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Abstract

Transfer learning across heterogeneous data distribu-

tions (a.k.a. domains) and distinct tasks is a more gen-

eral and challenging problem than conventional transfer

learning, where either domains or tasks are assumed to be

the same. While neural network based feature transfer is

widely used in transfer learning applications, finding the

optimal transfer strategy still requires time-consuming ex-

periments and domain knowledge. We propose a transfer-

ability metric called Optimal Transport based Conditional

Entropy (OTCE), to analytically predict the transfer per-

formance for supervised classification tasks in such cross-

domain and cross-task feature transfer settings. Our OTCE

score characterizes transferability as a combination of do-

main difference and task difference, and explicitly evalu-

ates them from data in a unified framework. Specifically,

we use optimal transport to estimate domain difference and

the optimal coupling between source and target distribu-

tions, which is then used to derive the conditional entropy of

the target task (task difference). Experiments on the largest

cross-domain dataset DomainNet and Office31 demonstrate

that OTCE shows an average of 21% gain in the correlation

with the ground truth transfer accuracy compared to state-

of-the-art methods. We also investigate two applications of

the OTCE score including source model selection and multi-

source feature fusion.

1. Introduction

Transfer learning is a useful learning paradigm to im-

prove the performance on target tasks with the help of

related source tasks (or source models), especially when

only few labeled target data are available for supervi-

sion [30, 37]. A Transferability metric can quantitatively

reveal how easy it is to transfer knowledge learned from

a source task to the target task [13, 4, 36, 24]. It indeed

provides a road map for conducting transfer learning in
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Figure 1. Illustration of three different transfer learning scenar-

ios, i.e., transductive domain adaptation [27], cross-task trans-

fer [5, 24] and the cross-domain cross-task transfer we investi-

gating. We take the digital number classification as an example,

where the cross-domain cross-task transfer setting suffers both do-

main difference and task difference.

practice, e.g., selecting highly transferable tasks for joint

training [41], or understanding task relationships for source

model selection [5, 1, 38, 24].

While theoretical results in transfer learning such as

[6, 8, 9, 21] suggest that task relationship can be modeled by

certain divergence between the source and target data gener-

ating distributions, they are difficult to estimate in practice

when target training data is limited. Previous transferability

metrics [41, 40, 1] empirically calculate the task relation-

ships indicated by training loss or validation accuracy, thus

they need to retrain the source model involving expensive

computation. Recent analytical metrics [5, 38, 24] are lim-

ited by strict assumptions on data. NCE [38] assumes that

source and target tasks share the same input instances; H-

score [5] assumes that source and target data are distributed

in the same domain. Although LEEP [28] does not make

any assumptions on source and target data except for hav-

ing the same input size, it does not work sufficiently well

under the cross-domain setting.

In this paper, we investigate the transferability estimation

problem for classification tasks under the more challenging
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cross-domain cross-task setting, as illustrated in Figure 1.

For most transfer learning problems we encounter in prac-

tice, we cannot assume the source and target data are gen-

erated from the same distribution (domain) since domain

gaps commonly exist in real life due to different acquisi-

tion devices and different physical environments. Mean-

while, we also cannot always assume no task difference ex-

ists in a transfer learning application as in transductive do-

main adaptation [27], i.e., source and target tasks have the

same category set. We emphasize that the cross-domain

cross-task setting is more challenging compared to previ-

ous settings that require shared input data or same domain,

since both domain difference and task difference deteriorate

the transfer performance [27, 5, 26].

To this end, we propose a novel cross-domain cross-task

transferability metric called the Optimal Transport based

Conditional Entropy, abbreviated as OTCE score. On one

hand, compared to the empirical methods [41, 40, 1] that

need to retrain the source model using gradient descent to

estimate the empirical transfer error, our metric is more ef-

ficient (about 75x faster) to compute. On the other hand,

our OTCE score explicitly learns the domain difference

and task difference in a unified framework, providing a

more interpretable result compared to recent analytical met-

rics [24, 38, 5].

More specifically, we measure the domain difference

between source and target data using Wasserstein dis-

tance computed by solving the classic Optimal Transport

(OT) [18, 29] problem. The OT problem also estimates the

joint probability between source and target samples, which

allows us to derive the task difference in terms of the con-

ditional entropy between the source and target task labels.

