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Abstract

In this paper, we propose to make a systematic study

on machines’ multisensory perception under attacks. We

use the audio-visual event recognition task against multi-

modal adversarial attacks as a proxy to investigate the ro-

bustness of audio-visual learning. We attack audio, visual,

and both modalities to explore whether audio-visual inte-

gration still strengthens perception and how different fusion

mechanisms affect the robustness of audio-visual models.

For interpreting the multimodal interactions under attacks,

we learn a weakly-supervised sound source visual localiza-

tion model to localize sounding regions in videos. To mit-

igate multimodal attacks, we propose an audio-visual de-

fense approach based on an audio-visual dissimilarity con-

straint and external feature memory banks. Extensive ex-

periments demonstrate that audio-visual models are sus-

ceptible to multimodal adversarial attacks; audio-visual

integration could decrease the model robustness rather

than strengthen under multimodal attacks; even a weakly-

supervised sound source visual localization model can be

successfully fooled; our defense method can improve the in-

vulnerability of audio-visual networks without significantly

sacrificing clean model performance. The source code and

pre-trained models are released in https://github.

com/YapengTian/AV-Robustness-CVPR21.

1. Introduction

Our daily perceptual experiences are specified by mul-

tiple cooperated senses with multisensory integration [50].

When we are talking with a person, we can learn her/his

spoken words and emotions from the seen lip movements,

gestures, facial expressions, and heard speech sounds. Nu-

merous psychological and cognitive studies show that the

availability of sensory inputs from several modalities en-

sures the robustness of the human perception system [66,

29, 75]. However, the robustness highly depends on the re-

liability of multisensory inputs. For our human perception
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Figure 1: Adding imperceptible perturbations into audio

and visual inputs by an audio-visual adversarial attack, our

joint perception model predicts a wrong event class: Guitar

and tend to localize visual regions without the sound source.

system, it might fail if certain senses are attacked. For ex-

ample, the McGurk effect1 [46] indicates a perceptual illu-

sion, which occurs when a speech sound is paired with the

visual component of another sound, leading to the percep-

tion of a third speech sound.

For computation models, our community indeed has

devoted to develop data-driven approaches in lip read-

ing [15, 58, 14], visually indicated sound separation [20, 25,

53, 87, 86, 81, 22], audio-visual event localization [71, 42,

77, 61, 62], audio-visual video parsing [70], audio-visual

embodied navigation [9, 23], and audio-visual action recog-

nition [28, 37, 78] to achieve robust auditory or visual per-

ception by integrating audio and visual information. How-

ever, whether these computational perception models still

1https://www.youtube.com/watch?v=2k8fHR9jKVM
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exhibit robustness under attacks or they are vulnerable to

corrupted sensory inputs as in human perception, these have

not been systematically evaluated in previous work.

Inspired by the auditory-visual illusion [46] in human

perception, we present a systematic study on machines’

multisensory integration under attacks. We use the audio-

visual event recognition task against multimodal adver-

sarial attacks as a proxy to investigate the robustness of

audio-visual learning. Adversarial examples are generated

with several different attack methods for audio, visual, and

both modalities to evaluate the robustness of our models.

In addition, different audio-visual fusion methods are ex-

plored to validate the correlation between model robust-

ness and multisensory integration. To visually interpret the

audio-visual interactions under attacks, we learn a weakly-

supervised sound source visual localization model to local-

ize sounding regions in videos. To mitigate the adversar-

ial multimodal attacks, we propose an audio-visual defense

method. It uses external feature memory banks to denoise

corrupted features from each modality and learns compact

unimodal embeddings by enforcing audio-visual dissimilar-

ity to strengthen invulnerability. For fairly evaluating differ-

ent defense approaches, we propose a relative improvement

(RI) metric that considers results from both clean and attack

models and can penalize modality-biased defense models.

One audio-visual attack example is illustrated in Fig. 1.

Extensive experiments can validate that our audio-visual

models are susceptible to adversarial perturbations, audio-

visual integration could weaken model robustness rather

than strengthen under multimodal attacks, even a weakly-

supervised sound source visual localization model can be

successfully fooled, and the proposed audio-visual defense

method can improve network invulnerability without signif-

icantly sacrificing clean model performance.

