
Manifold Regularized Dynamic Network Pruning

Yehui Tang1,2, Yunhe Wang2*, Yixing Xu2, Yiping Deng3, Chao Xu1, Dacheng Tao4, Chang Xu4

1 Key Lab of Machine Perception (MOE), Dept. of Machine Intelligence, Peking University.
2 Noah’s Ark Lab, Huawei Technologies. 3 Central Software Institution, Huawei Technologies.

4 School of Computer Science, Faculty of Engineering, University of Sydney.

yhtang@pku.edu.cn; yunhe.wang@huawei.com; c.xu@sydney.edu.au

Abstract

Neural network pruning is an essential approach for

reducing the computational complexity of deep models so

that they can be well deployed on resource-limited devices.

Compared with conventional methods, the recently devel-

oped dynamic pruning methods determine redundant filters

variant to each input instance which achieves higher accel-

eration. Most of the existing methods discover effective sub-

networks for each instance independently and do not utilize

the relationship between different inputs. To maximally ex-

cavate redundancy in the given network architecture, this

paper proposes a new paradigm that dynamically removes

redundant filters by embedding the manifold information of

all instances into the space of pruned networks (dubbed as

ManiDP). We first investigate the recognition complexity

and feature similarity between images in the training set.

Then, the manifold relationship between instances and the

pruned sub-networks will be aligned in the training pro-

cedure. The effectiveness of the proposed method is ver-

ified on several benchmarks, which shows better perfor-

mance in terms of both accuracy and computational cost

compared to the state-of-the-art methods. For example, our

method can reduce 55.3% FLOPs of ResNet-34 with only

0.57% top-1 accuracy degradation on ImageNet. The code

will be available at https://github.com/huawei-

noah/Pruning/tree/master/ManiDP.

1. Introduction

Deep convolutional neural networks (CNNs) have

achieved state-of-the-art performance on a large variety of

computer vision tasks, e.g., image classification [16, 49,

24, 60], objection detection [11, 45, 12], and video anal-

ysis [8, 13, 22]. Besides the model performance, recent re-

searches pay more attention on the model efficiency, espe-

cially the computational complexity [57, 48, 6, 47]. Since

*Corresponding author.

there are considerable real-world applications required to

be deployed on resource constrained hardwares, e.g., mo-

bile phones and wearable devices, techniques that effec-

tively reduce the cost of modern deep networks are re-

quired [32, 14, 59, 61].

To this end, a number of model compression algo-

rithms have been developed without affecting network per-

formance. For instance, quantization [54, 15, 44, 58] uses

less bits to represent network weights and knowledge dis-

tillation [20, 55, 4, 41, 56] is to train a compact network

based on the knowledge of a teacher network. Low-rank ap-

proximation [36, 25, 30] tries to decompose the original fil-

ters to smaller ones while pruning method directly discards

the redundant neurons to get a sparser network. Among

them, channel pruning (or filter pruning) [19, 50, 37, 34]

is regarded as a kind of structured pruning method, which

directly discards redundant filters to obtain a compact net-

work with lower computational cost. Since the pruned net-

work can be well employed on mainstream hardwares to ob-

tain considerable speed-up, channel pruning is widely used

in industrial products.

The conventional channel pruning methods obtain a

static network applied to all input samples, which do not

excavate redundancy maximally, as the diverse demands for

network parameters and capacity from different instances

are neglected. In fact, the importance of filters is highly

input-dependent. A few methods proposed recently prune

channels according to individual instances dynamically and

achieve better performance. For example, Gao et al. [10] in-

troduce small auxiliary modules to predict the saliencies of

channels with given input data, and prune unimportant fil-

ters at run-time. Instance-wise sparsity is adopted in [33] to

induce different sub-networks for different samples. How-

ever, the existing methods prune channels for individual in-

stances independently, which neglects the relationship be-

tween different instances. A sparsity constraint with same

intensity is usually used for different input instances, re-

gardless of the diversity of instance complexity. Besides,

the similarity between instances is also valuable informa-

5018

tion deserving to explore.

In this paper, we explore a new paradigm for dynamic

pruning to maximally excavate network redundancy corre-

sponding to arbitrary instance. The manifold information

of all samples in the given dataset is exploited in the train-

ing process and corresponding sub-networks are derived to

preserve the relationship between different instances (Fig-

ure 1). Specifically, we first propose to identify the com-

plexity of each instances in the training set and adaptively

adjust the penalty weight on channel sparsity. Then, we fur-

ther preserve the similarity between samples in the pruned

results, i.e., the sub-network for each input sample. In prac-

tice, the features with abundant semantic information ob-

tained by the network are used for calculating the simi-

larity. By exploiting the proposed approach, we can allo-

cate the overall resources more reasonably, and then ob-

tain pruned networks with higher performance and lower

costs. Experiments are throughly conducted on a series of

benchmarks for demonstrating the effectiveness of the new

method. Compared with the state-of-the-art pruning algo-

rithms, we obtain higher performance in terms of both net-

work accuracy and speed-up ratios.

2. Related Work

Channel Pruning is a kind of coarse-grain structural

pruning method that discards the whole redundant filters to

obtain a compact network, which can achieve practical ac-

celeration without specific hardware [53, 51, 31, 34, 3]. It

contains the conventional static pruning methods and recent

dynamic algorithms, and we briefly review them as follows.

Static Pruning. A compact network shared by different

instances is desired in static pruning. Wen et al. [53] impose

structural sparsity on the weights of convolutional filters to

discover and prune redundant channels. Liu et al. [34] as-

sociates a scaling factor to each channel and the sparsity

regularization is imposed on the factors. Recently, more

methods are proposed which achieve state-of-the-art perfor-

mance on several benchmarks. For example, Molchanov et

al. [38] uses Taylor expansion to estimate the contribution

of a filter to the final output and discard filters with small

scores, while Liebenwein et al. [28] construct an impor-

tance distribution that reflects the filter importance. To re-

duce the disturbance of irrelevant factors, Tang et al. [50]

set up a scientific control during pruning filters, which can

discover compact networks with high performance. These

methods prune same filters for different input instances and

obtain a ’static’ network with limited representation capa-

bility, whose performance degrades obviously when a large

pruning rate is required.

