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Abstract

Conventional stereo suffers from a fundamental trade-off

between imaging volume and signal-to-noise ratio (SNR) –

due to the conflicting impact of aperture size on both these

variables. Inspired by the extended depth of field cameras,

we propose a novel end-to-end learning-based technique to

overcome this limitation, by introducing a phase mask at

the aperture plane of the cameras in a stereo imaging sys-

tem. The phase mask creates a depth-dependent yet numer-

ically invertible point spread function, allowing us to re-

cover sharp image texture and stereo correspondence over

a significantly extended depth of field (EDOF) than conven-

tional stereo. The phase mask pattern, the EDOF image

reconstruction, and the stereo disparity estimation are all

trained together using an end-to-end learned deep neural

network. We perform theoretical analysis and characteri-

zation of the proposed approach and show a 6× increase

in volume that can be imaged in simulation. We also build

an experimental prototype and validate the approach using

real-world results acquired using this prototype system.

1. Introduction

Stereo-based 3D reconstruction, while extremely popu-

lar, suffers from a fundamental trade-off between volume

of imaging and noise. If you want to retain a large volume

of imaging, then in order to get sharp texture features for

correspondence, you need to ensure that the depth of field

(DOF) of the cameras covers the entire volume. This ne-

cessitates a narrow aperture, rapidly reducing the total light

level reaching the sensor (since SNR is quadratically related

to aperture size). As a consequence, it is challenging to get

large volume, high quality, and high resolution stereo-based

3D reconstruction in light-limited environments.

In light-limited environments, typically either the expo-

sure duration or the aperture size of a camera is increased to

increase light throughput. But for scenarios where there is

either scene motion (eg., motion capture) or camera motion

(eg., robotics, autonomous navigation), increasing exposure

∗These two authors contributed equally. †Corresponding author.

Figure 1. Tradeoff between depth of field and aperture size on

simulated data. We propose a CodedStereo system that can pro-

vide an 6× increase in DOF (blue dashed curve, with stars for par-

ticular observations). In the curves, the x-axis is linearly sampled

in exposure time, and the corresponding f-numbers are converted

to maintain the same SNR level of 50dB. Both our system and the

conventional lens are focused at 1m, with a 50mm focal length.

duration results in motion blur. On the other hand, increas-

ing the aperture size will result in a smaller depth of field,

thereby reducing the volume that can be reconstructed.

Inspired by the extended depth of field (EDOF) imag-

ing techniques [10], we present CodedStereo, a technique

in which we add optimized phase masks to the aperture of

each of the two stereo cameras. These phase masks allow

each camera to maintain a large aperture size, increasing

the light throughput of the cameras. Meanwhile, the phase

masks are specially designed to produce a depth-dependent

focal blur that allows back-end stereo algorithms to con-

tinue to retain high resolution and quality. In addition, our

learned phase mask not only enables more accurate depth

estimation, but also encourages sharper extended depth of

field RGB images that can be used for downstream applica-

tions such as point cloud colorization. The reconstruction

algorithms and the phase masks are simultaneously opti-

mized using an end-to-end learning framework. The main

technical contributions of this paper are:

I. We propose CodedStereo, a technique to recover large-
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volume, high-quality, and high-resolution 3D recon-

structions in light-limited environments. The key idea

in CodedStereo is the introduction of a phase mask in

the aperture of the stereo cameras that allows us to in-

crease the aperture size of the cameras without sacri-

ficing the depth of field.

II. We develop an end-to-end learning framework to

jointly optimize the phase masks and the algorithms

both for RGB image and disparity reconstructions.

III. We demonstrate the significant performance benefits

of CodedStereo both in simulation and using a proto-

type system.

2. Related work

Stereo matching. Given two (or more) cameras looking

at the scene from different perspectives, the goal of stereo is

to find the corresponding scene points between the two cam-

era views and use this to estimate depth based on triangula-

tion. Traditional methods[29, 16] typically formulate it as

a multistage optimization problem, including matching cost

computation, cost aggregation, disparity optimization, and

post-processing. Recently, learning-based stereo algorithms

have become popular primarily due to their improved per-

formance. Many networks, inspired by the traditional stereo

matching pipelines, have been shown to achieve state-of-art

results [27, 4, 23, 11, 38]. Among these algorithms, [23, 11]

are computationally efficient and can be used for real-time

inference. However, it is well known that existing stereo al-

gorithms degrade in performance when the images contain

significant blur or noise [22, 18].