Finally, we learn a linear model of transfer accuracy on do-

main difference and task difference, drawing transfer expe-

rience evaluated on a few auxiliary tasks. Albeit its simplic-

ity, the learned model makes it easier to decompose trans-

ferability into different factors through model coefficients.

Extensive experiments on the largest cross-domain

dataset DomainNet [28] and Office31 [34] demonstrate that

our OTCE score shows significantly higher correlation with

transfer accuracy, i.e., predicting the transfer performance

more accurately with an average of 21% gain compared

to state-of-the-art metrics [24, 38, 5]. In addition, we fur-

ther investigate two applications of transferability in source

model selection and multi-source feature fusion. In sum-

mary, our contributions are follows:

1) To our knowledge, we are the first to analytically in-

vestigate the transferability estimation problem for super-

vised classification tasks under the more general and chal-

lenging cross-domain cross-task setting.

2) We propose a novel cross-domain cross-task transfer-

ability metric OTCE score which can explicitly evaluate do-

main difference and task difference in a unified framework,

and predict the transfer performance in advance.

3) We show consistent superior performance in predict-

ing transfer performance compared to state-of-the-art met-

rics and also investigate the applications of OTCE score in

source model selection and multi-source feature fusion.

2. Related work

Our work is closely related to three fields in the transfer

learning area [27, 20], i.e., empirical studies on transferabil-

ity, analytical studies on transferability and task relatedness.

Empirical studies on transferability. Taskonomy [41]

pioneers the investigation in empirically building a taxon-

omy of tasks. They retrain the source model on each tar-

get task and evaluate transfer performance to build up a

non-parametric transferablity score called ‘task affinity’.

Task2Vec [1] embeds tasks into a low-dimensional vec-

tor space so that transferability can be measured using a

non-symmetric distance metric. Task2Vec also needs to re-

train the large-scale probe network on target task, and then

compute the Fisher information matrix to obtain embed-

ding vector. Ying et al. [39] propose to learn transfer skills

from previous transfer learning experiences, and then apply

such skills for future target tasks. Generally, these empirical

methods involve expensive computation for training, which

is mostly avoided in our approach.

Analytical studies on transferability. The advantage

of analytical methods is computational efficiency. Previous

H-score [5] is an information-theoretic approach for analyti-

cally evaluating transferability through solving a HGR max-

imum correlation problem. They focus on the task transfer

learning problem, which assumes the same input domain

among tasks. NCE [38] adopts conditional entropy to eval-

uate transferability and task hardness under a particular set-

ting, i.e., source and target tasks share the same input in-

stances but different labels. They provide a derivation that

the empirical transferability is lower bounded by the nega-

tive conditional entropy. The recently proposed LEEP [24]

score is a more general metric compared to the previous two

methods. It is defined by the average log-likelihood of the

expected empirical predictor, which predicts the dummy la-

bel distributions for target data in source label space and

then compute the empirical conditional distribution of tar-

get label given the dummy source label. In general, these

methods either have strict assumptions on data or do not

work sufficiently well in a cross-domain setting.

Task relatedness. Although some theoretic analysis of

generalization bounds [22, 6, 8, 7, 9, 21] in transfer learning

and multi-task learning have shed insights on transferabil-

ity estimation, it is difficult to verify whether their assump-

tions are satisfied in practical data and even more difficult

to compute exactly. Meanwhile, such distance metrics in-

cluding F-relatedness [8], A-distance [7] and discrepancy

distance [21] are symmetric while the transferability metric
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should be non-symmetric since transferring from one task

to another is different from transferring in the reverse direc-

tion [24]. Besides, a recent work [3] using Optimal Trans-

port (OT) to evaluate dataset distances also measures task

relatedness to some extent. Task relatedness is also stud-

ied in multi-task learning, since weakly related tasks may

worsen the performance compared to single task learning.

[17, 31, 32] utilize some prior human knowledge to join

highly related tasks. Other works [19, 23] are capable of

dynamically adjusting the relatedness of tasks during the

training phase.

3. Transferability Measure via OTCE

In this section, we start with presenting the transferabil-

ity definition of classification tasks. Then we introduce

some preliminary of Optimal Transport (OT) before detail-

ing our proposed OTCE score.