Dynamic Pruning. Beyond the static pruning methods,

an alternative way is to determine the importance of filters

according to input data, and skip unnecessary calculation

in the test phase [43]. Dong et al. [7] use low-cost col-

laborative layers to induce sparsity on the original convo-

lutional kernels at the running time. Hua et al. [21] gener-

ate decision maps by partial input channels to identify the

unimportant regions in feature maps. However, the skipped

ineffective regions in [21] are irregular and practical accel-

eration depends on special hardware such as FPGAs and

ASICs. Gao et al. [10] introduces squeeze-excitation mod-

ules to predict the saliency of channels and skip those with

less contribution to the classification results. Complemen-

tary to them, this paper focuses on effectively training the

dynamic network to allocate a proper sub-network for each

instance, which is vital to achieve a satisfactory trade-off

between accuracy and computational cost.

3. Preliminaries

In this section, we introduce the formulations of channel

pruning for deep neural networks and the dynamic pruning

problem.

Denote the dataset with N samples as X = {xi}
N
i=1

,

and Y = {yi}
N
i=1

are the corresponding labels. For a

CNN model with L layers, W l ∈ R
cl×cl−1

×kl
×kl

denotes

weight parameters of the convolution filters in the l-th layer.

F l(xi) ∈ R
cl×wl

×hl

is the output feature map of the l-th

layer with cl channels, which can be calculated with con-

volution filters W l and the features F l−1(xi) in the previ-

ous layer, i.e., F l(xi) = ReLU(F l−1(xi) ∗ W l), where

∗ denotes the convolutional operation and ReLU(t) =
max(t, 0) is the activation function.

Channel pruning discovers and eliminates redundant

channels in a given neural network to reduce the over-

all computational complexity while retaining a comparable

performance [53, 34, 38, 28]. Basically, the conventional

channel pruning can be formulated as

min
W

N
∑

i=1

Lce(xi,W) + λ ·

L
∑

l=1

‖W l‖2,1 (1)

where W denotes all the weight parameters of the network,

and Lce(xi,W) is the task-dependent loss function (e.g.,

the cross-entropy loss for classification task). ‖ · ‖2,1 is the

ℓ21-norm that induces channel-wise sparsity on convolution

filters, i.e., ‖W l‖2,1 =
∑cl

j=1
‖vector(W l

j,:,:,:)‖2, where

vector(·) straightens the tensor W l
j,:,:,: to vector form and

‖ · ‖2 is the ℓ2-norm1. The trade-off coefficient λ balances

the two losses, and a larger λ induces sparser convolution

kernel W l and then obtain a more compact network.

Dynamic pruning is developed for further excavating

the correction between input instances and pruned chan-

nels [10, 43, 21]. Wherein, the importance of output chan-

nels depends on the inputs, and different sub-networks will

1Note that the methods using scaling factors can also be regarded as

this form as the factors can be absorbed to convolution kernels [34]

5019

…

Similarity

… …

Input Images Manifold Regularization Original Network Pruned Sub-Networks

Figure 1. Diagram of the proposed manifold regularized dynamic pruning method (ManiDP). We first investigate the complexity and

similarity of images in the training dataset to excavate the manifold information. Then, the network is pruned dynamically by exploiting

the manifold regularization.

be generated for each individual instance for flexibly dis-

covering the network redundancy. To this end, a con-

trol module Gl is introduced to process the input feature

F l−1(xi) and predict the channel saliency πl(xi,W) =

Gl(F l−1(xi)) ∈ R
cl in the l-th layer for input xi.

2 In

practice, a smaller element in πl(xi) implies that the cor-

responding channel is less important. The controller G
is usually implemented by utilizing a squeeze-excitation

module as suggested in [10]. Then, redundant channels

are determined through a gate operation, i.e., π̂l(xi) =
I(πl(xi), ξ

l), where the element I(πl(xi), ξ
l)[j] is set to

0 when πl(xi)[j] is less than the threshold ξl and keeps un-

changed otherwise. By exploiting the mask π̂l−1(xi) in the

previous layer, the feature F l(xi) can be efficiently calcu-

lated as:

F l(xi) = ReLU
((

F l−1(xi)⊙ π̂l−1(xi)
)

∗W l
)

, (2)

where ⊙ denotes that each channel of feature F l−1(xi) is

multiplied by the corresponding element in mask π̂l−1(xi).
Since π̂l−1(xi) is usually very sparse and the calculation

of redundant channels are skipped, the computational com-

plexity of Eq. (2) will be significantly lower than that of the

original convolution layer.

To retain the desirable performance, the dynamic net-

work is also trained with both the cross-entropy loss

Lce(xi,W) and the sparsity regularization, i.e.,

min
W

N
∑

i=1

Lce(xi,W) + λ ·

L
∑

l=1

‖πl(xi)‖1, (3)

where ‖πl(xi)‖1 is the ℓ1-norm penalty on the channel

saliency πl(xi). Obviously, a larger coefficient λ also pro-

duces sparer saliency πl(xi) and thus yields more com-

pact networks with lower computational cost. Compared

to the static pruning method (Eq. (1)) that uses a same

compact network to handle all the input data, the dynamic

one (Eq. (3)) aims to prune channels for different instances

accordingly.

2In the following, we denote channel saliency π
l(xi,W) as π

l(xi)
for brevity.

4. Manifold Regularized Dynamic Pruning

The main purpose of dynamic pruning is to fully ex-

cavate the network redundancy for each instance. How-

ever, the manifold information, i.e., the relationship be-

tween samples in the entire dataset has rarely been studied.

The manifold hypothesis states that the high-dimensional

data can be embedded into low-dimensional manifold, and

samples locate closely in the manifold space own analo-

gous properties. The mapping function from input samples

to their corresponding sub-networks should be smooth over

the manifold space, and then the relationship between sam-

ples need to be preserved in sub-networks. This manifold

information can effectively regularize the solution space

of instance-network pairs to help allocate a proper sub-

network for each instance. In the following, we explore the

manifold information from two complementary perspec-

tives, i.e., complexity and similarity.