Low light stereo. Extending stereo algorithms and im-

proving their performance in the presence of significant

noise (as is the case in low-light imaging) is an area of

active research. The simplest solutions attempt to first de-

noise the stereo pairs before the correspondence search. But

unlike generic denoising algorithms [5, 21], these methods

pay more attention to the consistency of the denoised im-

age pairs to make sure the stereo matching algorithms can

find the corresponding features. Another technique to im-

prove low-light performance is to replace one or both of the

stereo cameras with monochrome sensors, resulting in ap-

proximately a 3× increase in light throughput [18].

Stereo and defocus blur. When the camera aperture

is large such that the scene is no longer contained within

the depth of field of the camera, focus blur is apparent in

the captured images. There have been attempts to exploit

this focus blur as an additional depth cue to compensate for

the degraded stereo performance [6, 34, 7, 13]. Further-

more, Takeda et al. [33] proposed the addition of amplitude

masks in the aperture plane. The use of amplitude masks in-

creases the variations in the depth-dependent blur, improv-

ing depth from defocus approaches. Our technique also pro-

poses the addition of a mask within the camera’s aperture

plane. However, there are two key differences. First, since

our main goal is low-light imaging, we use phase masks in-

stead of amplitude masks to obtain high light throughput.

Second, compared to the heuristic mask design in [33], the

proposed design is directly optimized based on the 3D re-

construction, which improves the performance.

Extended depth of field imaging. For a conventional

camera, it is well understood that the aperture size controls

the relationship between the depth of field and SNR. Larger

apertures result in higher light collection leading to an in-

crease in SNR, but at the cost of decreasing the depth of

field. There have been a host of techniques that have been

developed to maintain a large aperture and a large depth-of-

field. One idea that has emerged from this line of inquiry

is to reconstruct all-in-focus images from integrated images

with a shaking sensor [25]. Another key idea is the use

of a phase mask in the aperture plane to control the depth-

dependent blur in a manner that makes the resultant blur

invertible [10, 8, 9, 12, 31]. Our design is intimately re-

lated to these efforts and the main difference is that when

applying these techniques to stereo, one must pay attention

to maintaining consistency across views, so that correspon-

dence matching algorithms remain stable.

End-to-end mask design. Over the last few years, sev-

eral techniques have emerged where optical system design

parameters and reconstruction algorithms are jointly opti-

mized in an end-to-end manner. The primary rationale for

this end-to-end learning framework is the significant im-

provements that are obtained as a result of this joint opti-

mization. Such methods have been shown to achieve supe-

rior performance in demosaicing [2], monocular depth es-

timation [35, 3, 15], microscopy [26, 19], structured light

[1, 36], EDOF [31], and high dynamic range [24, 32] imag-

ing. Our technique is of a similar vein, but tackling the

problem of large volume, low-light stereo reconstruction.

3. Imaging Volume vs SNR: The tradeoff

Traditional stereo exhibits a fundamental trade-off be-

tween light level, exposure time, and volume of reconstruc-

tion that limits the quality of 3D reconstructions. In a tra-

ditional camera, the image signal to noise ratio (SNR) is

proportional to incident light intensity, which in turn is pro-

portional to the product of aperture area, illumination level,

and exposure duration. Thus,

SNR ∝
LsTD

2

σtot

=
LsTf

2

σtotF 2
#

. (1)

where D = f/F# is the aperture diameter, f is the fo-

cal length, F# is the f-number, T is the exposure duration,

Ls denotes the average light intensity, and σtot refers to

the total noise. This relationship indicates that the imag-

ing SNR will become extremely low either under low-light

conditions or when scene/camera dynamics require the use
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of short exposure durations.

Imaging SNR, in turn, impacts the quality of corre-

spondence between the stereo pair, resulting in low-quality

and/or low-resolution 3D reconstructions. The simplest so-

lution to improve imaging SNR is to use a larger aperture.

Unfortunately, this is typically not a feasible solution for

stereo systems since this reduces the depth of field, which,

as a result, significantly reduces the imaging volume for

accurate 3D reconstruction. Specifically, the approximate

depth of field (DOF) can be determined by focal length f ,

distance to subject z0, acceptable circle of confusion size c,
and aperture diameter [17].