3.1. Transferability Definition

Formally, suppose we have a pair of source and target

classification tasks whose data are Ds = {(xi
s, y

i
s)}

m
i=1 ∼

Ps(x, y) and Dt = {(xi
t, y

i
t)}

n
i=1 ∼ Pt(x, y) respectively,

where xi
s, x

i
t ∈ X and yis ∈ Ys, y

i
t ∈ Yt. Note that

xi
s, x

i
t ∈ X only implies source and target instances have

the same input dimension, but they still reside in differ-

ent domains, i.e. Ps 6= Pt. In addition, we are given

a source model (θ, hs) pre-trained on source data Ds, in

which θ : X → R
d represents a feature extractor producing

d-dimensional features and hs : Rd → P(Ys) is the head

classifier outputting the final probability distribution of the

labels, where P(Ys) is the space of all probability distribu-

tions over Ys.

Our transferability definition is based on a popular form

of neural network based transfer learning (illustrated in Fig-

ure 2), known as Retrain head. It keeps the weights of

source feature extractor θ frozen and retrains a new head

classifier ht for target task [12, 35, 42, 25]. The ground-

truth of transferability can be represented by the empiri-

cal transfer performance on the target task, i.e., retrain the

source model on target data and then evaluate the classifica-

tion accuracy on its testing set. We can define the empirical

transferability as follows.

Definition 1 The empirical transferability from source task

S to target task T is measured by the expected accuracy of

the retrained (θ, ht) on the testing set of target task:

Trf(S → T ) = E [acc(yt, xt; θ, ht)] , (1)

which indicates how well the source model θ performs on

target task T . [38]

Although empirical transferability can be the golden

standard of describing how easy it is to transfer knowledge

θ

θ(xt)

ht
xt

Retrain head: Finetune:

Frozen
Free

Figure 2. Illustration of two neural network based transfer learning

methods, i.e., Retrain head and Finetune.

from a source task to a target task, it is computationally ex-

pensive to obtain. Therefore, analytical transferability aims

to effectively approximate empirical transferability, without

relying on training a new network.

It is worth mentioning that another type of transfer learn-

ing is referred as Finetune [2, 14], i.e., update the feature

extractor θ and the new head classifier ht simultaneously.

Compared to Retrain head, Finetune trade-offs transfer effi-

ciency for better target accuracy and it requires more target

data to avoid overfitting. As in previous analytical stud-

ies [24, 38, 5], in this paper, we pay more attention to

the Retrain head method by working directly in the feature

space determined by the source feature extractor θ. Thus the

performance of current analytical transferability metrics on

the finetuned model (θt, ht) are generally worse than that

of Retrain head for the same tasks. Nevertheless, exper-

iments under the Finetune setting (Section 4.4) show that

our OTCE score outperforms previous metrics [24, 38, 5].

3.2. Preliminary of Optimal Transport

Optimal Transport (OT) theory originated from the

Monge problem in 1781, and then the Kantorovich relax-

ation [18] was proposed to make the Optimal Transport the-

ory a powerful approach to leverage the underlying space

for comparing distributions, shapes and point clouds [29].

The OT problem considers a complete and separable met-

ric space X , along with continuous or discrete probability

measures α, β ∈ P(X ) [3]. The Kantorovich relaxation of

OT problem is defined as:

OT (α, β) , min
π∈Π(α,β)

∫

X×X

c(x, z)dπ(x, z), (2)

where c(·, ·) : X ×X → R
+ is a cost function, and Π(α, β)

is a set of couplings, i.e., joint probability distributions over

the space X × X with marginal distributions α, β, that is,

Π(α, β) , {π ∈ P(X × X )|P1#π = α, P2#π = β}. (3)

When the c(x, z) = dX (x, z)p of some p ≥ 1, Wp(α, β) ,
OT (α, β)1/p is denoted as the p-Wasserstein distance.

In practice, we rarely know the true marginal distribu-

tions α, β. Instead, we usually compute the discrete empir-

ical distributions α̂ =
∑m

i=1 aiδxi , β̂ =
∑n

i=1 biδzi , where
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Yt

P (Xs, Ys) P (Xt, Yt)

P (Xs, Xt)

Figure 3. The probability graph model of the source and target

task.

a,b are vectors in the probability simplex. And the cost

function in Equation (2) can simply be represented as an

m× n cost matrix C, where Cij = c(xi, zj).
Furthermore, OT can be efficiently solved via the

Sinkhorn algorithm [11] by adding an entropic regularizer

to the objective function in Equation (2). The entropic regu-

larized OT has been used for domain adaptation to compute

the optimal mapping of input from the source domain to the

target domain [10]. Alvarez et al. [3] also adopts OT to

geometrically evaluate the distance between datasets.