The main contributions of our work are: (1) system-

atically investigating the robustness of audio-visual event

recognition models against the adversarial multimodal at-

tack with different attackers and fusion methods; (2) quali-

tatively interpreting the robustness over multimodal attacks

in terms of the sound source spatial localization; (3) propos-

ing a novel audio-visual defense method that uses clean ex-

ternal feature memory banks to denoise adversarial audio

and visual features and enforces the multimodal dispersion

and unimodal embedding compactness to strengthen invul-

nerability. (4) finding a shortcut of audio-visual defense

originating from the modality bias issue and proposing a

new evaluation metric: RI.

2. Related Work

In this section, we discuss some related work on audio-

visual learning, adversarial attack, and adversarial defense.

Audio-Visual Learning: Audio and visual modalities in

videos can provide synchronized and/or complementary in-

formation. The multimodal nature of videos enables a se-

ries of new and interesting audio-visual learning problems,

such as self-supervised audio-visual representation learn-

ing [16, 52, 4, 54, 2, 3, 53, 40, 35], visually indicated

sound separation [20, 25, 53, 87, 86, 63, 81, 27, 22, 69],

vision-infused audio inpainting [89, 49], sound source spa-

tial localization [34, 38, 64, 71, 3, 53, 59, 36, 1], lip read-

ing [15, 58, 14], audio-visual event localization [71, 42,

77, 61, 62], audio-visual video parsing [70], audio-visual

embodied navigation [23, 9], audio-visual action recogni-

tion [28, 37, 78, 76], and cross-modal generation and pre-

diction [13, 12, 92, 10, 11, 88, 26, 24, 91, 74, 21, 90, 82].

Although the audio-visual integration with clean data fa-

cilitates many audio-visual learning tasks and strengthens

model robustness, we do not know whether the robustness

still exits when audio and visual modalities are attacked. In

this paper, we take audio-visual event recognition as the pre-

text task to explore audio-visual learning robustness against

multimodal adversarial attacks.

Adversarial Attack: Generating adversarial images to at-

tack deep networks have attracted great interests. A pio-

neer work is proposed by Szegedy et al. in [68], which uses

a box-constrained L-BFGS-based optimization to predict

adversarial perturbations for fooling networks. Following

the line of the work, many white-box (network architecture

and parameters are known) attack approaches are devel-

oped to effectively attack image classifiers, including Fast

Gradient Sign Method (FGSM) [30], iterative FGSM [41],

DeepFool [48], Projected Gradient Descent (PGD) [45],

Jacobian-based Saliency Map Attack (JSMA) [56], Carlini

& Wagner’s attack [6], Diverse Input Iterative Attack [80],

and Momentum-based Iterative Method (MIM) [17]. Build-

ing upon research in the visual domain, recent research

shows that speech recognition models are also susceptible

to adversarial audio examples [5, 65, 85, 7, 60, 18]. But,

how adversarial attacks affect universal sound models has

not been answered yet.

Rather than individual audio and visual adversarial at-

tacks, we investigate audio-visual learning under multi-

modal attacks, which generate adversarial examples for

both audio and visual inputs. Particularly, we explore un-

constrained video data from a range of categories (e.g., mu-

sical instruments and human activities).

Adversarial Defense: The adversarial defense aims to im-

prove the invulnerability of deep models under attacks.

To counter adversarial attacks, adversarial training ap-

proaches [30, 41, 73, 47] are proposed, which incorporate

both clean images and their adversarial counterparts into the

training process. Since it is not possible to exploit all differ-

ent levels of perturbations during adversarial training, the

trained models might not be able to generalize to certain

unknown attacks. To mitigate adversarial attacks, some ap-
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proaches [79, 32, 67] apply different pre-processing steps

and transformations on the input image. There are also

some defense methods that propose new objective func-

tions [55, 51] to enforce robustness by encouraging compact

representations. In the audio domain, there are only a few

methods [84, 43] to alleviate adversarial attacks on speech

recognition. However, they can only detect adversarial ex-

amples and are not able to improve model performance.

Not competing with state-of-the-art defense methods in

the image domain, our goal is to investigate how to take the

multimodal nature of audio-visual data into consideration

for audio-visual defenses and devise unified defense meth-

ods, which can alleviate perturbations from both modalities.

3. Method

3.1. Multimodal Adversarial Attack

Let xv be an input video frame, xa be an input audio

waveform, and y be the corresponding groundtruth label

for the multisensory input: {xa, xv}. We denote Fθ as our

audio-visual network, where θ are the model parameters.

