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Abstract

Tremendous efforts have been made on instance segmen-

tation but the mask quality is still not satisfactory. The

boundaries of predicted instance masks are usually impre-

cise due to the low spatial resolution of feature maps and the

imbalance problem caused by the extremely low proportion

of boundary pixels. To address these issues, we propose a

conceptually simple yet effective post-processing refinement

framework to improve the boundary quality based on the

results of any instance segmentation model, termed BPR.

Following the idea of looking closer to segment boundaries

better, we extract and refine a series of small boundary

patches along the predicted instance boundaries. The re-

finement is accomplished by a boundary patch refinement

network at higher resolution. The proposed BPR framework

yields significant improvements over the Mask R-CNN base-

line on Cityscapes benchmark, especially on the boundary-

aware metrics. Moreover, by applying the BPR framework

to the “PolyTransform + SegFix” baseline, we reached 1st

place on the Cityscapes leaderboard. Code is available at

https://github.com/tinyalpha/BPR.

1. Introduction

Instance segmentation, which aims to assign a pixel-

wise instance mask with a category label to each object

in an image, has great potential in various computer vi-

sion applications, such as autonomous driving and robotics.

Mask R-CNN [13] is a prevailing two-stage instance seg-

mentation framework, which first employs a Faster R-CNN

[32] detector to detect objects in an image and further per-

∗Equal contribution.
†Corresponding author.

Mask R-CNN Ours

Figure 1: Left: Instance segmentation results and the ex-

tracted boundary patches of Mask R-CNN. Right: After the

refinement of our BPR framework, the instance mask aligns

better with object boundaries. Best viewed with zoom-in.

forms binary segmentation within each detected bounding

box. Other methods [14, 25] built upon Mask R-CNN

consistently achieve superior performance. Driven by the

recent development of one-stage detectors [22, 37, 53],

a number of one-stage instance segmentation frameworks

[2, 3, 6, 19, 36, 40, 41, 42, 46, 51] have been proposed.

However, the quality of the predicted instance mask is

still not satisfactory. One of the most important problems

is the imprecise segmentation around instance boundaries.

As shown in Figure 1(left), the predicted instance masks of

Mask R-CNN are coarse and not well-aligned with the real

object boundaries. Empirically, correcting the error pix-

els near object boundaries can improve the mask quality a

lot. We conducted an upper bound analysis in Table 1. A

large gain (9.4/14.2/17.8 in AP) can be obtained by simply

replacing the predictions with ground-truth labels for pix-

els within a certain Euclidean distance (1px/2px/3px) to the

predicted boundaries, especially for small objects.
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We argue that there are two critical issues leading to low-

quality boundary segmentation. (1) The low spatial resolu-

tion of the output, e.g. 28×28 in Mask R-CNN or at most

1/4 input resolution in some one-stage frameworks [36, 41],

makes finer details around object boundaries disappear. The

predicted boundaries are always coarse and imprecise (see

Figure 1 and 4). (2) Pixels around object boundaries only

make up a small fraction of the whole image (less than 1%

[16]), and are inherently hard to classify. Treating all pixels

equally may leads to an optimization bias towards smooth

interior areas, while underestimating the boundary pixels.

As a long-standing challenge in dense prediction tasks,

many studies have attempted to improve the boundary qual-

ity, while the above issues are still not well solved. For ex-

ample, BMask R-CNN [7] and Gated-SCNN [35] employ

an extra branch to enhance the boundary awareness of mask

features, which can fix the optimization bias to some ex-

tent, while the low resolution issue remains unsolved. Poly-

Transform [21] and SegFix [48] act as a post-processing

scheme to improve the boundary quality. PolyTransform

[21] employs a deforming network with the cropped in-

stance patch to predict the offsets of polygon vertices, while

suffering from a large computational overhead. SegFix [48]

replaces the coarse predictions of boundary pixels with in-

terior predictions, but it relies on precise boundary predic-

tions. We argue that the instance boundary prediction task

shares a similar complexity with instance segmentation.