3.3. OTCE Score

The motivation of our OTCE (Optimal Transport based

Conditional Entropy) score is decomposing the overall dif-

ference between two classification tasks into domain differ-

ence and task difference. To this end, we adopt OT to eval-

uate the domain difference for its advantages in computing

directly from finite empirical samples and capturing the un-

derlying geometry of data. More importantly, by solving

the OT problem between source and target data, we can ob-

tain an optimal coupling matrix of samples, revealing the

pair-wise optimal matching under a given distance metric.

From a probabilistic point of view, the coupling matrix

is a non-parametric estimation of the joint probability of

the source and target latent features P (Xs, Xt). We model

the relationship between the source and the target data

according to the following simple Markov random field:

Ys − Xs − Xt − Yt (shown in Figure 3), where label ran-

dom variables Ys and Yt are only dependent on Xs and Xt,

respectively, i.e, P (Ys, Yt|Xs, Xt) = P (Ys|Xs)P (Yt|Xt).
Furthermore, we can derive the empirical joint probability

distribution of source and target label sets,

P (Ys, Yt) = EXs,Xt
[P (Ys|Xs)P (Yt|Xt)]. (4)

We consider this joint probability distribution to some ex-

tent represents the task difference, since the goodness of

class-to-class matching may intuitively reveal the hardness

of transfer. Inspired by Tran et al. [38] who use Conditional

Entropy (CE) H(Yt|Ys) to describe class-to-class matching

quality over the same input instances, we consider it as a

reasonable metric to evaluate task difference once we learn

the soft correspondence between source and target features

P (Xs, Xt) via optimal transport. Finally, we define our an-

alytical transferability metric OTCE as a weighted combi-

nation of domain difference and task difference.

OT
{θ(xi

s)}

{θ(xj
t )}

Coupling matrix
Wasserstein Distance

Conditional Entropy

(ŴD)

(ŴT )
OTCE = λ1ŴD + λ2ŴT + b

Figure 4. Illustration of our proposed OTCE transferability metric.

Figure 4 shows the overview of our proposed transfer-

ability metric. The computation process of OTCE score is

described in following steps.

Step1: Compute domain difference. In our problem,

we adopt the OT definition with entropic regularization [11]

to facilitate the computation:

OT (Ds, Dt) , min
π∈Π(Ds,Dt)

m,n∑

i,j=1

c(θ(xi
s), θ(x

j
t ))πij + ǫH(π),

(5)

where c(·, ·) = ‖ · − · ‖22 is the cost metric, and π

is the coupling matrix of size m × n, and H(π) =
−
∑m

i=1

∑n
j=1 πij log πij is the entropic regularizer with

ǫ = 0.1. The OT problem above can be solved efficiently

by Sinkhorn algorithm [11] to produce an optimal coupling

matrix π∗. Thus the domain difference WD can be repre-

sented by the commonly used 1-Wasserstein distance, de-

noted as:

WD =

m,n∑

i,j=1

‖θ(xi
s)− θ(xj

t )‖
2
2π

∗
ij . (6)

Step2: Compute task difference. Based on the opti-

mal coupling matrix π∗, we can compute the empirical joint

probability distribution of source and target label sets, and

the marginal probability distribution of source label set, de-

noted as:

P̂ (ys, yt) =
∑

i,j:yi
s=ys,y

j
t=yt

π∗
ij , (7)

P̂ (ys) =
∑

yt∈Yt

P̂ (ys, yt). (8)

Note that Equation (7) is the empirical estimation of Equa-

tion (4) for all pairs of source and target samples. Then we

can compute the Conditional Entropy (CE) to represent task

difference WT ,

WT = H(Yt|Ys) = H(Ys, Yt)−H(Ys)

= −
∑

yt∈Yt

∑

ys∈Ys

P̂ (ys, yt) log
P̂ (ys, yt)

P̂ (ys)
.

(9)

Here we explain why CE can be used to measure task

difference. As the testing accuracy of the target task can be

well indicated by the training log-likelihood score lT (θ, ht)
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if the model is not overfitted, we can define an alternative

empirical transferability metric to Equation (1) as follows:

T̃rf(S → T ) = lT (θ, ht)

=
1

n

n∑

i=1

logP (yit|x
i
t; θ, ht).