The goal of a multimodal attack is to fool the target mul-

timodal model: Fθ by adding human imperceptible pertur-

bations into its inputs from multiple modalities, such as au-

dio: xa and visual: xv in our problem. Since there are mul-

tiple inputs, we can divide our multimodal attack into two

categories: single-modality attacks that only generate au-

dio adversarial example xadv
a or visual adversarial example

xadv
v , and audio-visual attacks that generate both audio and

visual adversarial examples: {xadv
a , xadv

v }.

Adversarial Objective: To force a trained multimodal

model Fθ to make wrong predictions and the corresponding

perturbations be as imperceptible as possible, the objective

function for multimodal attacks against Fθ with audio and

visual inputs is as follows:

argmax
xadv
a ,xadv

v

L(xadv
a , xadv

v , y; θ)

s.t. ||xadv
a − xa||p 6 ǫa

||xadv
v − xv||p 6 ǫv,

(1)

where δa = xadv
a −xa is the audio adversarial perturbation,

δv = xadv
v − xv is the visual adversarial perturbation, L(·)

is the loss function to optimize Fθ, || · ||p is the p-norm,

and ǫa and ǫv are audio and visual perturbation budgets, re-

spectively. With the adversarial objective, the attacker will

maximize the loss function by seeking small perturbations

within allowed budgets, and try to push the trained model

to make incorrect predictions. For single-modality attacks,

either ǫa or ǫv is 0. In this case, our multimodal model

can still access clean inputs from the unattacked modality.

For audio-visual attacks, both audio and visual inputs will

be corrupted. With exploring effects of different single-
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Figure 2: Audio-visual event recognition network. It inte-

grates audio and visual content to predict the event category.

modality and audio-visual attacks, we can investigate the

model robustness under multimodal attacks.

3.2. AudioVisual Event Recognition

We use audio-visual event recognition task as a proxy

to explore the audio-visual model robustness under multi-

modal attacks. Given an audio waveform: xa and the cor-

responding video frame: xv from a short video clip, the

goal of the task is to predict the event category of the video

clip. To address the problem, we introduce an audio-visual

network2 as shown in Fig. 2, which can integrate informa-

tion from the both modalities to infer event labels. It uses

an 1D convolution-based audio network to extract an au-

dio feature: fa ∈ Rd from xa. ResNet [33] is adopted

as the visual network to extract a visual feature fv ∈ Rd

from xv . The audio and visual features are integrated by

a fusion function outputting a fused feature: fav . In prac-

tice, we obtain fav = [fa; fv] via concatenating the audio

and visual features. Taking the fav as an input, a fully-

connected layer with a softmax is used to predict its event

class probability p. The cross-entropy objective function:

LCE = −
∑k

i=1 yilog(pi), where k is the category num-

ber, is used to force the model to learn discriminative fea-

tures for each class that be mapped to correct output space.

3.3. AudioVisual Defense

To defend adversaries and improve the robustness of our

audio-visual models, we propose an audio-visual defense

method. It includes two parts: learning discriminative and

compact unimodal embeddings and external feature mem-

ory banks for feature denoising. Next, we will describe the

details of our audio-visual defense mechanism.

3.3.1 Learning Discriminative and Compact Features

Our deep models are threatened by adversarial attacks since

the attackers, by maximizing the loss function, will force

the output across its originally correct decision region. It

has been suggested that high intra-class compactness in the

feature space can strengthen the adversarial robustness of

classifiers since it makes difficulties for the adversarial at-

tackers to find feasible perturbations within its allowed bud-

get and go beyond the correct decision boundary [55, 51].

2We include details of the architecture in the supplementary material.
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Nevertheless, audio and visual data captured by different

senses are essentially distinct. The modality gap in our mul-

timodal task makes the encoded audio, and visual features:

fa and fv from the same input video different, and thus

leads intra-class dispersion in the joint audio-visual feature

space. Consequently, our audio-visual model becomes sus-

ceptible to adversarial perturbations. To mitigate the intra-

class dispersion and strengthen our model robustness, we

should learn more compact audio-visual embeddings.