Considering the human annotation behavior for instance

segmentation, the annotators usually first localize and cat-

egorize each object in the given image, and then explicitly

or implicitly segment some coarse instance masks at a low

resolution. Afterwards, to obtain a high-quality mask, the

annotators need to repeatedly zoom into the local boundary

regions and explore the sharper boundary segmentation at

higher resolution. Intuitively, high-level semantics are re-

quired to localize and roughly segment objects, while low-

level details (e.g. colour consistency and contrast) are more

critical for segmenting the local boundary regions.

In this paper, motivated by the human segmentation

behavior, we propose a conceptually simple yet effective

post-processing framework to improve the boundary qual-

ity through a crop-then-refine strategy. Specifically, given a

coarse instance mask produced by any instance segmenta-

tion model, we first extract a series of small image patches

along the predicted instance boundaries. After concatenated

with mask patches, the boundary patches are fed into a re-

finement network, which performs binary segmentation to

refine the coarse boundaries. The refined mask patches

are then reassembled into a compact and high-quality in-

stance mask, shown in Figure 1(right). We termed the pro-

posed framework as BPR (Boundary Patch Refinement).

The proposed framework can alleviate the aforementioned

issues and improve the mask quality without any modifi-

Dist. AP AP50 AP75 APS APM APL

- 36.4 60.8 36.9 11.1 32.4 57.3

1px 45.8 64.8 49.3 21.1 42.6 63.5

2px 50.6 66.5 54.6 26.3 47.0 66.8

3px 54.2 67.5 58.5 30.4 50.7 69.3

∞ 70.4 70.4 70.4 41.5 66.7 88.3

Table 1: A large gain can be obtained by replacing the pre-

dictions for pixels within a certain Euclidean distance to

the predicted boundaries with their group-truth labels. ∞

means all error pixels are corrected. Experiments were con-

ducted with Mask R-CNN as baseline on Cityscapes val set.

cation or fine-tuning to the segmentation models. Since

we only crop around object boundaries, the patches are

allowed to be processed with the much higher resolution

than previous methods, so that low-level details can be re-

tained better. Concurrently, the fraction of boundary pixels

in the small patch is naturally increased, which can allevi-

ate the optimization bias. The proposed BPR framework

significantly improves the results of Mask R-CNN baseline

(+4.3% AP on Cityscapes dataset), and produces substan-

tially better masks with finer boundaries. We found that

the model trained on the results of Mask R-CNN can be

easily transferred to refine the results of other instance seg-

mentation models as well, without the need for re-training.

We outperform some boundary refinement methods [17, 48]

and show that these methods are complementary by suc-

cessfully transferring our model to improve their results.

Furthermore, by applying our BPR framework to the “Poly-

Transform + SegFix” baseline [48], we established a new

state-of-the-art on the Cityscapes test set with AP of 42.7%,

and ranked 1st place on the Cityscapes leaderboard by the

CVPR 2021 submission deadline.

2. Related Work

Instance Segmentation. Recent studies on instance seg-

mentation can be divided into two categories: two-stage and

one-stage methods, as briefly reviewed below.

Two-stage methods usually follow the classical detect-

then-segment strategy. The dominant method is still Mask

R-CNN [13], which inherits from the two-stage detector

Faster R-CNN [32] to first detect objects in an image and

further performs binary segmentation within each detected

bounding box. Following Mask R-CNN, PANet [25] en-

hances feature representation through bottom-up path aug-

mentation. Mask Scoring R-CNN [14] adds an additional

mask-IoU head to re-score the mask predictions. These

methods consistently achieve superior performance.

One-stage methods recently attracts more attention due

to the rapid development of one-stage detectors [22, 37, 53].

Some methods [2, 3, 19, 46, 51] continue to adapt the
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detect-then-segment strategy but replace the detectors with

the one-stage alternatives. YOLACT [2] achieves real-time

speed by learning a set of prototypes and the prototypes are

assembled with the learned linear coefficients. BlendMask

[3] further improves this idea by assembling with attention

maps. Some recent proposed methods [6, 36, 40, 41] elim-

inate the need for detection by directly segmenting objects

in a location-wise manner. CondInst [36] and SOLOv2 [41]

achieve remarkable performance with high efficiency. In

addition, there are some approaches [9, 11, 30] built upon

the semantic segmentation models, which usually learn the

pixel-wise embeddings and then cluster them into instances.