(10)

So the following relationship is obtained,

T̃rf(S → T ) ≥ lS(θ, hs)−H(Yt|Ys). (11)

Proof is detailed in [38]. lS(θ, hs) is a constant after the

source model training, so the lower bound of transferabil-

ity is determined by the Conditional Entropy (CE). In other

words, the empirical transferability can be attributed to CE.

However, in cross-domain setting, CE alone is not suffi-

cient to estimate empirical transferability as discussed in the

Supplementary Section 3. One reason could be that there

exists inherent uncertainty in estimating the joint distribu-

tion of source and target features through empirical sam-

ples, so we need to capture such uncertainty through domain

difference. Thus the following step is to combine domain

difference and task difference to obtain our OTCE score.

Step3: Compute OTCE score. Intuitively, we model

the OTCE score as a linear combination of domain differ-

ence and task difference:

OTCE = λ1ŴD + λ2ŴT + b, (12)

where λ1, λ2 are weighting coefficients for standardized do-

main difference ŴD and task difference ŴT respectively,

and b is the bias term. Choosing the optimal weights is a

challenging task since the importance of ŴD and ŴT may

be different for various cross-domain configurations, as de-

scribed in Section 4.7.

Consequently, we learn the coefficients for current spec-

ified source and target domains utilizing several auxiliary

tasks. More specifically, we sample several pairs of source

and target tasks, and compute their domain differences, task

differences and empirical transferability as the transfer ex-

perience. Least square fitting is used to obtain the adjusted

λ1, λ2, b. While the OTCE score can be generalized to

higher order polynomial, we favor linear model since it is

fast to compute (with analytical solution) and more inter-

pretable. After obtaining the fitted model, we can use the

OTCE score to predict transfer accuracy for any source-

target task pair in the current cross-domain setting.

4. Experiments

We first evaluate our OTCE score on the largest-to-date

cross-domain dataset, DomainNet [28], and another popular

dataset Office31 [34] by computing the Pearson correlation

coefficient between OTCE score and the empirical transfer-

ability (transfer accuracy). Three different transfer settings

are considered, namely the standard setting, the fixed cat-

egory set size setting, and the few-shot setting. Then we

investigate the applications of our transferability metric in

source model selection and multi-source feature fusion. Fi-

nally, we study the effects of the number of auxiliary task

on the performance of our transferability metric. More dis-

cussions are included in the Supplementary.

4.1. Datasets

We generate collections of classification tasks by sam-

pling different sets of categories from two existing cross-

domain image datasets:

DomainNet [28] contains six domains (styles) of im-

ages, i.e., Clipart (C), Infograph (I), Painting (P), Quick-

draw (Q), Real (R) and Sketch (S), each covering 345 com-

mon object categories. We exclude the Infograph domain

due to its noisy annotations. It is worth mentioning that

categories in DomainNet are severely imbalanced, i.e., the

number of images per category ranges from 8 to 586. To

eliminate the influence of imbalanced data in obtaining the

empirical transferability, we limit the number of instances

per category to be at most ≤ 100 in all target tasks.

Office31 [34] is a common benchmark dataset for do-

main adaptation algorithms on three domains: Amazon (A),

DSLR (D) and Webcam (W). It contains 4,110 images of 31

categories of objects typically found in an office environ-

ment.

4.2. Evaluation on Standard Setting

We define a standard cross-domain cross-task setting

to evaluate the correlation (measured by Pearson correla-

tion coefficient like [24, 38]) between our proposed OTCE

score and the transfer accuracy. We compare performances

with recent analytical transferability metrics LEEP [24],

NCE [38] and H-score [5]. As the original NCE assumes

that the source and target tasks are different labels on the

same instances, we follow the modified implementation by

[24], i.e., use the source model to predict the dummy source

label for target data.

To generate source tasks, we obtain a 44-category and

a 15-category classification tasks for DomainNet and Of-

fice31 respectively through random sampling. Then we

train 8 source models (5 for DomainNet, 3 for Office31)

for different domains on the defined source tasks initialized

using an ImageNet-pretrained [33] ResNet-18 [15] model.