4.1. Instance Complexity

For a given task, the difficulty of accurately predicting

example labels can be various, which thus implies the ne-

cessity of investigating models with different capacities for

different inputs. Intuitively, a more complex sample with

vague semantic information (e.g., images with insignificant

objects, mussy background, etc.) may need a more complex

network with a strong representation ability to extract the

effective information, while a much simpler network lower

computational cost could be enough to make the correct

prediction for a simpler instance. Actually, this intuition re-

flects the relationship between instances on a 1-dimensional

complexity space, where the different instances are sorted

according to their difficulties for the given task. To exploit

this property, we firstly measure the complexity of instances

and sub-networks, respectively, and then develop an adap-

tive objective function to align the complexity relationship

between instances and that between sub-networks.

Considering that input instances are expected to have

correct predictions made by the networks, the task-specific

loss (cross-entropy loss) Lce(xi,W) of the networks is

adopted to measure the complexity of current input xi. A

larger cross-entropy loss implies that the current instance

5020

has not been fitted well, which is more complex and needs

a network with stronger representation capability for ex-

tracting the information. For a sub-network, the sparsity

of channel saliency πl(xi) determines the number of effec-

tive filters in it, and a sparser πl(xi) induce a more compact

network with lower complexity. Hence, we use the sparsity

of channel saliencies as the measurement of network com-

plexity.

Recall that in Eq. (3), the weight coefficient λ is vital to

determine the strength of sparsity penalty on channel salien-

cies. However, a same weight coefficient is assigned to all

different instances without discrimination. In fact, a simple

instance whose cross-entropy loss can be minimized easily

may desire a compact sub-network for computational effi-

ciency. On the other hand, those examples that have not

been well fitted by the current network yet would need more

network capacity to pursue the prediction accuracy, instead

of pushing the sparsity further. Thus, the weight of spar-

sity penalty that controls the network complexity should in-

crease when the cross-entropy loss decreases and vice versa.

In an extreme case, no sparsity constraint should be given

to the corresponding sub-networks for those under-fitted ex-

amples. Specifically, a set of binary learnable variables

β = {βi}
N
i=1

∈ {0, 1}N are used to indicate whether the

sub-network for input instance xi should be thinned out.

Thus the optimization objective can be formulated as:

max
β

min
W

N∑

i=1

Lce(xi,W)

+ λ
′ · βi

C − Lce(xi,W)

C

L∑

l=1

‖πl(xi)‖1,

(4)

where λ′ is a hyper-parameter shared by all instances to

balance the classification accuracy and network sparsity.

‖ · ‖1 is the ℓ1-norm that induces sparsity on channel salien-

cies and W is the set of network parameters. C is a pre-

defined threshold for instance complexity and the samples

with cross-entropy losses larger than C are considered as

over complex. Eq. (4) is optimized in a min-max paradigm,

i.e., the minimization is applied on parameter W to train the

network, while the maximization on variables β indicates

whether the corresponding sub-networks should be made

sparse. In practice, β has a closed-form solution. Note that

‖πl(xi)‖1 ≥ 0 always holds, and the optimal solution of

β only depends on the relative magnitude of cross-entropy

loss Lce(xi,W) and the complexity threshold C, i.e.,

βi =

{

1, Lce(xi,W) ≤ C,

0, Lce(xi,W) > C.
(5)

Eq (5) indicates that no sparsity is imposed on the corre-

sponding sub-network (βi = 0) if the cross-entropy loss

Lce(xi,W) of instance xi exceeds C. In practice, the net-

work is trained in mini-batch, and we empirically use the

C
ro

ss E
n

tro
p

y

…

Consistency

…

…

During Training After Training

…

Instance Complexity Increase

Network Complexity Decrease

Figure 2. The aligning process of instance complexity and network

complexity. During training, the complexity of instances and net-

works will be automatically adjusted, and achieve consistency af-

ter training.

average cross-entropy loss over the whole dataset in the pre-

vious epoch as the threshold C. For brevity, the coefficient

for the sparsity loss is denoted as λ(xi), i.e.,

λ(xi) = λ′ · βi

C − Lce(xi,W)

C
. (6)

The value of λ(xi) is always in range [0, λ′] and it has

a larger value for simpler instances. Then, the max-min

optimization problem (Eq. (4)) can be simplified as:

min
W

N
∑

i=1

Lce(xi,W) + λ(xi) ·

L
∑

l=1

‖πl(xi)‖1. (7)

In the training process mentioned above, a negative feed-

back mechanism [1, 2] naturally exists to dynamically con-

trol the instance complexity and network complexity. As

shown in Figure 2, when an instance xi is sent to the net-

work and produces a large cross-entropy loss Lce(xi,W), it

is considered as a complex instance and the penalty weight

λ(xi) is reduced to induce a complex sub-network. On ac-

count of the powerful representation capability of the com-

plex network, the cross-entropy loss of the same instance xi

can be easily minimized, and reduce the relative complex-

ity of the instance. If the dynamic network takes a simple

instance as input, the dynamic process is just the opposite.

This negative feedback mechanism stabilizes the training

process, and finally sub-networks with appropriate model

capability for making correct prediction are allocated to the

input instances.

4.2. Instance Similarity

Besides mapping instances to the complexity space, the

similarity between samples is also an effective clue to cus-

tomize the networks for different instances. Inspired by the

manifold regularization [52, 62], we expect that the instance

similarity can be well preserved by their corresponding sub-

networks, i.e., if two instances are similar, the allocated sub-

networks for them tend to own similar property as well.

The intermediate features F l(xi) produced by a deep

neural network can be treated as an effective representa-

tion of input sample xi. Compared to the original data,

5021

ground-truth information is embedded to the intermediate

features during training, and hence the intermediate fea-

tures are more suitable to measure the similarity between

different samples. The sub-network for instance xi can be

described by the channel saliencies, which determine the

architecture of the network. Note that both the channel

saliencies πl(xi) and intermediate features F l(xi) are cor-

responding to each layer, and thus we can calculate the sim-

ilarity matrix of channel saliencies T l ∈ R
N×N and simi-

larity matrix of features Rl ∈ R
N×N layer-by-layer, where

the element T l[i, j] (Rl[i, j]) in the matrix reflect the sim-

ilarity between saliencies (features) derived from different

sample xi and xj . Suppose that the classical cosine simi-

larity [39] is adopted, T l is calculated as:

T l[i, j] =
πl(xi) · π

l(xj)