Several works [1, 31, 42, 45] replace the pixel-wise instance

representation into the contour-based representation.

Our proposed framework is agnostic to the instance seg-

mentation methods, thus it can be applied to refine the re-

sults of any instance segmentation model, both one-stage

and two-stage methods.

Semantic Segmentation. Modern semantic segmenta-

tion approaches are pioneered by fully convolutional net-

works (FCNs) [27]. Many studies have been proposed

on this foundation to improve the segmentation results,

such as increasing the resolution of feature maps with di-

lated/atrous convolutions [4, 5], enriching context informa-

tion [10, 47, 50, 52], using an encoder-decoder architecture

[5, 15, 28, 33], or some refinement schemes [18, 20, 48].

Minaee et al. [29] provided a comprehensive review of these

approaches. In this paper, we adopt the prevailing HRNet

[39] in our framework, which can maintain high-resolution

representation throughout the whole network.

Boundary Refinement for Segmentation. Most recent

studies focused on boundary refinement aim at designing a

boundary-aware segmentation model by integrating an ex-

tra and specialized module to process boundaries. For ex-

ample, BMask R-CNN [7] and Gated-SCNN [35] employ

an extra branch to enhance the boundary awareness of mask

features by estimating boundaries directly. PointRend [17]

iteratively samples the feature points with unreliable predic-

tions and refines them with a shared MLP. Another line of

work attempts to refine the boundaries based on the results

of existing segmentation models with a post-processing

scheme. SegFix [48] is a general refinement mechanism,

which replaces the unreliable predictions of boundary pix-

els with the predictions of interior pixels. The effectiveness

of SegFix highly depends on the accuracy of boundary pre-

diction. However, it is very challenging to directly estimate

precise instance boundaries. Intuitively, the instance seg-

mentation task could easily be settled if the precise bound-

aries are already given. Our method shares more similarities

with PolyTransform [21], which transforms the contour of

instance into a set of polygon vertices. A Transformer [38]

based network is applied to predict the offsets of vertices to-

wards object boundaries. It achieves superior performance

while suffering from a large computational overhead due

to the large instance patch and the heavy Transformer ar-

chitecture. Our proposed method is also a post-processing

scheme. Different from these methods, we focus on refining

the boundary patches to improve the mask quality.

3. Framework

An overview of the proposed framework is illustrated in

Figure 2. As a post-processing mechanism, the proposed

framework can be applied to refine the results of any pre-

vailing instance segmentation model, without any modifica-

tion or fine-tuning to the segmentation models themselves.

3.1. Boundary Patch Extraction

Given an instance mask produced by an instance seg-

mentation model, we first need to determine which part of

the mask should be refined. Based on the findings of pre-

vious works [7, 48] and our verification experiments in Ta-

ble 1, we propose an effective sliding-window style algo-

rithm to extract a series of patches along the predicted in-

stance boundaries. Specifically, we densely assign a group

of squared bounding boxes where the central areas of the

box should cover the boundary pixels, shown in Figure 2(b).

The obtained boxes still contain large overlaps and redun-

dancies, thus we further apply a Non-Maximum Suppres-

sion (NMS) algorithm to filter out a subset of patches (Fig-

ure 2c). Empirically, with the larger overlaps, the segmen-

tation performance can be boosted, while simultaneously

suffering from the larger computational cost. We can ad-

just the NMS threshold to control the amount of overlap to

achieve a better speed/accuracy trade-off. In addition to im-

age patches, we also extract the corresponding binary mask

patches from the given instance mask. The concatenated

image and mask patches (Figures 2d and 2e) are resized and

fed into the following boundary patch refinement network.