For target tasks, we randomly sample 100 classifica-

tion tasks from each target domain. The number of cat-

egories range from 10-100 for DomainNet, and 10-31 for

Office31, respectively. In each transfer configuration, we

select one domain as the source domain, and consider oth-

ers as target domains. Thus in this setting, we totally con-

duct 5 × 4 × 100 = 2000 cross-domain cross-task transfer

tests on DomainNet, and 3 × 2 × 100 = 600 tests on Of-
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Table 1. Quantitative comparisons evaluated by Pearson correlation coefficients between transferability metrics and transfer accuracy under

cross-domain cross-task transfer settings, including standard setting (Section 4.2), fixed category set size setting (Section 4.3) and few-shot

setting (Section 4.4). Superscript ∗ denotes p > 0.001.

Transferring type Dataset

Experimental setting

OTCE LEEP[24] NCE[38] H-score[5]
Source domain Target domain Data property

Retrain head

DomainNet

C P,Q,R,S standard 0.969 0.919 0.787 0.864

P C,Q,R,S standard 0.968 0.886 0.812 0.858

Q C,P,R,S standard 0.963 0.942 0.935 0.843

R C,P,Q,S standard 0.972 0.892 0.851 0.870

S C,P,Q,R standard 0.960 0.952 0.954 0.882

Office31

A D,W standard 0.829 0.805 0.796 0.590

D A,W standard 0.880 0.857 0.849 0.441

W A,D standard 0.863 0.811 0.804 0.489

average 0.926 0.883 0.849 0.730

Retrain head DomainNet

C P,Q,R,S fixed category set size 0.757 0.614 0.535 -0.599

P C,Q,R,S fixed category set size 0.712 0.480 0.418 -0.541

Q C,P,R,S fixed category set size 0.352 0.213 0.269 -0.288

R C,P,Q,S fixed category set size 0.639 0.465 0.440 −0.100
∗

S C,P,Q,R fixed category set size 0.435 0.381 0.427 -0.302

average 0.579 0.431 0.418 -0.346

Retrain head

DomainNet

C P,Q,R,S few-shot 0.920 0.843 0.713 0.767

P C,Q,R,S few-shot 0.924 0.812 0.737 0.807

Q C,P,R,S few-shot 0.852 0.836 0.825 0.786

R C,P,Q,S few-shot 0.937 0.787 0.744 0.814

S C,P,Q,R few-shot 0.922 0.886 0.884 0.834

Office31

A D,W few-shot 0.840 0.803 0.793 0.640

D A,W few-shot 0.933 0.923 0.930 0.413

W A,D few-shot 0.927 0.920 0.926 0.277
∗

Finetune

DomainNet

C P,Q,R,S few-shot 0.699 0.333 0.153
∗ 0.406

P C,Q,R,S few-shot 0.766 0.414 0.309 0.554

Q C,P,R,S few-shot 0.663 0.623 0.635 0.607

R C,P,Q,S few-shot 0.854 0.288 0.226 0.511

S C,P,Q,R few-shot 0.681 0.514 0.526 0.481

Office31

A D,W few-shot 0.319 0.210
∗

0.204
∗

0.173
∗

D A,W few-shot 0.939 0.865 0.896 0.186
∗

W A,D few-shot 0.947 0.875 0.883 −0.002
∗

average 0.820 0.670 0.627 0.476

fice31. To determine the coefficients λ1, λ2, b of OTCE, we

randomly select 10% target tasks as the auxiliary for each

cross-domain configuration (specified by the set of source

and target domains involved), and others are used for test-

ing. The empirical transferability of each target task is the

testing accuracy after training the source model on target

data with SGD optimizer and cross entropy loss for 100

epochs. Table 1 (upper part) shows the numerical results

of comparing our proposed OTCE score with LEEP, NCE

and H-score. Figure 5 (the first row) visualizes the correla-

tions of transferability metrics and empirical transferability

(ground truth) on the test data. Both Table 1 and Figure 5

clearly demonstrate that OTCE score achieves higher cor-

relation with the ground truth across all domain configura-

tions, with about 5%, 9% and 27% gain compared to LEEP,

NCE and H-score respectively.