DOF ∝
2z20F#c

f2
. (2)

Figure 1 demonstrates this tradeoff between depth of field

and aperture size (or F#) for a lens with a focal length of

50mm and focused 1m in front of the lens. This shows that

if you want a large imaging volume, then you need to use a

narrow aperture. In particular, achieving a DOF of 1m re-

quires the use of a F32 aperture. Unfortunately, under low-

light conditions and/or with short exposure duration, such

a small aperture size would severely limit light through-

put resulting in extremely noisy images – which in turn

will result in low-quality 3D reconstructions. On the other

hand, a large aperture in search of better light throughput

induces significant focus blur within the imaging volume.

This blur again affects the quality of stereo correspondences

and 3D reconstruction. Inspired by the extended depth of

field imaging techniques, the key idea in our approach is

to utilize a phase mask at the aperture plane to 1) keep the

aperture large, and 2) create depth-dependent yet numeri-

cally invertible focal blur point spread functions that allow

for high-quality 3D reconstruction over the entire imaging

volume. The increase in imaging volume/DOF achieved by

CodedStereo is shown for comparison in Figure 1.

4. Extended depth of field in stereo matching

One naı̈ve technique to overcome the imaging volume vs

SNR tradeoff in stereo systems would be to replace each

of the cameras in a stereo system with an EDOF cam-

era. Surprisingly, this naı̈ve application of EDOF does

not seem to result in significant improvement to the imag-

ing volume in stereo systems. The primary reason for this

discrepancy is that the deconvolution algorithms, irrespec-

tive of whether they are optimization-based [10, 8, 9, 25]

or learning-based [31, 12], produce minor inconsistencies

across views. While these inconsistencies are imperceptible

and do not seem to affect the perceptual quality of individ-

ual images, they have a significant effect on the stereo cor-

respondence search. As a result, the stereo correspondence

search produces significant errors, affecting the quality of

the 3D reconstructions.

(b). Left EDOF image (c). Right EDOF image

(d). Prediction from EDOF pairs (e). Ground truth

(a). Framework of end-to-end EDOF

U-Net
Ground truths Coded image EDOF image

Rendering Reconstruction
disp.0

disp.192
PSFs

Figure 2. Naı̈ve EDOF stereo results in 3D reconstruction ar-

tifacts due to feature inconsistencies. (a) The framework used

to learn the e2eEDOF phase mask. (b)-(c) Reconstructed EDOF

images with inconsistent fine features across views. (d) Predicted

disparity map from EDOF pairs. The algorithm failed to recover

stereo correspondence for unmatched regions. (e) Ground truth.

Figure 2 shows the effect of these imperceptible incon-

sistencies on stereo reconstructions. We follow the tech-

nique in [31] to learn an optimal phase mask for EDOF

imaging and use that same phase mask for both the left

and the right camera in a stereo system. The e2eEDOF

learning framework and the prediction results from EDOF

pairs are shown in Figure 2. A close inspection of the re-

sults shows that the matching algorithm failed to recover

correspondence due to the inconsistencies in the individual

EDOF recovered images, as pointed to by the yellow arrow.

5. CodedStereo framework

Our technique consists of a single optimized phase mask

inserted into the aperture of both the cameras in a stereo

pair. With these phase masks inserted, the aperture of

these cameras can remain wide open, allowing significantly

larger light collection thereby improving imaging SNR. The

depth-dependent blur caused by the insertion of these phase

masks is jointly optimized along with the disparity and

image reconstruction algorithms to maximize the volume-

SNR tradeoff in stereo. We call our technique ’Coded-

Stereo’. Our system simultaneously obtains sharp image

texture and stereo correspondence in a large depth of field,

without sacrificing SNR or light throughput.

As shown in 3, the end-to-end training pipeline consists

of three distinct parts: (a) Rendering: A RGB-Disp simula-

tor to render left/right coded images using texture and depth

as inputs (while accounting for the depth-dependent defo-

cus effect of a particular phase mask), (b) Disparity Predic-

tion: a DispNet-based deep network to estimate disparity

from coded pairs, and (c) RGB Image Reconstruction: a U-

Net to reconstruct sharp images. The detailed description of
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(a). RGB-Disp rendering

Mask height map
(Learned)

PSFs at different disparities

Right disparity ground truth

Left disparity ground truth

(c). RGB reconstruction
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Reconstructed left/right RGB images

(b). Disparity prediction

Loss_RGB

Loss_Disp

0 [um]
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1.8
Right coded image

Disp.0         10           19           29           38           48          58      

 Disp.67        77          86            96         106         115        125     

Disp.134    144         154        163         173         182        192     

Left coded image

Right RGB ground truth

Left RGB ground truth

Figure 3. Framework overview. We learn the phase mask together with a disparity prediction network and an RGB reconstruction network

in an end-to-end manner. In the RGB-Disp rendering layer, disparity-dependent PSFs are first simulated given the learnable phase mask.

