Datasets and Evaluation Metrics

We conducted extensive experiments on two HOI detec-

tion datasets: HICO-DET [3] and V-COCO [7]. We fol-

lowed the standard evaluation scheme. HICO-DET contains
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38,118 and 9,658 images for training and testing, respec-

tively. The images are annotated with 80 object and 117

action classes. V-COCO, which originates from the COCO

dataset, contains 2,533, 2,867, and 4,946 images for train-

ing, validation, and testing, respectively. The images are

annotated with 80 object and 29 action classes.

For the evaluation metrics, we use the mean average pre-

cision (mAP). A detection result is judged as a true positive

if the predicted human and object bounding box have IoUs

larger than 0.5 with the corresponding ground-truth bound-

ing boxes, and the predicted action class is correct. In the

HICO-DET evaluation, the object class is also taken into ac-

count for the judgment. The AP is calculated per object and

action class pair in the HICO-DET evaluation, while that is

calculated per action class in the V-COCO evaluation.

For HICO-DET, we evaluate the performance in two dif-

ferent settings following [3]: default setting and known-

object setting. In the former setting, APs are calculated

on the basis of all the test images, while in the latter set-

ting, each AP is calculated only on the basis of images that

contain the object class corresponding to each AP. In each

setting, we report the mAP over three set types: a set of

600 HOI classes (full), a set of 138 HOI classes that have

less than 10 training instances (rare), and a set of 462 HOI

classes that have 10 or more training instances (non-rare).

Unless otherwise stated, we use the default full setting in

the analysis. In V-COCO, a number of HOIs are defined

with no object labels. To deal with this situation, we eval-

uate the performance in two different scenarios following

V-COCO’s official evaluation scheme. In scenario 1, detec-

tors are required to report cases in which there is no object,

while in scenario 2, we just ignore the prediction of an ob-

ject bounding box in these cases.

4.2. Implementation Details

We use ResNet-50 and ResNet-101 [10] as a backbone

feature extractor. Both transformer encoder and decoder

consist of 6 transformer layers with a multi-head attention

of 8 heads. The reduced dimension size Dc is set to 256,

and the number of query vectors Nq is set to 100. The

human- and object-bounding-box FFNs have 3 linear layers

with ReLU activations, while the object- and action-class

FFNs have 1 linear layer.

For training QPIC, we initialize the network with the

parameters of DETR [2] trained with the COCO dataset.

Note that for the V-COCO training, we exclude the COCO’s

training images that are contained in the V-COCO test set

when pre-training DETR1. QPIC is trained for 150 epochs

using the AdamW [22] optimizer with the batch size 16,

initial learning rate of the backbone network 10−5, that of

the others 10−4, and the weight decay 10−4. Both learning

1A few previous works inappropriately use COCO train2017 set for

pre-training, whose images are contained in the V-COCO test set.

Table 1. Comparison against state-of-the-art methods on HICO-

DET. The top, middle, and bottom blocks show the mAPs of the

two-stage, single-stage, and our methods, respectively.

Default Known object

Method full rare non-rare full rare non-rare

VSGNet [27] 19.80 16.05 20.91 – – –

FCMNet [20] 20.41 17.34 21.56 22.04 18.97 23.13

VCL [11] 23.63 17.21 25.55 25.98 19.12 28.03

ConsNet [21] 24.39 17.10 26.56 – – –

DRG [4] 24.53 19.47 26.04 27.98 23.11 29.43

UnionDet [12] 17.58 11.72 19.33 19.76 14.68 21.27

Wang et al. [32] 19.56 12.79 21.58 22.05 15.77 23.92

PPDM [17] 21.73 13.78 24.10 24.58 16.65 26.84

Ours (ResNet-50) 29.07 21.85 31.23 31.68 24.14 33.93

Ours (ResNet-101) 29.90 23.92 31.69 32.38 26.06 34.27

Table 2. Comparison against state-of-the-art methods on V-COCO.

The split of the blocks are the same as Table 1.