Audio and visual signals that contain synchronized con-

tent are ubiquitous, as demonstrated in a wide range of

audio-visual tasks [16, 52, 4, 40, 71, 23]. Motivated from

the nature synchronization between the two modalities, it

is straightforward to alleviate the intra-class dispersion in

the multimodal data by enforcing similarities between au-

dio and visual features. Maximizing the audio-visual sim-

ilarity can force the model to align the features from the

two modalities and project them in a similar feature space,

which will decrease the intra-class dispersion accompany-

ing the modality gap reduction. However, the synchro-

nization does not mean that the two modalities are identi-

cal. One reason for joint modeling is better than individ-

ual modeling is that the additional modalities can provide

augmented discriminativeness rather than redundant infor-

mation. Thus, the similarity constraint might weaken the

power of our multimodal models since it decreases discrim-

inative information from individual modalities. To further

encourage the multimodal dispersion in the synchronized

audio and visual signals, instead of maximizing, we mini-

mize the audio-visual similarity. The objective function is

formulated as:

LSim =
fa · fv

max(||fa||2 · ||fv||2, η)
, (2)

where we use the cosine similarity as the measurement and

η = 1e−8 is a small scalar to avoid division by zero. Com-

bining the cross-entropy and similarity losses, we can ob-

tain our final objective function:

L = LCE + LSim. (3)

With the LSim, the model will tend to learn separated au-

dio and visual embeddings. Meanwhile, the LCE will still

urge the features to be discriminative, which will implic-

itly encourage the both separated unimodal embeddings to

be more compact and separable. In this manner, we can si-

multaneously strengthen the multimodal dispersion and em-

bedding compactness to make our audio-visual model more

powerful and robust.

3.3.2 External Feature Memory Bank

When audio and visual inputs are attacked, the features:

fadv
a and fadv

v from corresponding audio and visual adver-

sarial examples become noisy and not reliable. To further

defend the attackers, we can estimate cleaner audio and vi-

sual features: f∗

a and f∗

v to replace fadv
a and fadv

v .

Inspired by conventional sparse representation-based im-

age restoration approaches [19, 83], we propose to adopt

external feature memory banks to denoise attacked audio

and visual examples at a feature level. Since audio and

visual features are reliable in training data, we use them

to build audio and visual external feature memory banks:

Ma ∈ Rd×K and Mv ∈ Rd×K , respectively, where

Ma[:, k] and Mv[:, k] are audio and visual feature vectors

from the same video, and we sample totally K samples. To

estimate clean features, the adversarial features are first en-

coded with the external feature memory banks:

min
αa

||fadv
a −Maαa||

2
2 + λa||αa||1,

min
αv

||fadv
v −Mvαv||

2
2 + λv||αv||1,

(4)

where the parameters: λa and λv balance sparsity of the

solutions and fidelity of the approximation, and αa and

αv are predicted audio and visual coefficients, respectively.

Then, the more reliable audio and visual features can be

reconstructed by the corresponding encoded coefficients:

f∗

a = Maαa and f∗

v = Mvαv . We solve the Lasso [72]

problems in Eq. 4 using the differentiable Iterative Shrink-

age Thresholding Algorithm (ISTA) [31].

With the discriminative, compact, and cleaner audio and

visual embeddings, our audio-visual model will be more in-

vulnerable to potential multimodal adversarial attacks.

4. Experiments

4.1. Datasets

We use two widely used audio-visual datasets: MIT-

MUSIC and Kinetics-Sounds for training and evaluation.

MIT-MUSIC: This dataset [87] contains clean audio-visual

synchronized musical recordings, which covers 11 instru-

ment categories: accordion, acoustic guitar, cello, clarinet,

erhu, flute, saxophone, trumpet, tuba, violin, and xylo-

phone. 520 available videos with solos in the dataset are

used to conduct experiments. We randomly divide the data

into trian/val/test splits of 312/104/104 videos, respectively.

Kinetics-Sounds: The dataset is a subset of the Kinetics

dataset [8], which contains YouTube videos with manually

annotated human actions. This subset3 contains 15516 10

second video clips (9309 training, 3104 validation, 3103

test) in 27 human action categories. Rather than only mu-

sical instruments, it includes diverse human activities (e.g.,

chopping wood, ripping paper, tap dancing, and singing).

Besides the diversity of scenes, Kinetics-Sounds is more

noisy than the MIT-MUSIC, in which audio and visual con-

tent inside some videos might not be completely related.