These PSFs are then convolved with ground truths to render left/right coded images, which are the inputs to the following reconstruction

networks. We use a DispNet-based network and a U-Net-based network to estimate the sharp texture images and the disparity map,

respectively. The loss of reconstructed texture and disparity are summed up together in backpropagation to update the mask height map

and the network parameters at the same time.

each component is discussed in the following subsections.

5.1. Rendering Using RGBDisp Simulator

In conventional stereo, it is assumed that the entire scene

is within the depth of field. When this is not true, as is the

case here, the defocus blur apparent on the captured images

depends upon the depth of the scene point, and thus depends

upon the disparity between the corresponding points of two

camera views. In addition, when a phase mask is inserted

into the aperture plane, the disparity-dependent point spread

function (PSF) also depends upon the phase mask pattern.

The goal within the rendering layer is to accurately model

the effect of phase mask pattern and disparity on the cap-

tured left and right images in a CodedStereo system.

The RGB-Disp rendering is based on Fourier optics the-

ory [14] and is fully differentiable to enable end-to-end

training. We first simulate the point spread functions (PSFs)

for each camera as the squared magnitude of the Fourier

transform of the pupil function (which depends on the phase

mask pattern)

PSFλ ∝ |F{A exp(φM + φDF )}|2, (3)

where λ is the wavelength. In the pupil function, A de-

notes a circular amplitude function with respect to aperture

size, φM denotes the phase shift induced by the phase mask

(proportional to the mask height map), and φDF denotes the

defocus phase. The defocus phase can be further derived as

a function of disparity d,

φDF (x1, y1) =
kλ
2fb

(d− d0)(x
2
1 + y21) (4)

where kλ = 2π/λ is the wavenumber, f is the focal length,

and b is the baseline between two views. (x1, y1) denotes

the spatial coordinate on mask plane, and d0 is the corre-

sponding disparity value at in-focus depth. We then render

the coded images by convolving the ground truth RGB tex-

tures with the disparity and wavelength-dependent PSFs.

Icλ =
∑

d

Md · (I
i
λ ∗ PSFλ,d) + noise (5)

where · is an element-wise product operator, Ii is the in-

put all-in-focus image, and Ic is the rendered coded image.

Md denotes a segmentation mask (1 when the pixel dispar-

ity is d, 0 otherwise). To account for boundary occlusions,

the segmented layers were further blended using the nor-

malized matting weights[20]. To render the effect of noise

(which would be significant under low-light conditions), we

apply an additive Gaussian noise, whose standard deviation

is calculated based on the aperture size, light-level, and ex-

posure duration.

5.2. RGB and Disparity Reconstruction

We use two separate networks to reconstruct the dispar-

ity map and sharp texture images. The texture reconstruc-

tion network is based on a modified residual U-Net [28]

in which the differences between coded image and ground

truth image (i.e. residual image) are learned. The advantage

of learning a residual image is to encourage high-frequency

information recovery, like edges and detailed textures, and

therefore such residual learning techniques are widely used

in per-pixel estimation problems such as deblurring.

For disparity prediction, we adopt the structure of Disp-

NetC [23]. Note that DispNetC only outputs disparity maps

at half the resolution of the input stereo pairs. We modify
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Figure 4. Optimized PSFs in simulation (focus at 96px). Each

PSF slice is normalized for better visualization. PSFs for conven-

tional F32 and F8 lenses are also shown for comparison.

it by adding extra deconvolution layers to upsample the dis-

parity map [27], so that the final output is the same size as

the input left/right coded images. We further found that an

extra encoder-decoder module before DispNetC can benefit

the feature extraction of stereo pairs especially in areas of

the image with a large amount of out-of-focus blur. There-

fore, we process coded left/right images separately through

a shared-weighted encoder-decoder layer followed by two

convolution layers to extract features, and then horizontally

correlate the features. We considered a maximum shifting

of 64 pixels which corresponds to 192 pixels in the origi-

nal coded images. We call our disparity prediction network

DispSharpNet, as it enables disparity estimations with ex-

tra details and sharper boundaries. More details of network

architectures are shown in the supplementary.