Method Scenario 1 Scenario 2

VCL [11] 48.3 –

DRG [4] 51.0 –

VSGNet [27] 51.8 57.0

FCMNet [20] 53.1 –

ConsNet [21] 53.2 –

UnionDet [12] 47.5 56.2

Wang et al. [32] 51.0 –

Ours (ResNet-50) 58.8 61.0

Ours (ResNet-101) 58.3 60.7

rates are decayed after 100 epochs. The hyper-parameters

for the Hungarian costs ηb, ηu, ηc, and ηa, and those for

the loss weights λb, λu, λc, and λa are set to 2.5, 1, 1, 1,

2.5, 1, 1, and 1, respectively. Following [17], we select

100 high scored detection results from all the predictions

for fair comparison. Please see the supplementary material

for more details.

4.3. Comparison to State­of­the­Art

We first show the comparison of our QPIC with the lat-

est HOI detection methods including both two- and single-

stage methods in Table 1. As seen from the table, QPIC out-

performs both state-of-the-art two- and single-stage meth-

ods in all the settings. QPIC with the ResNet-101 back-

bone yields an especially significant gain of 5.37 mAP (rel-

atively 21.9%) compared with DRG [4] and 8.17 mAP

(37.6%) compared with PPDM [17] in the default full set-

ting. Table 2 shows the comparison results on V-COCO.

QPIC achieves state-of-the-art performance among all the

baseline methods. QPIC with the ResNet-50 backbone

achieves a 5.6 mAP (10.5%) gain over ConsNet [21], which

is the strongest baseline. Unlike in the HICO-DET result,

the ResNet-50 backbone shows better performance than
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Figure 3. Performance analysis on different spatial distribution of HOIs evaluated on HICO-DET.

the ResNet-101 backbone probably because the number of

training samples in V-COCO is insufficient to train the large

network. Overall, these comparison results demonstrate the

dataset-invariant effectiveness of QPIC.

We then investigate in which cases QPIC especially

achieves superior performance compared with the strong

baselines. To do so, we compare QPIC in detail with

DRG [4] and PPDM [17], which are the strongest baselines

of the two- and single-stage methods, respectively. We use

the ResNet-50 backbone for QPIC in this comparison. Note

that hereinafter the distance and area are calculated in nor-

malized image coordinates. Figure 3a shows how the per-

formances change as the distance between the center points

of a paired human and object bounding box grows. We split

HOI instances into bins of size 0.1 according to the dis-

tances, and calculate the APs of each bin that has at least

1,000 HOI instances. As shown in Fig. 3a, the relative gaps

of the performance between QPIC and the other two meth-

ods become more evident as the distance grows. The graph

suggests three things; HOI detection tends to become more

difficult as the distance grows, the distant case is especially

difficult for CNN-based methods, and QPIC relatively bet-

ter deals with this difficulty. The possible explanation for

these results is that the features of the CNN-based methods,

which rely on limited receptive fields for the feature aggre-

gation, cannot include contextually important information

or are dominated by irrelevant information in the distant

cases, while the features of QPIC are more effective thanks

to the ability of selectively extracting image-wide contex-

tual information. Figure 3b presents how the performances

change as the areas of target human and object bounding

boxes grow. We pick up the larger area of a target human

and object bounding box involved in each HOI instance. We

then split HOI instances into bins of size 0.1 according to

the area, and calculate the APs of each bin that has at least

1,000 HOI instances. As illustrated in Fig. 3b, the gaps of

the APs between the conventional methods and QPIC tend

to grow as the area increases. This is probably because of

the combination of the following two reasons; if the area

becomes bigger, the area tends to more often include harm-

ful regions such as another HOI instance, and the conven-

tional methods mix up the irrelevant features in such situa-

Table 3. Evaluation results of the various detection heads.

Base method Detection heads HICO-DET (mAP)

Ours
(ResNet-50)

Simple (original) 29.07

Point matching (Fig. 4a) 29.04

Two-stage like (Fig. 4b) 26.18

PPDM [17]

(Hourglass-104)
Simple 17.45

Point matching (original) 21.73

tion, whereas the attention mechanism and the query-based

framework enable to selectively aggregate effective features

in a separated manner for each HOI instance. These re-

sults reveal that the QPIC’s significant improvement shown

in Table 1 and Table 2 is likely to be brought by its nature of

robustness to diverse spatial distribution of HOIs, probably

originating from its capability of aggregating image-wide

contextual features for each HOI instance. This observation

is further confirmed qualitatively in Sec. 4.5.