3Kinetics-Sounds is firstly used in [2]. Since some videos in the subset

are not available on the Internet, the downloaded dataset is slightly smaller.
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Figure 3: Adversarial robustness against multimodal attacks on the MIT-MUSIC. The x-axis denotes the attack strength

(×10−3) and we set ǫa = ǫv in the audio-visual attack for a better illustration. For the single-modality attack, the attacked

audio-visual models in (a) and (b) still have clean visual and audio information, respectively. But, when adversarial per-

turbations become larger, joint perception models with one attacked modality become even worse than the corresponding

individual perception models. Thus, an unreliable modality could weaken perception by the other modality in audio-visual

models. A similar observation can also be found in the audio-visual attack (e.g., -AV vs. -unimodal V).

4.2. Attack Methods

We evaluate the audio-visual model robustness with l∞-

bounded adversarial perturbations, which is widely used as

a standard evaluation metric for adversarial robustness [45].

Three different attack methods are used.

FGSM: The fast gradient sign method (FGSM) [30] com-

putes the gradients of the network to generate adversarial

examples xadv by xadv = x+ǫ · sign(∇xL(x, y; θ)), where

xadv is the generated adversarial example, x is the original

input, y is the original label, θ refers to model parameters,

ǫ is the maximum adversarial perturbation value, and L is

the loss function. For our audio-visual model, we can ob-

tain audio and visual adversarial examples: xa
adv and xv

adv

in terms of xadv
a = xa + ǫa · sign(∇xa

L(xa, xv, y; θ)) and

xadv
v = xv + ǫv · sign(∇xv

L(xa, xv, y; θ)), respectively.

PGD: Projected Gradient Descent (PGD) [45] is an iterative

variant of the FGSM. We can perform multi-step attacks

based on PGD and generate audio and visual adversarial

examples with respect to ǫa and ǫv , respectively.

MIM: Momentum-based Iterative Method (MIM) [17] inte-

grates a momentum term into the iterative process to further

stabilize update directions and mitigate local minima.

4.3. Model Robustness under Multimodal Attacks

We first investigate the model robustness of audio-

visual event recognition under multimodal adversarial at-

tacks. Table 1 shows audio-visual event recognition accu-

racy on MIT-MUSIC and Kinetics-Sounds datasets under

both single-modality and audio-visual attacks with differ-

ent attackers. To better interpret the multimodal robustness,

we also include results from two baselines: Unimodal A

and Unimodal V, which are two single-modality models and

only use audio and visual modalities, respectively. Clearly,

Dataset Attack ✓AV ✗A ✗V ✗AV Avg. Unimodal ✓A Unimodal ✓V

MM

FGSM [30] 50.00 25.00 15.38 30.12

PGD [45] 88.46 13.46 1.92 0.00 5.09 59.62 81.73

MIM [17] 6.73 1.92 0.00 2.88

KS

FGSM [30] 33.38 15.08 8.18 18.88

PGD [45] 72.42 6.22 1.90 0.77 2.96 35.99 66.08

MIM [17] 3.87 1.55 0.32 1.91

Table 1: Audio-visual event recognition accuracy on MIT-

MUSIC and Kinetics-Sounds datasets under different attack

methods. ✗A, ✗V, and ✗AV denote that only audio, only

visual, and both audio and visual inputs for our audio-visual

network are attacked, respectively. We set ǫa and ǫv as 0.12

respectively for ✗A and ✗V, and 0.06 for ✗AV. The symbol:

✓ means that inputs are clean. The baselines: Unimodal ✓A

and Unimodal ✓V models are two single-modality models.

all of the three attack methods: FGSM, PGD, and MIM

can significantly decrease recognition results, and the MIM

achieves the lowest accuracy under different multimodal at-

tacks. The results show that audio-visual models are sus-

ceptible to multimodal adversarial attacks, and the MIM is

the most effective attack method among the three attackers.

From Table 1, we can also see that our clean audio-visual

models (✓AV) are better than both clean single-modality A

(Unimodal ✓A) and V (Unimodal ✓V) models, which can

validate that audio-visual integration can strengthen percep-

tion robustness and improve audio-visual event recognition

performance when input modalities are clean and reliable.

But, the conclusion might not hold if the audio-visual model

is attacked. Next, we will analyze it based on multimodal

attack results.

Single-Modality Attack: When we use different attackers

to perform single-modality attacks on the MIT-MUSIC and

Kinetics-Sounds datasets, audio-visual models: ✗A and ✗V

are always inferior to Unimodal ✓V and Unimodal ✓A, re-

spectively. For example, the performances drop 91.76% and
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Figure 4: Visualizing sound sources under multimodal attacks. The adversarial perturbations in attacked video frames are

almost imperceptible. Both single-modality and audio-visual attacks can successfully fool the weakly supervised sound

source visual localization model without using sounding object location supervision.