‖πl(xi)‖2 · ‖πl(xj)‖2
, (8)

where ‖ · ‖2 denotes ℓ2-norm. For intermediate feature

F l(xi) ∈ R
cl×wl

×hl

in the l-the layer, it is first flattened

to a vector using the average pooling operation p(·), and

then the similarity matrix is:

Rl[i, j] =
p(F l(xi)) · p(F

l(xj))

‖p(F l(xi))‖2 · ‖p(F l(xj))‖2
. (9)

Given the similarity matrices T l and Rl mentioned above, a

loss function Lsim is developed to impose consistency con-

straint on them, i.e.,

Lsim(X ,W) =

L
∑

l=1

dis(T l, Rl), (10)

where X = {xi}
N
i=1

and W denote the input data and net-

work parameters, respectively, and dis(·, ·) measures the

difference between the two similarity matrices. Here we

adopt a simple way that compares the corresponding ele-

ments of the two matrices, i.e., dis(T l, Rl) = ‖T l −Rl‖F ,

where ‖ · ‖F denotes Frobenius norm. In the practical im-

plementation of network training, the similarity matrices are

calculated over input data in each mini-batch for efficiency.

Combining the adaptive sparsity loss (Eq. (7)), the final

objective function for training the dynamic network is:

min
W

N
∑

i=1

Lce(xi,W) + λ(xi) ·
L
∑

l=1

‖πl(xi)‖1

+ γ · Lsim(X ,W),

(11)

where γ is a weight coefficient for the consistency loss

Lsim(X ,W). In Eq. (11), the manifold information is si-

multaneously excavated from two complementary perspec-

tives, i.e., complexity and similarity. The former imposes

the consistency between instances complexity and sub-

networks complexity, while the latter induces instances with

similar features to select similar sub-networks. Though

different perspectives are emphasized, both loss functions

describe intrinsic relationships between instances and net-

works, and can be simultaneously optimized to get an opti-

mal solution.

Based on the channel saliencies of each layer, the

dynamic pruning is applied to the given network for

different input data separately. Given N different in-

put examples {xi}
N
i=1

, the average channel saliencies

over different instance are first calculated as π̄l =
{π̄l[1], π̄l[2], · · · , π̄l[cl]}, where cl is the number of chan-

nels in the l-th layer. Then the elements in π̄l is sorted so

that π̄l[1] ≤ π̄l[2] ≤ · · · ≤ π̄l[cl] and the threshold is

set as ξl = πl[⌈ηcl⌉], where η is the pre-defined pruning

rate and ⌈·⌉ denotes round-off. At inference, only channels

with saliencies larger than the threshold ξl need to be calcu-

lated and the redundant features are skipped, which reduces

the computation and memory cost. Based on the threshold

ξl derived from the average saliencies π̄l, the actual prun-

ing rate are different for each instances, since the channel

saliency πl(xi) depends on the input and variant numbers

of elements are larger than the threshold ξl. A series of

sub-networks with various computational cost are obtained,

which are intuitively visualized in Figure 5 of Section 5.3.

5. Experiments

In this section, the proposed dynamic pruning method

based manifold regularization (ManiDP) is empirically in-

vestigated on image classification datasets CIFAR-10 [23]

and ImageNet (LSVRC-2012) [5]. CIFAR-10 contains

60k 32×32 colored images from 10 categories, where

50k images are used as the training set and 10k for test-

ing. The large-scale ImageNet (LSVRC-2012) dataset com-

poses of 1.28M training images and 50k validation im-

ages, which are collected from 1k categories. Prevalent

ResNet [16] models with different depths and light-weight

MobilenetV2 [46] are used to verify the effectiveness of the

proposed method.

Implementation Details. For a fair comparison, the

pruning rates for all layers in the network are the same fol-

lowing [10]. In the training phase, we increase the pruning

rate from 0 to an appointed value ξ to gradually make the

pre-trained networks sparse. The coefficient λ′ regulating

the weights of sparsity loss is set to 0.005 for CIFAR-10

and 0.03 for ImageNet, empirically. The coefficient γ for

the similarity loss is set to 10 for both two datasets. All

the networks are trained using the stochastic gradient de-

scent(SGD) with momentum 0.9. For CIFAR-10, the initial

learning rate, batch-size and training epochs are set to 0.2,

128 and 300, respectively, while they are 0.25, 1024 and 120

for ImageNet. Standard data augmentation strategies con-

taining random crop and horizontal flipping are used. For

CIFAR-10, the images are padded to size 40×40 and then

cropped to size 32×32. For ImageNet, images with resolu-

5022

Table 1. Comparison of the pruned ResNet with different methods on ImageNet (ILSVRC-2012). ‘Top-1 Gap’/‘Top-5 Gap’ denotes the

gaps of errors between the pruned models and the baseline models. ‘FLOPs ↓’ is the reduction ratio of FLOPs.

Model Method Dynamic Top-1 Error (%) Top-5 Error (%) Top-1 Gap (%) Top-5 Gap (%) FLOPs ↓ (%)

ResNet-18

Baseline - 30.24 10.92 0.0 0.0 0.0

MIL [7] ✗ 33.67 13.06 3.43 2.14 33.3

SFP [17] ✗ 32.90 12.22 2.66 1.30 41.8

FPGM [18] ✗ 31.59 11.52 1.35 0.60 41.8

PFP [28] ✗ 34.35 13.25 4.11 2.33 43.1

DSA [40] ✗ 31.39 11.65 1.15 0.73 40.0

LCCN [7] ✓ 33.67 13.06 3.43 2.14 34.6

CGNet [21] ✓ 31.70 - 1.46 - 50.7

FBS [10] ✓ 31.83 11.78 1.59 0.86 49.5

ManiDP-A ✓ 31.12 11.24 0.88 0.32 51.0

ManiDP-B ✓ 31.65 11.71 1.41 0.79 55.1

ResNet-34

Baseline - 26.69 8.58 0.0 0.0 0.0

SFP [17] ✗ 28.17 9.67 1.48 1.09 41.1

FPGM [18] ✗ 27.46 8.87 0.07 0.29 41.1

Taylor [38] ✗ 27.17 - 0.48 - 24.2

DMC [9] ✗ 27.43 8.89 0.74 0.31 43.4

LCCN [7] ✓ 27.01 8.81 0.32 0.23 24.8

CGNet [21] ✓ 28.70 - 2.01 - 50.4

FBS [10] ✓ 28.34 9.87 1.85 1.29 51.2

ManiDP-A ✓ 26.70 8.58 0.01 0.0 46.8

ManiDP-B ✓ 27.26 8.96 0.57 0.38 55.3

Table 2. Comparison of the pruned MobileNetV2 with different methods on ImageNet (ILSVRC-2012). ‘Top-1 Gap’/‘Top-5 Gap’ denotes

the gaps of errors between the pruned models and the baseline models. ‘FLOPs ↓’ is the reduction ratio of FLOPs.