3.2. Boundary Patch Refinement

Mask Patch. The benefit of the binary mask patch is that

it accelerates training convergence and provides location

guidance for the instance to be segmented. As discussed

in the previous works on semantic segmentation [39, 47],

context information plays a vital role for pixel-wise classi-

fication. Therefore, the cropped image patches are hard to

be classified independently due to the limited context infor-

mation. With the help of location and semantic informa-

tion provided by the mask patches, the refinement network

can eliminate the need for learning instance-level semantics

from scratch. Instead, the refinement network only needs

to learn how to locate the hard pixels around the decision

boundary and push them to the correct side. We believe this

goal can be achieved by exploring low-level image proper-

ties (e.g. colour consistency and contrast) provided in the

local and high-resolution image patches. More importantly,
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Figure 2: Overview of the proposed boundary patch refinement framework. Given a coarse mask (a) produced by an instance

segmentation model, we first densely assign a series of squared bounding boxes along the predicted boundaries (b), and filter

out a subset of boundary patches (c) using NMS. NMS threshold of 0.25 is used here. The extracted image patches (d) and

mask patches (e) are resized and fed into the boundary patch refinement network. Mask patches after refinement (f) are

reassembled into a compact and precise instance mask (g). Best viewed digitally and in colour.

the adjacent instances are likely to share an identical bound-

ary patch, while the learning goals are totally different and

ambiguous. Together with different mask patches for each

instance, these issues can be avoided. As compared in Ta-

ble 2, the model has trouble to converge without using the

mask patches, examples of which are shown in Figure 3.

Boundary Patch Refinement Network. The role of this

refinement network is to perform binary segmentation for

each extracted boundary patch individually. Any semantic

segmentation model can be employed for this task by sim-

ply modifying the input channels to 4 (3 for the RGB image

patch and 1 for the binary mask patch) and output classes to

2. For the sake of convenience, we adopt the state-of-the-

art HRNetV2 [39] as the refinement network in our imple-

mentation, which can maintain high-resolution representa-

tion throughout the whole network. By increasing the input

size appropriately, the boundary patches can be processed

with much higher resolution than in previous methods.

Reassembling. The refined boundary patches are re-

assembled into a compact instance-level mask by replacing

their previous predictions. Predictions are unchanged for

those pixels without refinement. For the overlapping areas

of adjacent patches, the results are aggregated by simply av-

eraging the output logits and applying a threshold of 0.5 to

distinguish the foreground and background.

3.3. Learning and Inference

The refinement network is trained based on the boundary

patches extracted from training images and tested on valida-

tion or testing images. We do not directly train or fine-tune

the instance segmentation models. During training, we only

extract boundary patches from instances whose predicted

masks have an Intersection over Union (IoU) overlap larger

than 0.5 with the ground-truth masks, while all predicted

instances are retained during inference. The model outputs

are supervised with the corresponding ground-truth mask

patches using the pixel-wise binary cross-entropy loss. We

simply fix the NMS eliminating threshold to 0.25 during

training, while adopting different thresholds during infer-

ence based on the speed requirements. See Supplementary

Materials for more implementation details.

4. Experiments

4.1. Datasets and Metrics

Datasets. We mainly report the results on Cityscapes

[8], a real-world dataset with high-quality instance segmen-

tation annotations. We only used the fine data, containing

2, 975/500/1, 525 images for train/val/test, which are col-

lected from 27 cities, with a high resolution of 1024×2048.
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Eight instance categories are involved, including bicycle,

bus, person, train, truck, motorcycle, car, and rider.

Metrics. The COCO-style [23] mask AP (averaged over

10 IoU thresholds ranging from 0.5 to 0.95 in the step of

0.05), AP50 (AP at an IoU of 0.5) and APS /APM /APL (for

small/medium/large instances) were reported in most of our

experiments. The official Cityscapes-style AP [8] was only

used to report the final results for a fair comparison, which

is slightly higher than the COCO-style AP. Similar to [21,

35, 48], we also used a boundary F-score to evaluate the

quality of the predicted boundaries. A mask was considered

correct if the boundary is within a certain distance threshold

from the ground-truth. We used a threshold of 1px and only

compute for true positives that are determined on the same

10 IoU thresholds ranging from 0.5 to 0.95. The boundary

F-score was computed in an instance-wise manner and then

averaged over them, termed AF.