4.3. Evaluation on Fixed Category Set Size

Analyzing the experimental results of Section 4.2, we

find that transfer accuracy drops with the increasing of cat-

egory set size (number of categories), shown in the Supple-

mentary Section 5. A larger category set generally makes

it more difficult to learn the target task well under the same

training setting for a given source model. Such differences

in the intrinsic complexity of the target task tends to over-

shadow the more subtle variations in transferability due to

task and domain relatedness. To show OTCE score indeed

captures these subtle variations, we design a more chal-

lenging experiment where all target category set sizes are

the same. Specifically, we sample 100 target tasks with

category set size = 50 for each target domain, and follow

the training strategy described in the standard setting (Sec-

tion 4.2). Results shown in Table 1 (middle part) and Figure

5 (the third row) demonstrate that our proposed OTCE score
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LEEP [24] NCE [38] H-score [5] OTCE

Fixed category set size setting, source domain: Painting

Standard setting, source domain: Painting

Fewshot setting, source domain: Painting

Figure 5. Visualization of correlations between empirical transferability (transfer accuracy through Retrain head) and analytical transfer-

ability metrics, including LEEP, NCE, H-score and our proposed OTCE score. Each row shows the correlations under standard setting,

few-shot setting and fixed category set size setting respectively, where source domain is Painting and target domains are Clipart, Quick-

draw, Real, Sketch. Points in the figure represent different target tasks. It can be seen that our OTCE score shows significantly better

correlations with empirical transferability.

outperforms other transferability metrics by a large margin,

with an average 34% and 39% correlation gain compared

to LEEP and NCE respectively. We also note that H-score

failed in this difficult setting, since correlation coefficients

are negative where they should be positive.

4.4. Evaluation on Few­shot Setting

The few-shot learning problem [37] is a common ap-

plication scenario of transfer learning, since training from

scratch using only few-shot samples (e.g., 10 samples per

category) can easily overfit, while transferring representa-

tions from a highly related source model can greatly im-

prove the generalization of the target task. Thus it is nec-

essary to test our transferability metric under the few-shot

setting. Specifically, few-shot setting is different from the

standard setting (Section 4.2) in two aspects. On one hand,

we limit each category only containing 10 samples. On the

other hand, we also study the correlation of transferability

metrics and the transfer accuracy obtained through Fine-

tune. It is worth mentioning that all the aforementioned an-

alytical transferability metrics rely on the feature represen-

tation inferred by the source feature extractor. Therefore,

it is more challenging to require transferability metrics are

still highly correlated with the finetuned accuracy. Despite

these restrictions, results shown in Table 1 (lower part) and

Figure 5 (the second row) demonstrate that OTCE score is

consistently better than LEEP, NCE and H-score with 22%,

39% and 83% correlation gain respectively.

4.5. Application for Source Model Selection

Selecting the best pretrained source model for a target

task from a given set of source models is one of the most

common applications of transferability metrics. In this ex-

periment, we adopt 100 target tasks for a specified target

domain as in Section 4.2. And for each target task, there are

four source models pretrained on other domains. We want

to evaluate whether the source model showing highest trans-

ferability score has the highest transfer accuracy on target

task. If so, we consider that transferability score success-

fully predicts the best source model. Finally, we calculate

the ratio of successful predictions. We compare the pre-

diction accuracy among OTCE, LEEP and NCE. H-score is

15785



Table 2. Quantitative comparisons of source model selection accu-

racy (%) among transferability metrics on DomainNet.

Method

Target domain

average
C P Q R S

LEEP[24] 31.1 26.7 5.6 97.8 100.0 52.2

NCE[38] 41.1 94.4 2.2 100.0 100.0 67.5

OTCE 41.1 93.3 97.8 100.0 100.0 86.4
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Figure 6. Testing accuracy comparisons among ‘Self-train’ (di-

rectly training on target data), ‘FF Avg’ (average fusion) and

‘FF OTCE’ (fusion weighted by OTCE score).

omitted since it does not produce any meaningful result in

this experiment. Quantitative comparisons shown in Table 2

show that our OTCE score achieves top results in predicting

the best source model.

4.6. Application for Multi­Source Feature Fusion

We test OTCE score on a multi-source feature fusion

problem, which is another application scenario of transfer-

ability, i.e., one can transfer multiple source models to a

target task by merging their inferred features together to

obtain a fused representation [16]. A simple but effective

fusion approach is element-wise addition or concatenation

of source features. A new head classifier can be trained by

taking the fused representation as input to produce the final

output. However, different source models may result in dif-

ferent transfer performance on the target task. Thus simple

average fusion is unable to effectively exploit the most use-

ful information provided by source models. Consequently,

we apply the OTCE score to weight the feature fusion for

better transfer performance.