Model Method Dynamic Top-1 Error (%) Top-5 Error (%) Top-1 Gap (%) Top-5 Gap (%) FLOPs ↓ (%)

MobileNetV2

Baseline - 28.20 9.57 0.0 0.0 0.0

ThiNet [37] ✗ 36.25 14.59 8.05 5.02 44.7

DCP [63] ✗ 35.78 - 7.58 - 44.7

MetaP [35] ✗ 28.80 - 0.60 - 27.7

DMC [9] ✗ 31.63 11.54 3.43 1.97 46.0

FBS [10] ✓ 29.07 9.91 0.87 0.34 33.6

ManiDP-A ✓ 28.58 9.72 0.38 0.15 37.2

ManiDP-B ✓ 30.38 10.55 2.18 0.98 51.2

tion 224 × 224 are sent to the networks. The experiments

are conducted with PyTorch [42] and MindSpore 3. Pruned

models can be found in the MindSpore model zoo 4.

5.1. Comparison on ImageNet

The proposed method is compared with state-of-the-art

network pruning algorithms on the large-scale ImageNet

dataset. The pruning results of ResNet and MobileNetV2

are shown in Table 1 and Table 2, respectively, where the

top-1/top-5 errors of the pruned networks and the reduction

ratios of FLOPs are reported. For dynamic pruning meth-

ods, the average FLOPs of the sub-networks over the whole

test dataset are calculated as computational cost.

For ResNet in Table 1, ‘ManiDP-A’ and ‘ManiDP-B’

denote two pruned networks with different pruning rates,

respectively. The competing methods include both SOTA

static channel pruning method developed recently ([17, 18,

3https://www.mindspore.cn
4https://www.mindspore.cn/resources/hub

40, 26, 27]) and the pioneering dynamic methods ([10, 7,

21]), indicated by ✗ and ✓ in the table. Our method can

reduce substantial computational cost for a given network

with negligible performance degradation. For example, the

proposed ‘ManiDP-A’ can reduce 46.8% FLOPs ResNet-34

with only 0.01% performance degradation. Compared with

the SOTA pruning algorithms, our method obtains pruned

networks with less computational cost but lower test errors.

The static methods are obviously inferior to ours, e.g., the

SOTA method DSA [40] only reduces 40.0% FLOPs and

obtain a pruned network with 31.39% top-1 error (ResNet-

18), while the proposed ‘ManiDP-A’ can achieve lower test

error (31.12%) with more FLOPs reduced (51.0%). Our

method also shows superiority to the existing dynamic prun-

ing methods, e.g., FBS [10] achieves 31.83% top-1 er-

ror with 49.5% FLOPs pruned, which is worse than our

method. We can infer that the proposed ManiDP method

can excavate the redundancy of networks adequately to get

compact but powerful networks with high performance.

5023

Table 3. Realistic acceleration (‘Realistic Acl.’) and theoretical ac-

celeration (‘Theoretical Acl.’) of pruned Networks on ImageNet.

Model Method
Theoretical Realistic

Acl. (%) Acl. (%)

ResNet-18
ManiDP-A 51.0 35.4

ManiDP-B 55.6 40.5

ResNet-34
ManiDP-A 46.8 32.0

ManiDP-B 55.3 37.4

MobileNetV2
ManiDP-A 37.2 30.4

ManiDP-B 51.2 38.5

To validate the effectiveness of the proposed ManiDP

method on light-weight networks, we further compare it

with SOTA methods on the efficient MobileNetV2 [46]

designed for resource-limited devices, and the results are

shown in Table 2. Our method also achieves a better

trade-off between network accuracy and computational cost

than the existing methods. For examples, the proposed

‘ManiDP-A’ reduces 37.2% FLOPs of MobileNetV2 with

only 0.38% accuracy loss, while the pruned network ob-

tained by the competing method FBS [10] sacrifices 0.87%

accuracy for pruning 33.6% FLOPs. The results show that

even light-weight networks are over parameterized when

exploring redundancy for each instances separately, which

can be further accelerated by the proposed method and de-

ployed on edge devices.

The realistic accelerations of the pruned Networks on

ImageNet are shown in Table 3, which is calculated by

counting the average inference time for handling each im-

age on CPUs. The realistic acceleration is slightly less than

the theoretical acceleration calculated by FLOPs, which is

due to practical factors such as I/O operations (e.g., access-

ing weights of networks), BLAS libraries and buffer switch,

whose impact can be further reduced by practical engineer-

ing optimization.

5.2. Comparison on CIFAR­10

On the benchmark CIFAR-10 dataset, the comparison

between the proposed ManiDP and SOTA channel pruning

methods are shown in Table 4. Compared with SOTA meth-

ods, a significantly higher FLOPs reduction is achieved by

our method with less degradation of performance. For ex-

ample, using our method, more than 60% FLOPs of the

ResNet-56 model are reduced while the test error can still

achieve 6.36% using ManiDP. Compared to the static meth-

ods (e.g., HRank [29] with 6.83% error and 50.0% FLOPs

reduction) and dynamic method (e.g., FBS [10] with 6.48%

error and 53.6% FLOPs reduction), our method shows no-

table superiority.