4.2. Ablation Study

We investigated the effectiveness of the proposed frame-

work through extensive ablation experiments on the config-

urable design choices. We started the refinement with the

results of Mask R-CNN ResNet-FPN-50 baseline trained

on Cityscapes fine data (with COCO pre-training). We

adopted the lightweight HRNetV2-W18-Small as the re-

finement network in the default setting, with input size

equal to 128×128. The boundary patches were extracted

with patch size equal to 64×64 without padding, and the

inference NMS threshold was set to 0.25 by default.

Effects of Mask Patch. To validate the effect of mask

patch for boundary refinement, we made a comparison by

eliminating the mask patches while keeping other settings

unchanged. As indicated in Table 2, the model trained with

image patches solely yielded a terrible result, even worse

than the segmentation results before refinement. However,

together with mask patches, we achieved a significant im-

provement (+3.4% in AP, +11.9% in AF) by refining the

Mask R-CNN segmentation results. We also show some

patch-wise examples in Figure 3. For a simple case with

one dominant instance in the image patch (first row), both

of the models (w/ or w/o mask patch) produced reason-

able results. However, as for cases with multiple instances

crowded in the image patch, the model without mask patch

(last column) failed to distinguish which object should be

segmented, leading to coarse (4th row) or completely wrong

(2nd and 3rd rows) predictions. In contrast, with the help of

mask patches, we produced high-quality predictions with

accurate and distinct boundaries (3rd column).

Patch Size. We increased the boundary patch size by

cropping with a larger box and/or with padding. Note that

the padded areas were only used to enrich the context and

not used for reassembling. As the patch size gets larger, the

model becomes less focused but can access more context

w/ mask AP AP50 AF APS APM APL

– 36.4 60.8 54.9 11.1 32.4 57.3

✘ 20.1 42.2 57.2 4.0 14.7 36.3

✔ 39.8 62.0 66.8 12.7 35.9 62.2

Table 2: Effects of mask patch: A dramatic performance

drop can be observed without the use of mask patch. “–”

indicates the results of Mask R-CNN before refinement.

GT Pred w/ Mask w/o Mask

Figure 3: Boundary patch examples of (from left to right):

ground-truth, predictions of Mask R-CNN, results refined

by our proposed framework, results without the use of mask

patch. The mask patch plays a crucial role in our frame-

work, resulting in high-quality boundaries (the 3rd column).

scale/pad AP AP50 AF APS APM APL

– 36.4 60.8 54.9 11.1 32.4 57.3

32 / 0 39.4 62.0 66.8 12.6 35.6 61.4

32 / 5 39.7 62.2 67.6 12.9 35.9 61.6

64 / 0 39.8 62.0 66.8 12.7 35.9 62.2

64 / 5 39.7 61.7 66.5 12.5 35.8 62.1

96 / 0 39.6 62.0 65.7 12.2 35.4 62.3

Table 3: Results of different patch size. The patch size of

64×64 without padding works better.

information. In Table 3, we compared various choices and

found that the 64×64 patch without padding works better.

We used this setting in all experiments.

Different Patch Extraction Schemes. The most impor-

tant contribution of this work is the idea of looking closer at

instance boundaries to achieve better segmentation results.
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scheme size AP AP50 AF

– – 36.4 60.8 54.9

dense sampling + NMS 64 39.8 62.0 66.8

pre-defined grid 32 39.3 61.8 65.8

pre-defined grid 64 39.1 61.9 65.6

pre-defined grid 96 38.8 61.6 63.7

instance-level patch 256 37.5 61.1 61.5

instance-level patch 512 38.7 61.6 63.8

Table 4: Different patch extraction schemes: The “dense

sampling + NMS filtering” scheme works better.

size FPS AP AF APS APM APL

– – 36.4 54.9 11.1 32.4 57.3

64 17.5 39.1 64.9 11.8 35.1 61.6

128 9.4 39.8 66.8 12.7 35.9 62.2

256 4.1 40.0 67.0 12.8 35.9 62.5

512 <2 39.7 66.9 12.7 35.7 61.9

Table 5: Input size of the refinement network: Better per-

formance is achieved with input size of 256×256.