5.3. Implementation details

We optimized the phase mask over a depth range of

[0.7m−1.7m] for a stereo system with a baseline of 22mm.

The lenses are focused at 1m with focal lengths of 50mm
and F8 aperture sizes. The sensors’ pixel size was set to

4.8µm, corresponding to a disparity range of [134 − 326]

pixels. To avoid large disparity values, we manually pre-

shifted the right image by 134 pixels to the right. This is

equivalent to reduce the disparities by 134, and thus the dis-

parity range changes to [0−192]. During training, the mask

was directly optimized over the reduced disparities (21 dis-

tinct values sampled in [0 − 192]). The learnable mask

height map was discretized with a pitch size of 88µm at a

resolution of 71×71. Similar to the previous works [30, 35],

we further parameterized the height profile and represented

it using Zernike polynomials with 55 coefficients.

Loss function. During training, the loss function is de-

fined as a combination of disparity prediction error and

RGB reconstruction error. We made use of the root mean

squared error for both the estimated RGB image Î and the

predicted disparity d̂i at different resolutions i.

Loss = Loss Disp+ Loss RGB

=
1√
M

∑

i

αi

∥

∥

∥
di − d̂i

∥

∥

∥

2

+
1√
N

γ(
∥

∥

∥
Il − Îl

∥

∥

∥

2

+
∥

∥

∥
Ir − Îr

∥

∥

∥

2

),

(6)

where αi, γ are the corresponding weights, and M , N are

the number of pixels in the RGB image and disparity map,

respectively. l denotes the left, and r denotes the right.

For stable feature matching, similar to DispNet [23], we

adopted a loss weight schedule to start training with only

the lowest resolution loss, and progressively increase the

weights of losses with higher resolutions.

Dataset & training. Our model was end-to-end trained

on a synthetic dataset consisting of dense ground truth dis-

parity maps (enabling our RGB-Disp rendering) for 35,454
training and 4370 testing stereo pairs [23]. During train-

ing, the image patches were randomly cropped into a size of

384×768, and preprocessed by subtracting out their means

and dividing by their standard deviations. We optimized our

phase mask and network parameters using Adam optimizer

(β1 = 0.9, β2 = 0.999) with a batch size of 8 for 50 epochs,

on GeForce RTX 2080 Ti GPUs.

6. Simulation results

We conducted quantitative and qualitative evaluations of

our method in simulation. The phase masked learned with

γ=0.5 was selected for evaluations, both in simulation and

in experiment, as it simultaneously produces the sharp RGB

texture and accurate disparity map over a large depth of

field. The optimized PSFs are shown in Figure 4. Com-

pared to a conventional F8 lens, our PSFs have a signifi-

cantly shrunken radius of the Airy disk (comparable or even

smaller than F32 lens) at out-of-focus depths, improving

the reconstruction of both RGB images and disparity map

with high resolution. Furthermore, our PSFs also come with

some variations along the disparity axis, providing comple-

mentary blur cues to assist the disparity prediction of prob-

lematic areas.

Comparison with conventional lenses. To illustrate the

improvement of our system over conventional designs, we

compared our masks with a pair of F32 conventional lenses

(small-aperture resulting in low SNR), and a pair of F8
lenses (open-aperture with a large amount of out-of-focus

blur). For each system, the networks were trained with an

additive 2% Gaussian noise, assuming the cameras are all

designed to work under normal-light conditions.

The average peak signal-to-noise ratio (PSNR) and the

structural similarity (SSIM) are adopted for evaluations on

the texture reconstruction, and the end-point error (EPE)

and the 3-pixel threshold error rate (3px) are used for the

disparity, as shown in Table 6. Our method outperforms

conventional designs with higher RGB reconstruction accu-

racy and lower disparity prediction error. A visual compar-

ison is shown in Figure 5. It is clear to see that the F32
system suffers from low SNR, resulting in noisy textures

and disparity maps, while the F8 system fails to reconstruct

fine features due to out-of-focus blur. Our design outper-

forms the F32 system and the F8 system in a high-quality,
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Figure 5. Comparison with conventional baselines (in simulation). (a) with small-aperture conventional F32 lenses. (b) with open-

aperture conventional F8 lenses. (c) ours with optimized masks. For comparison, we applied the same reconstruction networks to F32

and F8 systems as ours, i.e. U-Net for RGB images estimation, and DispSharpNet for disparity prediction. Results show that our design

outperforms conventional designs in a high-quality, high-resolution reconstruction with clear details and sharp edges.