5.3. Ablation Studies

Effectiveness of Manifold Information. To maximally

excavate network redundancy corresponding to each in-

stance, the manifold information between instances is ex-

Table 4. Comparison of the pruned ResNet with different methods

on CIFAR-10.
Depth Method Dynamic Error (%) FLOPs ↓ (%)

20

Baseline - 7.78 0.0

SFP[17] ✗ 9.17 42.2

FPGM [18] ✗ 9.56 54.0

DSA [40] ✗ 8.62 50.3

Hinge [26] ✗ 8.16 45.5

DHP [27] ✗ 8.46 51.8

FBS [10] ✓ 9.03 53.1

ManiDP ✓ 7.95 54.2

32

Baseline - 7.34 0.0

MIL[7] ✗ 9.26 31.2

SFP [17] ✗ 7.92 41.5

FPGM [18] ✗ 8.07 53.2

FBS [10] ✓ 8.02 55.7

ManiDP ✓ 7.85 63.2

56

Baseline - 6.30 0.0

SFP [17] ✗ 7.74 52.6

FPGM [18] ✗ 6.51 52.6

HRank [29] ✗ 6.83 50.0

DSA [40] ✗ 7.09 52.2

Hinge [26] ✗ 6.31 50.0

DHP [27] ✗ 6.42 50.9

FBS [10] ✓ 6.48 53.6

ManiDP ✓ 6.36 62.4

Table 5. Effectiveness of Excavating Manifold Information. The

top-1 errors of the pruned networks and the gaps from the base

networks are reported.

Model Complexity Similarity Error / Gap (%)

✗ ✗ 6.88 / 0.58

ResNet-56 ✓ ✗ 6.61 / 0.31

(CIFAR-10) ✗ ✓ 6.53 / 0.23

✓ ✓ 6.36 / 0.06

✗ ✗ 28.12 / 1.43

ResNet-34 ✓ ✗ 27.67 / 0.98

(ImageNet) ✗ ✓ 27.63 / 0.94

✓ ✓ 27.29 / 0.57

plored from two perspectives, i.e., complexity and similar-

ity. The impacts of whether exploiting complexity or simi-

larity relationship is empirically investigated in Table 5, in-

dicated by ✓ and ✗. The classification error and the per-

formance gap compared to the base models are reported.

Without utilizing the complexity relationship means fixing

the trade-off coefficient λ(xi) between lasso loss and cross-

entropy loss, which obviously increases the error incurred

by pruning (e.g., 1.43% vs. 0.94% on ImageNet). The un-

satisfactory performance is due to the improper alignment,

i.e., cumbersome sub-networks may be assigned to sim-

ple examples, while complex instances are handled by tiny

sub-networks with limited representation capability. For

the similarity relationship, deactivating it (setting coeffi-

cient γ for similarity loss to zero) incurs larger performance

degradation (e.g., 1.43% vs. 0.98%), which validates the

effectiveness of exploring the similarity between features

5024

010 4 0.001 0.005 0.01 0.1
92.2
92.4
92.6
92.8
93.0
93.2
93.4
93.6

Ac
cu

ra
y

(%
)

(a)

0 1.0 5.0 10.0 30.0 50.0
93.1

93.2

93.3

93.4

93.5

93.6

93.7

Ac
cu

ra
y

(%
)

(b)

Figure 3. Test accuracies of the pruned ResNet-56 w.r.t. (a) weight

coefficient λ′ for sparsity loss and (b) coefficient µ for similarity

loss.

0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
78

80

82

84

86

88

90

92

94

Ac
cu

ra
y

(%
)

0.0

0.2

0.4

0.6

0.8
R

ed
uc

tio
n

R
at

e(
%

)

Accuracy
Reduced FLOPs
Reduced Memory

Figure 4. The variety of test accuracies and required Memory &

FLOPs (ResNet-56) w.r.t. pruning rate η.

of instances and the corrsponding sub-networks. Thus, ex-

ploiting both the two perspectives of manifold information

is necessary to achieve negligible performance degradation

(i.e., only 0.57% error increase on ImageNet).

Weight coefficients λ′ and γ. The weights of spar-

sity loss and similarity loss are controlled by coefficients

λ′ (Eq. (4)) and γ (Eq. 11), whose impact on the final test

accuracies is shown in Figure 3. A larger λ′ induces more

sparsity on channel saliencies, which will have less im-

pact on the network outputs when discarding channels with

small saliencies. On the other hand, the sparsity will affect

the representation ability of networks and incur accuracy

drop (Figure 3 (a)). Analogous phenomenon exists when

varying coefficient γ for similarity loss. The test accuracy

of the pruned network is improved when increasing γ un-

less it is set to an extremely large value, as the similarity

between different instances is excavated more adequately.

Note that our method is robust to both hyper-parameters and

works well in a wide range (e.g., range [0.001,0.01] for λ

and values around 10.0 for γ), empirically.

Memory/FLOPs and accuracies w.r.t. Pruning Rate.

The impact of different pruning rate is shown in Figure 4.

When a single instance is sent to the network, the memory

cost for accessing network weights can be reduced as in-

effective weights do not participate the inference process.

With a large reduction of computational cost and memory,

the pruned network can still achieve a high performance.

For example, when setting the pruning rare to 0.6% with

73.87% FlOPs and 67.42% memory reduction, the pruned

ResNet-56 can still achieve an accuracy of 93.29% (only

0.41% accuracy drop compared to the original network).

N
u

m
b

e
r

7000

5000

3000

1000

1.51.1 1.3 1.7

FLOPs (G)

Figure 5. FLOPs distribution of sub-networks and their corre-

sponding input instances on ImageNet.

Visualization. Different sub-networks with various

computational costs (i.e., FLOPs) are generated for each

instance by pruning different channels. Using ResNet-34

as the backbone, the FLOPs distribution of different sub-

networks over the validation set of ImageNet are shown in

Figure 5, where x-axis denotes FLOPs and the y-axis is

the number of sub-networks. The FLOPs of sub-networks

varies in a certain range w.r.t. the complexity of instances.

Most of the sub-networks own medium sizes and a small

quantity of sub-networks activate more/less channels to

handle harder/simpler instances. Some representative im-

ages handled by the corresponding sub-networks are also

shown in the figure. Intuitively, a simple example (e.g.,

‘bird’ and ‘dog’ in the red frames) that can be correctly pre-

dicted by a compact network usually contains clear targets,

while images with obscure semantic information (e.g., too

large ‘orange’ and too small ‘flower’ in the blue frames)

require larger networks with more powerful representation

ability. More visualization results are shown in the supple-

mentary material.