There are multiple choices about how to extract the bound-

ary patches for refinement. We compared three extraction

schemes and listed the results in Table 4. The most straight-

forward scheme is dividing the input image into a group of

patches according to the pre-defined grids, and then pick-

ing only the patches that covering the predicted boundaries.

We varied the patch size and found the results were con-

sistently worse than our proposed “dense sampling + NMS

filtering” scheme. One of the most important reasons is the

imbalanced foreground/background ratio. We observed that

some extracted patches are almost entirely filled with either

foreground or background pixels. These patches are hard to

refine due to the lack of context, thus leading to sub-optimal

results. In contrast, by restricting the center of patches to

cover the boundary pixels, the imbalance problem can be al-

leviated. Another scheme, similar to some previous works

[21, 26], is cropping the whole instance based on the de-

tected bounding box and further re-segmenting the instance

patch. As shown, even though the input size was increased

to 512×512, the results are still sub-optimal, which demon-

strated the effectiveness of our local boundary patches. See

Supplementary Materials for detailed descriptions.

Input Size of the Refinement Network. The extracted

patches are resized into a larger scale before refinement. Ta-

ble 5 shows the impact of input size. We also report the ap-

proximate inference speed of the refinement network, with a

fixed batch size of 135 (on average 135 patches per image).

As the input size increases, the AP and AF scores increase

accordingly, and slightly drop after 256. The boundaries

can be processed with the higher resolution with the larger

input size, thus more details can be retained.

Alternatives of refinement network. We compared dif-

Net FPS AP APS APM APL

– – 36.4 11.1 32.4 57.3

HRNet-W18s 9.4 39.8 12.7 35.9 62.2

HRNet-W18 5.8 39.8 12.6 35.8 62.1

HRNet-W48 2.5 40.1 12.9 36.2 62.1

Table 6: Alternatives of the refinement network: Stronger

segmentation backbones lead to better results.

thr. #patch/img AP AP50 AF

– – 36.4 60.8 54.9

0 32 37.7 61.5 58.7

0.15 103 39.6 61.9 66.0

0.25 135 39.8 62.0 66.8

0.35 178 39.9 62.0 67.0

0.45 241 40.0 62.0 67.0

0.55 332 40.1 62.0 67.1

0.65 485 40.1 62.0 67.2

Table 7: NMS eliminating threshold: We achieved consis-

tent gains with the larger thresholds, saturating around 0.55.

The average number of patches per image is also listed.

ferent backbones for our refinement network in Table 6. As

shown, a stronger backbone usually lead to higher perfor-

mance, but at the expense of lower speed. Since the model

essentially performs binary segmentation for patches, it can

further benefit from the advances in semantic segmentation,

such as increasing the resolution of feature maps [4, 5, 39]

and more effective backbones [43, 49].

NMS Eliminating Threshold. We studied the impact

of different NMS eliminating thresholds during inference,

shown in Table 7. As the threshold gets larger, the number

of boundary patches increases rapidly. The overlap of ad-

jacent patches provides a chance to correct unreliable pre-

dictions of the inferior patches. As shown, the resulting

boundary quality was consistently improved with a larger

threshold, and reached saturation around 0.55. We believe

a better speed/accuracy trade-off can be achieved by setting

a proper threshold.