96.77% on MIT-MUSIC with the MIM attack. Note that

✗A and ✗V have clean visual and audio modalities, respec-

tively. The results can demonstrate that audio-visual inte-

gration could weaken event recognition performance, when

audio or visual inputs are attacked.

Audio-Visual Attack: Obviously, when inputs from the

both modalities are added adversarial perturbations, the

audio-visual models: ✗AV obtain even worse performance

than the ✗A and ✗V. When we compare it to attacked uni-

modal models (see Uimodal A and Unimodal V in Table 3),

we can see that ✗A of Unimodal A and ✗V of Unimodal V

achieve 0.00% and 11.54%, while ✗AV of the audio-visual

model is 15.38% under the same FGSM attack on the MIT-

MUSIC. Interestingly, the audio-visual model is more in-

vulnerable than the unimodal models against attacks. But

when we compare the results from ✗AV of the audio-visual

model and ✗V of Unimodal V on the Kinetics-Sounds, joint

perception under the audio-visual attack is worse than the

visual perception under the single-modality attack. These

results validate that one corrupted modality could still help

the other modality, but a joint perception is not always better

than individual perceptions under audio-visual attacks.

Figure 3 illustrates the adversarial robustness against

multimodal attacks with different perturbations. The results

can further validate our findings that audio-visual integra-

tion may not always strengthen the audio-visual model ro-

bustness under multimodal adversarial attacks. The adver-

sarial robustness of the audio-visual models highly depends

Method ✓AV ✗A ✗V ✗AV Avg.

Sum 88.46 35.58 45.19 3.85 43.27

Concat 88.46 51.92 45.19 15.38 50.24

FiLM [57] 83.65 28.85 39.42 3.85 38.95

Gated-Sum [39] 89.42 33.65 44.23 4.81 43.03

Gated-Concat [39] 89.42 45.19 43.27 13.46 47.84

Table 2: Audio-visual event recognition accuracy with dif-

ferent fusions on the MIT-MUSIC under FGSM attacks.

on the reliability of the multisensory inputs.

4.4. AudioVisual Fusions Against Attacks

Audio-visual fusion strategy is important for the perfor-

mance of our multimodal model. Here, we are curious about

whether different audio-visual fusions would also affect the

adversarial robustness. To answer the question, we com-

pare several different audio-visual fusion approaches: Sum,

Concatenation (Concat), FiLM [57], Gated Sum (Gated-

Sum) [39], and Gated Concatenation (Gated-Concat) [39],

where FiLM and Gated-Sum mix updated audio and visual

information together as the Sum before the final prediction

layer and the Gated-Concat still preserve the individual in-

formation as the Concat. Table 2 show audio-visual event

recognition results with different fusion methods against

FGSM attacks on the MIT-MUSIC dataset.

From Table 2, we can find that our audio-visual models

with Sum, Concat, Gated-Sum, and Gated-Concat fusion

mechanisms achieve competitive performance on attack-
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free inputs, and FiLM is worse than the other fusion ap-

proaches; audio-visual models: ✗A and ✗V with different

fusions achieve inferior performance than Unimodal ✓V

and Unimodal ✓A, respectively. The results further support

that audio-visual integration could decrease event recogni-

tion performance when input audio or visual modalities are

not reliable. Another interesting observation is that the Con-

cat and Gated-Concat are much better than the Sum, FiLM,

and Gated-Sum under audio-visual attacks, and Concat is

the most robust fusion among the compared methods. From

the results, we can learn that more audio-visual interactions

inside the fusion function might weaken the audio-visual

model robustness against the audio-visual attacks.

4.5. Visualizing Sound Sources Under Attacks

To visually interpret the audio-visual interactions under

multimodal adversarial attacks, we visualize sound sources

in video frames. To localize sound sources, we train a

weakly-supervised sound source visual localization net-

work. It uses audio-visual event recognition as the pretext

task and adopts an audio-guided visual attention mechanism

similar to [71, 64] as the localization module. Concretely,

we obtain a N×N visual feature map:Fv = [f1
v ; ...; f

N2

v ] ∈

RN2
×d from an input frame: xv the ResNet [33]. Given

the audio feature vector: fa and Fv , we compute audio-

guided visual attention weights for each spatial position:

wi =
exp(fT

a fi
v)∑

j
exp(fT

a f
j
v)

and obtain the attended visual feature

fatt
v =

∑
i wif

i
v to replace fv in the original audio-visual

event recognition network. With optimization, the model

will force the attention weights to learn to localize sound-

ing visual regions. Figure 4 illustrates attacked frames and

localized sound sources under attacks.