6. Conclusion

This paper proposes a manifold regularized dynamic

pruning method (ManiDP) to maximally excavate the re-

dundancy of neural networks. We explore the manifold

information in the sample space to discover the relation-

ship between different instances from two perspectives, i.e.,

complexity and similarity, and then the relationship is pre-

served in the corresponding sub-networks. An adaptive

penalty weight for network sparsity is developed to align

the instance complexity and network complexity, while the

similarity relationship is preserved by matching the similar-

ity matrices. Extensive experiments are conducted on sev-

eral benchmarks to verify the effectiveness of our method.

Compared with the state-of-the-art methods, the pruned net-

works obtained by the proposed ManiDP can achieve better

performance with less computational cost. For example, our

method can reduce 55.3% FLOPs of ResNet-34 with only

0.57% top-1 accuracy degradation on ImageNet.

Acknowledgment. This work is supported by National

Natural Science Foundation of China under Grant No.

61876007, and Australian Research Council under Project

DE180101438 and DP210101859.

5025

References

[1] Oreste Acuto, Vincenzo Di Bartolo, and Frédérique Michel.

Tailoring t-cell receptor signals by proximal negative feed-

back mechanisms. Nature Reviews Immunology, 8(9):699–

712, 2008. 4

[2] Eulalia Belloc and Raúl Méndez. A deadenylation negative

feedback mechanism governs meiotic metaphase arrest. Na-

ture, 452(7190):1017–1021, 2008. 4

[3] Hanting Chen, Yunhe Wang, Han Shu, Yehui Tang, Chunjing

Xu, Boxin Shi, Chao Xu, Qi Tian, and Chang Xu. Frequency

domain compact 3d convolutional neural networks. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 1641–1650, 2020. 2

[4] Hanting Chen, Yunhe Wang, Chang Xu, Chao Xu, and

Dacheng Tao. Learning student networks via feature embed-

ding. IEEE Transactions on Neural Networks and Learning

Systems, 2020. 1

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009. 5

[6] Minjing Dong, Hanting Chen, Yunhe Wang, and Chang Xu.

Crafting efficient neural graph of large entropy. In IJCAI,

pages 2244–2250, 2019. 1

[7] Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan.

More is less: A more complicated network with less infer-

ence complexity. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5840–

5848, 2017. 2, 6, 7

[8] Christoph Feichtenhofer, Axel Pinz, and Richard P Wildes.

Spatiotemporal multiplier networks for video action recog-

nition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4768–4777, 2017. 1

[9] Shangqian Gao, Feihu Huang, Jian Pei, and Heng Huang.

Discrete model compression with resource constraint for

deep neural networks. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

1899–1908, 2020. 6

[10] Xitong Gao, Yiren Zhao, Lukasz Dudziak, Robert Mullins,

and Cheng-zhong Xu. Dynamic channel pruning: Feature

boosting and suppression. In International Conference on

Learning Representations, 2018. 1, 2, 3, 5, 6, 7

[11] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-

national conference on computer vision, pages 1440–1448,

2015. 1

[12] Jianyuan Guo, Kai Han, Yunhe Wang, Chao Zhang, Zhaohui

Yang, Han Wu, Xinghao Chen, and Chang Xu. Hit-detector:

Hierarchical trinity architecture search for object detection.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 11405–11414, 2020.

1

[13] Jianyuan Guo, Yuhui Yuan, Lang Huang, Chao Zhang,

Jin-Ge Yao, and Kai Han. Beyond human parts: Dual

part-aligned representations for person re-identification. In

Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 3642–3651, 2019. 1

[14] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing

Xu, and Chang Xu. Ghostnet: More features from cheap

operations. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 1580–

1589, 2020. 1

[15] Kai Han, Yunhe Wang, Yixing Xu, Chunjing Xu, Enhua Wu,

and Chang Xu. Training binary neural networks through

learning with noisy supervision. In International Conference

on Machine Learning, pages 4017–4026. PMLR, 2020. 1

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 1, 5

[17] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and

Yi Yang. Soft filter pruning for accelerating deep convolu-

tional neural networks. In Proceedings of the 27th Inter-

national Joint Conference on Artificial Intelligence, pages

2234–2240, 2018. 6, 7

[18] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.

Filter pruning via geometric median for deep convolutional

neural networks acceleration. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4340–4349, 2019. 6, 7

[19] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 1389–1397, 2017. 1

[20] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015. 1

[21] Weizhe Hua, Yuan Zhou, Christopher M De Sa, Zhiru Zhang,

and G Edward Suh. Channel gating neural networks. In

Advances in Neural Information Processing Systems, pages

1886–1896, 2019. 2, 6

[22] Lai Jiang, Mai Xu, Tie Liu, Minglang Qiao, and Zulin Wang.

Deepvs: A deep learning based video saliency prediction ap-

proach. In Proceedings of the european conference on com-

puter vision (eccv), pages 602–617, 2018. 1

[23] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009. 5

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. Communications of the ACM, 60(6):84–90, 2017. 1

[25] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Os-

eledets, and Victor Lempitsky. Speeding-up convolutional

neural networks using fine-tuned cp-decomposition. arXiv

preprint arXiv:1412.6553, 2014. 1

[26] Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool,

and Radu Timofte. Group sparsity: The hinge between fil-

ter pruning and decomposition for network compression. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 8018–8027, 2020. 6,

7

[27] Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, and Radu

Timofte. Dhp: Differentiable meta pruning via hypernet-

works. 2020. 6, 7

[28] Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman,

and Daniela Rus. Provable filter pruning for efficient neural

5026

networks. In International Conference on Learning Repre-

sentations, 2020. 2, 6

[29] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,

Baochang Zhang, Yonghong Tian, and Ling Shao. Hrank:

Filter pruning using high-rank feature map. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 1529–1538, 2020. 7

[30] Shaohui Lin, Rongrong Ji, Chao Chen, Dacheng Tao, and

Jiebo Luo. Holistic cnn compression via low-rank decompo-

sition with knowledge transfer. IEEE transactions on pattern

analysis and machine intelligence, 41(12):2889–2905, 2018.