4.3. Transferability

What the BPR model learned is a general ability to cor-

rect error pixels around instance boundaries. We can easily

transfer this ability of boundary refinement to refine the

results of any instance segmentation model. Specifically,

once we get a model trained on the boundary patches ex-

tracted from the train-set predictions of Mask R-CNN on

Cityscapes, we can make inference to refine any predictions

(on Cityscapes train/val/test sets) produced by any models

(not only Mask R-CNN), without the need for training from

scratch. After training, the BPR model becomes model-

agnostic, similar to SegFix [48]. We validated the trans-

ferability by applying the model trained on Mask R-CNN
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training data APval AP AP50 person rider car truck bus train mcycle bicycle

SGN [24] fine + coarse 29.2 25.0 44.9 21.8 20.1 39.4 24.8 33.2 30.8 17.7 12.4

Mask R-CNN [13] fine 31.5 26.2 49.9 30.5 23.7 46.9 22.8 32.2 18.6 19.1 16.0

BMask R-CNN [7] fine 35.0 29.4 54.7 34.3 25.6 52.6 24.2 35.1 24.5 21.4 17.1

AdaptIS [34] fine 36.3 32.5 52.5 31.4 29.1 50.0 31.6 41.7 39.4 24.7 12.1

PANet [25] fine 36.5 31.8 57.1 36.8 30.4 54.8 27.0 36.3 25.5 22.6 20.8

SSAP [11] fine 37.3 32.7 51.8 35.4 25.5 55.9 33.2 43.9 31.9 19.5 16.2

UPSNet [44] fine + COCO 37.8 33.0 59.7 35.9 27.4 51.9 31.8 43.1 31.4 23.8 19.1

PANet [25] fine + COCO 41.4 36.4 63.1 41.5 33.6 58.2 31.8 45.3 28.7 28.2 24.1

Mask R-CNN∗ [13] fine + COCO 36.8 32.6 59.2 36.7 29.2 52.8 30.0 40.3 27.9 25.0 19.0

+ SegFix∗ [48] 38.2 33.3 57.8 37.9 30.3 54.1 31.0 40.0 27.9 25.1 20.5

+ BPR 41.1 36.9 61.0 42.0 33.3 59.9 32.9 44.4 32.6 28.0 22.3

+ SegFix + BPR 40.9 36.8 59.8 41.0 32.8 58.7 32.9 43.1 36.8 26.5 22.2

PolyTransform [21] fine + COCO 44.6 40.1 65.9 42.4 34.8 58.5 39.8 50.0 41.3 30.9 23.4

+ SegFix [48] - 41.2 66.1 44.3 35.9 60.5 40.5 51.2 41.6 31.7 24.1

+ BPR† 46.9 42.4 66.6 45.6 36.7 62.4 41.2 52.3 43.4 32.7 25.2

+ SegFix + BPR† - 42.7 66.5 46.0 37.1 62.8 41.3 52.7 43.7 32.6 25.1

Table 8: Results on Cityscapes val (APval column) and test (remaining columns) sets. We used BPR to denote our

framework. BPR† indicates that the BPR trained on the results of Mask R-CNN∗ was transferred to another model. Mask

R-CNN∗ is on our implementation, slightly higher than [13]. SegFix∗ used their own Mask R-CNN baseline (36.5/32.0 in

AP val/test), slightly lower than ours. We established the new state-of-the-art results on Cityscapes val and test sets.

AP AP50 AF

PointRend [17] 35.6 60.6 58.0

w/ BPR† 38.6 62.4 66.5

Mask R-CNN + SegFix [48] 38.2 63.4 63.2

w/ BPR† 40.0 63.4 67.0

Table 9: Transfer to Other Models: BPR† was trained on

the results of Mask R-CNN. It can be successfully trans-

ferred to refine the results of PointRend and SegFix.

w/ BPR AP AP⋆ AP⋆

S
AP⋆

M
AP⋆

L
AF

38.4 40.4 24.5 48.3 57.2 54.5

✔ 39.2 42.1 24.8 50.3 60.4 58.4

Table 10: Results on COCO. AP⋆ is measured on the

higher-quality LVIS [12] annotations. We improved based

on the results of Mask R-CNN ResNeXt-FPN-101 baseline.

results to refine the predictions of PointRend [17] and Seg-

Fix [48]. Note that these two methods are also designed

to improve boundary quality in segmentation. As shown in

Table 9, the transferred model still improved the results of

PointRend and SegFix by a large margin, suggesting that

our method is compatible with them.