(a) (b) 
focus at 96px

focus at 96px

F32 Lens F8 Lens Ours

R
G

B PSNR[dB] 11.27 28.52 31.90

SSIM 0.048 0.807 0.880

D
is

p
. EPE[px] 38.034 1.815 1.512

3px[%] 95.45% 9.79% 7.85%

Figure 6. Comparison with conventional lenses. Top: The

reconstructed PSNR and EPE (normalized to disparity ground

truth) variations with disparity are plotted. Our method is sig-

nificantly better than conventional baselines, especially at the out-

of-focus range, resulting in a 6× increase in depth of field (black

dashed line for PSNR threshold at 30dB). Bottom: Average PSNR

and SSIM are used for evaluations on texture reconstruction (the

higher the better), and average EPE and 3-pixel error rate are used

for evaluations on disparity prediction (the lower the better).

high-resolution reconstruction with clear details and sharp

edges. We further compared the depth of field of the F8
system and ours, by analyzing the reconstruction PSNRs

over disparities, as shown in Figure 6. Our methods surpass

the PSNR threshold (30dB) for all the disparities within the

range [0-192], resulting in a 6× increase in depth of field

(invert disparity) compared to the F8 system. The curves of

the normalized disparity EPE (EPE divided by the ground

truth) are also shown on the right, indicating our disparity

prediction improvement in the out-of-focus range.

Comparison with other masks. We further compared

our method with several other coded-aperture stereo sys-

tems. These coded masks were optimized based on the the-

oretical or heuristic properties of the PSFs. Specifically, the

Fisher mask was designed to increase the PSFs variation

over depth using Fisher information [30], while the cubic

mask was derived to force the PSFs to be similar over a

large depth range [10]. The comparison results are shown

in Figure 7. Reconstruction results of the e2eEDOF mask

(Sec. 4) are also shown in the figure. Our optimized mask

outperforms the e2eEDOF mask, the Fisher mask, and the

cubic mask for both RGB and depth estimation.

Ablation study. As mentioned in Sec. 5.3, the overall

loss contains both the loss of RGB reconstruction and the

loss of depth prediction, and γ is the corresponding weight.

In Table 1, we compared the performance under different

γ values. As expected, the network performs good depth

estimation when γ is small, and on the contrary, when γ
is large the network performs good RGB estimation. We

finally chose γ = 0.5 in our system.

7. Real experiment

To demonstrate our method, we built a hardware proto-

type with a fabricated mask inserted in a Yongnuo 50mm
lens (with a F8 aperture). As shown in Figure 8, a Blackfly

(BFS-U3-200S6C-C) color camera with 2.4µm pixel size

was used as the sensor. To match simulations, we sub-
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Figure 7. Comparison with other masks in simulation. The

e2eEDOF mask is end-to-end trained [31], and its disparity is di-

rectly estimated from EDOF image pairs. The disparities of Fisher

[30] and Cubic [10] masks are predicted from coded images. Our

CodedStereo mask outperforms others on disparity estimation, and

has comparable texture reconstruction accuracy to EDOF.

sampled the sensor pixels by 2 × 2 so that the equivalent

pixel size is 4.8µm (with a resolution of 1824 × 2736).

The left/right coded image pairs were captured by trans-

lating the camera 22mm (baseline) using a Thorlabs lin-

ear stage. Similar to simulation settings, scenes were con-

structed within a volume of [0.7m− 1.7m] from the proto-

type and the captured right images were pre-shifted by 134
pixels to reduce the disparity value. The reduced disparity

range then drops to [0− 192], aligning with the settings for

which the network was trained.