4.4. Ablation Study

To understand the key ingredients of QPIC’s superior-

ity shown in Sec. 4.3, we analyze the key building blocks

one by one in detail. We first analyze the interaction de-

tection heads in Sec. 4.4.1 and subsequently analyze the

transformer-based feature extractor in Sec. 4.4.2.

4.4.1 Analysis on Detection Heads

Feasibility of simple heads. As previously mentioned,

the inference process of QPIC is simplified thanks to the

enriched features from the transformer-based feature ex-

tractor. To confirm that this simple prediction is suffi-

cient for QPIC, we investigated if the detection accuracy

increases by leveraging a typical point-matching-based de-

tection heads presented in [17], which is one of the best

performing heuristically-designed heads. Figure 4a repre-

sents the implemented heads. A notable difference from the

original simple heads lies in that the interaction detection

heads output center points of target humans and objects in-

stead of bounding boxes. Consequently, the outputs from

the interaction detection heads need to be fused with the

outputs from the object detection heads with point match-

ing. Note that in this implementation, duplicate detection
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(b) Interaction detection with two-stage like approach.

Figure 4. Implemented variants for analyzing detection heads. These heads are on top of our transformer-based feature extractor.

results that share an identical human-object pair needs to be

suppressed by some means such as non-maximum suppres-

sion. Table 3 shows the evaluation results. As seen from

Table 3, the point-matching-based heads exhibit no perfor-

mance improvement over the simple heads, which indicates

that the simple detection heads are enough and we do not

have to manually design complicated detection heads.

Importance of pairwise detection. Although the detec-

tion heads can be as simple as we present, we claim that

there is a crucial aspect that must be covered in the design

of the heads. It is to treat a target human and object as a pair

from early stages rather than to first detect them individu-

ally and later integrate the features from the cropped regions

corresponding to the detection, as typically done in two-

stage approaches. We verify this claim by looking into the

performance of the two-stage like detection-heads on top

of our transformer-based feature extractor, which is exactly

the same as original QPIC. Figure 4b illustrates the imple-

mented detection heads. This model first derives object de-

tection results from the object detection heads. Then, the re-

sults are used to create all the possible human-object pairs.

The features of each pair is constructed by concatenating

the features from the human and object bounding boxes.

The interaction detection head predicts action classes of all

the pairs on the basis of the concatenated features. As seen

from Table 3, two-stage like method yields worse perfor-

mance than the original. This observation indicates that the

two-stage methods, which rely on individual feature extrac-

tion, do not perform well even with our strong feature ex-

tractor, and suggests the importance of the pairwise feature

extraction in heads for HOI detection.

4.4.2 Analysis on Feature Extractor

Importance of a transformer. To confirm that a

transformer-based feature extractor is key to make the sim-

ple heads sufficiently work for HOI detection as discussed

in Sec. 4.4.1, we replace QPIC’s transformer-based fea-

ture extractor by a CNN-based counterpart and examine

how the performance changes. We utilize the Hourglass-

104 backbone used in PPDM [17] in this experiment. Ta-

ble 3 shows the performance of the original point-matching-

Table 4. Effect of the transformer encoder and decoder.

Transformer
encoder

Transformer
decoder

HICO-DET
(mAP)

COCO
(mAP)

18.89 34.6

✓ 20.07 35.1

✓ 26.75 38.7

✓ ✓ 29.27 43.5

based PPDM as well as its simple-heads variant. The

simple-heads variant directly predicts all the information

corresponding to a human-object pair on the basis of the

features extracted in the feature-extraction stage, just as

QPIC’s simple heads do. More concretely, not only a hu-

man point, an object point, and action classes, but also

a human-bounding-box size, an object-bounding-box size,

and an object class are directly predicted on the basis of

the features at the midpoint between the human and ob-

ject centers. As Table 3 shows, the simple-heads variant

exhibits far worse performance than QPIC. This implicates

that the CNN-based feature extractor is not as powerful as

our transformer-based feature extractor, so the simple heads

cannot be leveraged with it. In addition, we find that the

point-matching-based heads, which is the original version

of PPDM, achieve higher performance than the simple ones,

implying that there is a room for increasing accuracy by

heuristically designing the heads if the feature extractor is

not so powerful, which is not the case with our powerful

transformer-based feature extractor.