1

[31] Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue

Huang, and Baochang Zhang. Accelerating convolutional

networks via global & dynamic filter pruning. In IJCAI,

pages 2425–2432, 2018. 2

[32] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang,

Liujuan Cao, Qixiang Ye, Feiyue Huang, and David Doer-

mann. Towards optimal structured cnn pruning via genera-

tive adversarial learning. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 2790–2799, 2019. 1

[33] Chuanjian Liu, Yunhe Wang, Kai Han, Chunjing Xu, and

Chang Xu. Learning instance-wise sparsity for accelerat-

ing deep models. In Proceedings of the Twenty-Eighth In-

ternational Joint Conference on Artificial Intelligence, pages

3001–3007, 7 2019. 1

[34] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,

Shoumeng Yan, and Changshui Zhang. Learning efficient

convolutional networks through network slimming. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 2736–2744, 2017. 1, 2

[35] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin

Yang, Kwang-Ting Cheng, and Jian Sun. Metapruning: Meta

learning for automatic neural network channel pruning. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 3296–3305, 2019. 6

[36] Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng,

Tara Javidi, and Rogerio Feris. Fully-adaptive feature shar-

ing in multi-task networks with applications in person at-

tribute classification. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 5334–

5343, 2017. 1

[37] Jian-Hao Luo, Hao Zhang, Hong-Yu Zhou, Chen-Wei Xie,

Jianxin Wu, and Weiyao Lin. Thinet: pruning cnn filters

for a thinner net. IEEE transactions on pattern analysis and

machine intelligence, 41(10):2525–2538, 2018. 1, 6

[38] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,

and Jan Kautz. Importance estimation for neural network

pruning. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 11264–11272,

2019. 2, 6

[39] Hieu V Nguyen and Li Bai. Cosine similarity metric learning

for face verification. In Asian conference on computer vision,

pages 709–720. Springer, 2010. 5

[40] Xuefei Ning, Tianchen Zhao, Wenshuo Li, Peng Lei, Yu

Wang, and Huazhong Yang. Dsa: More efficient budgeted

pruning via differentiable sparsity allocation. In Proceed-

ings of the European conference on computer vision, 2020.

6, 7

[41] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Rela-

tional knowledge distillation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 3967–3976, 2019. 1

[42] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017. 6

[43] Yongming Rao, Jiwen Lu, Ji Lin, and Jie Zhou. Runtime

network routing for efficient image classification. IEEE

transactions on pattern analysis and machine intelligence,

41(10):2291–2304, 2018. 2

[44] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using bi-

nary convolutional neural networks. In European conference

on computer vision, pages 525–542. Springer, 2016. 1

[45] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788, 2016. 1

[46] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 4510–4520, 2018. 5, 7

[47] Pravendra Singh, Vinay Kumar Verma, Piyush Rai, and

Vinay Namboodiri. Leveraging filter correlations for deep

model compression. In Proceedings of the IEEE/CVF Win-

ter Conference on Applications of Computer Vision, pages

835–844, 2020. 1

[48] Xiu Su, Shan You, Tao Huang, Fei Wang, Chen Qian, Chang-

shui Zhang, and Chang Xu. Locally free weight sharing

for network width search. arXiv preprint arXiv:2102.05258,

2021. 1

[49] Yehui Tang, Yunhe Wang, Yixing Xu, Hanting Chen, Boxin

Shi, Chao Xu, Chunjing Xu, Qi Tian, and Chang Xu. A semi-

supervised assessor of neural architectures. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 1810–1819, 2020. 1

[50] Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chun-

jing Xu, Chao Xu, and Chang Xu. Scop: Scientific con-

trol for reliable neural network pruning. arXiv preprint

arXiv:2010.10732, 2020. 1, 2

[51] Yehui Tang, Shan You, Chang Xu, Jin Han, Chen Qian,

Boxin Shi, Chao Xu, and Changshui Zhang. Reborn filters:

Pruning convolutional neural networks with limited data. In

Proceedings of the AAAI Conference on Artificial Intelli-

gence, volume 34, pages 5972–5980, 2020. 2

[52] Jing Wang, Zhenyue Zhang, and Hongyuan Zha. Adaptive

manifold learning. Advances in neural information process-

ing systems, 17:1473–1480, 2004. 4

[53] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and

Hai Li. Learning structured sparsity in deep neural networks.

In Advances in neural information processing systems, pages

2074–2082, 2016. 2

5027

[54] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and

Jian Cheng. Quantized convolutional neural networks for

mobile devices. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4820–

4828, 2016. 1

[55] Yixing Xu, Yunhe Wang, Hanting Chen, Kai Han, Chun-

jing Xu, Dacheng Tao, and Chang Xu. Positive-unlabeled

compression on the cloud. arXiv preprint arXiv:1909.09757,

2019. 1

[56] Yixing Xu, Chang Xu, Xinghao Chen, Wei Zhang, Chunjing

Xu, and Yunhe Wang. Kernel based progressive distillation

for adder neural networks. arXiv preprint arXiv:2009.13044,

2020. 1

[57] Zhaohui Yang, Yunhe Wang, Xinghao Chen, Boxin Shi,

Chao Xu, Chunjing Xu, Qi Tian, and Chang Xu. Cars: Con-

tinuous evolution for efficient neural architecture search. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 1829–1838, 2020. 1

[58] Zhaohui Yang, Yunhe Wang, Kai Han, Chunjing Xu, Chao

Xu, Dacheng Tao, and Chang Xu. Searching for low-

bit weights in quantized neural networks. arXiv preprint

arXiv:2009.08695, 2020. 1

[59] Haoran You, Xiaohan Chen, Yongan Zhang, Chaojian Li,

Sicheng Li, Zihao Liu, Zhangyang Wang, and Yingyan Lin.

Shiftaddnet: A hardware-inspired deep network. arXiv

preprint arXiv:2010.12785, 2020. 1

[60] Shan You, Tao Huang, Mingmin Yang, Fei Wang, Chen

Qian, and Changshui Zhang. Greedynas: Towards fast

one-shot nas with greedy supernet. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 1999–2008, 2020. 1

[61] Shan You, Chang Xu, Chao Xu, and Dacheng Tao. Learning

from multiple teacher networks. In Proceedings of the 23rd

ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, pages 1285–1294, 2017. 1

[62] Bo Zhu, Jeremiah Z Liu, Stephen F Cauley, Bruce R Rosen,

and Matthew S Rosen. Image reconstruction by domain-

transform manifold learning. Nature, 555(7697):487–492,

2018. 4

[63] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,

Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.

Discrimination-aware channel pruning for deep neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 875–886, 2018. 6

5028