Mask fabrication & system calibration. We fabricated

our mask using two-photon lithography (Photonic Profes-

sional GT Nanoscribe 3D printer). During printing, the

height-map of the mask was discretized (in height) into 10
steps with a stepsize of 200nm. To account for any imper-

fection and misalignment in real experiments, we calibrated

the PSFs with a deconvolution-based algorithm inspired by

[37, 35]. The calibrated PSFs are shown in Fig. 8, which are

used to finetune the reconstruction networks for best per-

formance. More fabrication and calibration details can be

found in the supplemental material.

γ=0 γ=0.25 γ=0.5 γ=∞

R
G

B PSNR[dB] 28.82 30.34 31.90 32.44

SSIM 0.842 0.874 0.880 0.880

D
is

p
. EPE[px] 1.462 1.477 1.512 1.718

3px[%] 7.73% 7.25% 7.85% 9.13%

Table 1. Ablation study on various γ values in loss function.

PSNR, SSIM of RGB reconstruction and EpE, 3-pixel error rate

of disparity prediction as a function of γ.

(b). Calibrated PSFs of our prototype (a). Our prototype 

Mask

Disp.0          Disp.10         Disp.19         Disp.29         Disp.38        Disp.48         Disp.58            

Disp.67        Disp.77         Disp.86         Disp.96        Disp.106       Disp.115       Disp.125            

Disp.134       Disp.144      Disp.154       Disp.163       Disp.173      Disp.182       Disp.192            

Figure 8. Built prototype with calibrated PSFs. We fabricated

the mask and built a prototype to demonstrate our method.

Experiment results. Our real-world experiment results

are shown in Fig. 9. From the captured coded image pair,

our method can reconstruct both RGB image and disparity

with high accuracy in a large depth-of-range. Similar to the

simulation section, we further compared our prototype with

conventional F8 and F32 lenses in real experiments. The

same exposure time (600ms) was applied for all three set-

tings. As a reference, we included the reconstruction results

of a F32 system with 10s exposure time to show the best re-

sult we can get without the SNR constraint. The results are

shown in Fig. 10. As expected, the F32 system produces

noisy reconstructions given low SNR, while the F8 system

fails to recover fine features in texture and disparity due to

the large out-of-focus blur. Our CodedStereo system gen-

erates high-quality results similar to the long-exposure F32
system with significantly shorter exposure time.

8. Conclusion & discussion

In this paper, we proposed a CodedStereo system that

can recover large-volume, high-resolution 3D information

under light-limited environments. The key idea of our sys-

tem is to introduce a single phase mask at the aperture plane

of stereo cameras. The mask was end-to-end learned to-

gether with an RGB reconstruction network and a disparity

estimation network. The optimized phase mask creates a

disparity-dependent point spread function, allowing us to

recover sharp image and stereo correspondence over a sig-

nificantly expanded depth of field than conventional stereo.

We showed in simulation and experiments (with a proto-

type) that our method outperforms conventional lens and

heuristic masks on both reconstructed texture and disparity.

Despite the advantages of our method, some limitations

remain. First, the introduction of the phase mask makes

the hardware system more complicated in design, and the
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Figure 9. Experiment results of various real-word scenes using our CodedStereo prototype. Reconstruction results are shown for real

scenes with both uniform background and non-uniform background (the last column, variation in texture/depth).

Figure 10. Comparison with conventional lenses in real-world experiments. We compare the real-world performance of our prototype

to the traditional F32 and F8 lenses here. The coded images of (a)-(c) are captured in the same 600ms exposure (scaled up by 8 times for

F32 for visualization). (d) is long-exposure (10s) captured with a F32 lens, and the reconstructions are considered as the ground truths.

As predicted by simulation, our system is superior to conventional designs in RGB and disparity reconstruction, and outperforms all these

baselines (even long-exposure F32) on the disparity prediction in saturated regions, as pointed by the pink arrow.

re-training of phase masks and networks are required for

different system settings (such as the lens focal length, the

aperture size, the focus depth or the sensor pixel size that

ends up with different defocus blur/disparities). Second,

since our method is based on depth from disparity/defocus

methods, it inherits their limitations on texture-less areas.

Moreover, there is a trade-off between the accuracy of dis-

parity and texture reconstruction (controlled by the weight

γ). Further optimizing the system design might can mitigate

this trade-off, including designs with two different phase

masks/lenses across two views. Looking into the future, we

hope to extend our framework to multi-view large depth-of-

field stereo, enabling more reliable 3D information captur-

ing under low-light conditions.
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