Importance of a decoder. To further dig into the trans-

former to find out the essential component for HOI de-

tection, we compare four variants listed in Table 4. The

model without the decoder leverages the point-matching-

based method like PPDM [17] on top of the encoder’s out-

put (with encoder) or on top of the base features (without

encoder). The model with the decoder utilizes the point-

matching-based heads (Fig. 4a) for fair comparison. We

use the ResNet-101 backbone for all the variants. As seen

from Table 4, the transformer encoder yields merely slight

improvement on HICO-DET (2.52 and 1.18 mAP with and

without the decoder, respectively), while the decoder re-

markably boosts the performance (9.20 and 7.86 mAP with
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Figure 5. Failure cases of conventional detectors (top row, same as Fig. 1) and attentions of QPIC (bottom row). In (b) and (d), the attentions

corresponding to different HOI instances are drawn with blue and orange, and the areas where two attentions overlap are drawn with white.

and without the encoder, respectively). These results indi-

cate that the decoder plays a vital role in HOI detection. Ad-

ditionally, we evaluate the performance on COCO to com-

pare the degrees of improvement in object detection and

HOI detection. As seen in the table, the relative perfor-

mance improvement brought by the decoder for object de-

tection (on COCO) is 23.9% and 11.8% with and without

the encoder, respectively, while that for HOI detection (on

HICO-DET) is 45.8% and 41.6% with and without the en-

coder, respectively. This means that the decoder is more

effective in an HOI detection task than in an object detec-

tion task. This is probably because the regions of interest

(ROI) are mostly consolidated in a single area in object de-

tection tasks, while in HOI detection tasks, the ROI can be

diversely distributed image-wide. CNNs, which rely on lo-

calized receptive fields, can deal with the former case rel-

atively easily, whereas the image-wide feature aggregation

of the decoder is crutial for the latter case.

4.5. Qualitative Analysis

To qualitatively reveal the characteristics of QPIC and

the main reasons behind its superior performance over exist-

ing methods, we analyze the failure cases of existing meth-

ods and QPIC’s behavior in the cases. The top row in Fig. 5

shows the failure cases shown in Fig. 1, and the bottom row

illustrates the attentions of QPIC on the images.

Figure 5a and 5b show the cases where DRG fails to de-

tect the action classes, but QPIC does not. As previously

discussed, the regions in an image other than a human and

object bounding box sometimes contain useful information.

Figure 5a is a typical example, where the hose held by the

boy is likely to be the important contextual information.

Two-stage methods that utilize only the region features,

namely the human and object bounding box (and sometimes

the union region of the two), cannot fully leverage the con-

textual information, whereas QPIC successfully places the

distinguishing focus on such information and leverages it

as shown in the attention map. Furthermore, the region

features are sometimes contaminated by other region fea-

tures when target bounding boxes are overlapped. Figure 5b

shows such an example, where the hand of the blocking man

is contained in the bounding box of the catching man. The

typical two-stage methods, which rely on region features,

cannot exclude this disturbing information, resulting in in-

correct detection. QPIC, however, can selectively aggregate

only the helpful information for each HOI as shown in the

attention map, resulting in the correct detection.

Figure 5c and 5d illustrate the failure cases of PPDM,

whose detection points are drawn in yellow circles. As dis-

cussed in Sec. 4.3, features of heuristic detection points are

sometimes dominated by irrelevant information such as the

non-target human in Fig. 5c and another HOI features in

Fig. 5d. Consequently, the detection based on those con-

fusing features tends to result in failures. QPIC alleviates

this problem by incorporating the attention mechanism that

selectively captures image-wide features as shown in the at-

tention maps, and thus correctly detects these HOIs.

Overall, these qualitative analysis demonstrates the

QPIC’s capability of acquiring image-wide contextual fea-

tures, which lead to its superior performance over the exist-

ing methods.

5. Conclusion

We have proposed QPIC, a novel detector that can se-

lectively aggregate image-wide contextual information for

HOI detection. QPIC leverages an attention mechanism to

effectively aggregate features for detecting a wide variety of

HOIs. This aggregation enriches HOI features, and as a re-

sult, simple and intuitive detection heads are realized. The

evaluation on two benchmark datasets showed QPIC’s sig-

nificant superiority over existing methods. The extensive

analysis showed that the attention mechanism and query-

based detection play a crucial role for HOI detection.
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