In this experiment, we sample 50 target tasks in Real do-

main of DomainNet dataset from the few-shot setting (Sec-

tion 4.4). Then we employ 4 source models trained on other

domains respectively to perform feature fusion targeting to

these target tasks. We use a softmax function to normal-

ize the OTCE scores of four source models to obtain the

fusion coefficients in range [0, 1], and then multiply source

features respectively. We consider two methods of merg-

ing features, i.e., element-wise addition and concatenation.

Results shown in Figure 6 demonstrate that feature fusion

weighted by our OTCE score achieves the highest testing

accuracy on target tasks as expected. Heuristically, our pro-

posed transferability metric OTCE score can be an effective

tool for multi-source transfer learning.
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Figure 7. Study of how different number of auxiliary tasks affects

the final correlations between OTCE score and empirical transfer-

ability. Polygonal lines represent different source domains from

DomainNet as described in Section 4.2.

4.7. Number of Auxiliary Tasks

Auxiliary tasks are used to determine the coefficients

λ1, λ2 and b in Equation (12) through least square fitting.

We analyze the effect of auxiliary tasks on OTCE correla-

tion using DomainNet. As shown in Figure 7, we plot the

correlation between OTCE score and empirical transferabil-

ity against the number of auxiliary tasks among all target

tasks in each transfer setting. Note that the first data point

number = 0 (i.e. no auxiliary training) represents the cor-

relation using the pre-defined coefficients λ1 = λ2 = −0.5.

This experiment demonstrates that learning the coefficients

with auxiliary tasks for different cross-domain setting is

necessary to maintain the robustness of OTCE score. Nev-

ertheless, we can still achieve high correlation performance

using only few auxiliary tasks. Moreover, we further dis-

cuss only using domain difference or task difference to char-

acterize transferability and analyze the learned coefficients

in the Supplementary Section 4.

5. Conclusion

In this study, we investigated the analytical transferabil-

ity estimation problem under the general setting of cross-

domain cross-task transfer learning. Our proposed transfer-

ability metric, OTCE score, characterizes the transferability

between source and target tasks based on their domain dif-

ference and task difference, which can be explicitly evalu-

ated in a unified framework. Extensive experiments demon-

strate that OTCE score is more robust than other existing

analytical transferability methods for capturing the uncer-

tainty in the actual transfer performance under the cross-

domain cross-task setting. For applications, we also showed

through simple case studies that the OTCE score is a suit-

able metric to select the best source model in transfer learn-

ing and to determine feature weights in multi-source feature

fusion for multi-task learning. In future works, we will ex-

plore more applications of OTCE score, such as utilizing the

domain difference and task difference to support the train-

ing procedure in cross-domain cross-task transfer learning

problems, e.g. open-set domain adaptation.
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dataset distances via optimal transport. arXiv preprint

arXiv:2002.02923, 2020. 3, 4

[4] Haitham Bou Ammar, Eric Eaton, Matthew E Taylor, De-

cebal Constantin Mocanu, Kurt Driessens, Gerhard Weiss,

and Karl Tuyls. An automated measure of mdp similarity

for transfer in reinforcement learning. In Workshops at the

Twenty-Eighth AAAI Conference on Artificial Intelligence,

2014. 1

[5] Yajie Bao, Yang Li, Shao-Lun Huang, Lin Zhang, Lizhong

Zheng, Amir Zamir, and Leonidas Guibas. An information-

theoretic approach to transferability in task transfer learning.

In 2019 IEEE International Conference on Image Processing

(ICIP), pages 2309–2313. IEEE, 2019. 1, 2, 3, 5, 6, 7

[6] Shai Ben-David, John Blitzer, Koby Crammer, Alex

Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan.

A theory of learning from different domains. Machine learn-

ing, 79(1-2):151–175, 2010. 1, 2

[7] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando

Pereira. Analysis of representations for domain adaptation.

Advances in neural information processing systems, 19:137–

144, 2006. 2

[8] Shai Ben-David and Reba Schuller. Exploiting task relat-

edness for multiple task learning. In Learning Theory and

Kernel Machines, pages 567–580. Springer, 2003. 1, 2

[9] John Blitzer, Koby Crammer, Alex Kulesza, Fernando

Pereira, and Jennifer Wortman. Learning bounds for domain

adaptation. In Advances in neural information processing

systems, pages 129–136, 2008. 1, 2
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