4.4. Overall Results

Comparison with State-of-the-art Methods. We in-

tegrated the optimal design choices and hyperparameters

found in above ablation experiments into a stronger BPR

model. Specifically, we adopted the HRNetV2-W48 as our

refinement network, with 256×256 input patches resized

from 64×64, and a NMS threshold of 0.55 during inference.

We evaluated the framework on Cityscapes val and test

sets and compared the performance against some state-of-

the-art methods in Table 8. (1) Compared with the Mask

R-CNN baseline, we achieved a significant improvement

(+4.3% AP in both val and test). We outperformed Seg-

Fix [48] by a large margin, which is also a boundary refine-

ment module applied to the same baseline with ours. Fur-

thermore, by applying our BPR model to the results already

refined by SegFix, we can still improved a lot (slightly lower

than applying BPR only). (2) We transferred the above BPR

model to refine the results of the stronger PolyTransform

[21] baseline (1st place at CVPR 2020). Our “PolyTrans-

form + BPR” consistently improved 2.3% AP on Cityscapes

test set and also outperformed “PolyTransform + Seg-

Fix” (2nd place at ECCV 2020) by a large margin (+1.2%).

By applying BPR to “PolyTransform + SegFix”, we estab-

lished a new state-of-the-art on Cityscapes test with AP

of 42.7%, reaching 1
st place on the Cityscapes leaderboard

by the CVPR 2021 submission deadline.

Qualitative Results. We show some qualitative results

on Cityscapes val in Figure 4. Compared with the coarse

predictions of Mask R-CNN, our BPR framework generated

substantially better instance segmentation results with pre-

cise and distinct boundaries. It largely alleviated the over-

smoothing issues [17] in previous methods caused by the

low resolution feature maps. More results are included in

Supplementary Materials. In addition, we also provided a

detailed limitation analysis in Supplementary Materials.

Speed. Only the speed of refinement network was con-

sidered in Table 5 and 6, excluding the patch extraction
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Figure 4: Qualitative results on Cityscapes val. The proposed framework (2nd and 4th rows) produces substantially better

masks with more precise boundaries than Mask R-CNN (1st and 3rd rows). Best viewed digitally and in colour.

and reassembling time. As a whole pipeline, it takes about

211ms to process a single Cityscapes image (1024×2048)

on a single RTX 2080Ti GPU under the default setting of

ablation experiments, which is still much faster than Poly-

Transform [21]. The detailed speed calculation and more

speed analysis are included in Supplementary Materials.

Results on COCO Dataset. To demonstrate the gen-

erality of our framework, we also report the results on the

more challenging COCO dataset [23], which contains 80

categories and more images (118k/5k for train/val). It is

important to note that the coarse annotations in COCO may

not fully reflect the improvements in mask quality [12]. Fol-

lowing PointRend [17], we further report the AP⋆ measured

using the higher quality LVIS [12] annotations. We ran-

domly sampled about 8% of instances for fast training. As

shown in Table 10, we improved the powerful Mask R-CNN

ResNeXt-FPN-101 baseline by 0.8% AP and 1.7% AP⋆ on

val2017. The coarse annotations on COCO train2017

may provide ambiguous optimization objectives, especially

for our local boundary patches. It may mislead the learning

of our BPR model, leading to suboptimal results. This issue

was also observed in some contour-based instance segmen-

tation methods [31, 42, 45]. We believe that training with

more instances on higher quality annotations (e.g. LVIS)

can further improve the results. More analysis on COCO

dataset is included in Supplementary Materials.

5. Conclusion

In this paper, we propose a conceptually simple yet effec-

tive boundary refinement framework to improve the bound-

ary quality for any instance segmentation model. Starting

from a coarse instance mask, we extract and refine a series

of boundary patches along the predicted instance bound-

aries through an effective refinement network. The pro-

posed framework achieved consistent and impressive im-

provements based on different baselines. Qualitative results

show that our approach produced high-quality masks with

precise and distinct boundaries.
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