Without attacks, we can see that our localization model

can successfully discover the corresponding sounding re-

gions for different events: playing cello, shuffling cards, and

blowing noise. From the generated adversarial frames, we

can not find perceptible perturbations. But, the model with

the attacked frames fails to localize sound sources. Simi-

larly, the model is fooled by the audio and audio-visual at-

tack. The results demonstrate that weakly-supervised sound

source localization models can be attacked even without re-

quiring access to any localization losses for an attacker.

4.6. AudioVisual Defense vs. Multimodal Attacks

Baselines: To validate the effectiveness of the proposed

audio-visual defense mechanism, we compare it with sev-

eral baselines: 1) None: audio-visual network without de-

fense; 2) Unimodal A: audio-only network; 3) Unimodal

V: visual-only network; 4) PCL [51]: a recent state-of-

the-art adversarial defense approach, which uses a proto-

type conformity loss to enforce intra-class compactness and

an inter-class separation; 5) MaxSim: maximizing audio-

Defense (MUSIC) ✓AV ✗A ✗V ✗AV Avg RI

None 88.46 51.92 45.19 15.38 37.50 0.00

Unimodal A 59.62 0.00 59.62 0.00 19.87 -46.47

Unimodal V 81.73 81.73 11.54 11.54 34.94 -9.29

PCL [51] 83.65 81.73 37.50 36.54 51.91 9.60

MaxSim 89.42 52.88 45.19 31.73 43.27 6.73

MinSim 91.35 70.19 46.15 36.54 50.96 16.35

ExFMem 89.42 53.85 50.00 20.19 41.34 4.80

MinSim+ExFMem 90.38 73.08 53.85 42.31 56.41 20.83

Defense (Kinetics) ✓AV ✗A ✗V ✗AV Avg. RI

None 72.42 36.40 26.35 8.09 23.61 0.00

Unimodal A 35.99 1.87 35.99 1.87 13.24 -46.80

Unimodal V 66.08 66.08 18.72 18.72 34.50 4.55

PCL [51] 64.50 63.43 29.28 28.67 40.46 8.93

MaxSim 71.39 34.95 29.57 21.46 28.66 4.02

MinSim 70.88 52.42 28.12 21.62 34.05 8.99

ExFMem 72.71 41.56 29.93 10.44 27.31 3.99

MinSim+ExFMem 71.33 55.96 30.57 24.90 37.14 12.44

Table 3: Audio-visual event recognition accuracy on the

MIT-MUSIC and Kinetics-Sounds with different defense

methods. Here, we use the FGSM (ǫa, ǫv = 0.06) to generate

audio and visual adversarial examples. Some models (e.g.,

Unimodal A, Unimodal V, and PCL) highly rely on only

one modality, which absolutely makes them more invulner-

able to adversarial attacks for another modality. However,

they will fail to obtain good performance on clean audio

and visual inputs. To better evaluate the robustness of our

multisensory defense models, we need to consider model

performance on both clean and attacked data and the poten-

tial modality bias issue. Top-2 results are highlighted.

visual similarity using the 1−LSim as a loss term to enforce

intra-class compactness of joint audio-visual embeddings;

6) MinSim: the proposed dissimilarity constraint to encour-

age multimodal dispersion and unimodal compactness; 7)

ExFMem: the proposed external feature memory banks; 8)

MinSim+ExFMem: our full defense model.

Evaluation Metrics: To evaluate the performance of dif-

ferent defense methods, we use recognition accuracy as the

metric. Results from both the clean model: ✓AV and at-

tacked models: ✗A, ✗V, and ✗AV are computed. Since there

are multiple defense results under multimodal attacks for a

single model, we also use the averaged accuracy:

Avg = 1
3 (✗A + ✗V + ✗AV),

as an overall metric to evaluate different defenses. However,

the metric might not be able to fully reflect the effectiveness

of different audio-visual defense methods. For the audio-

visual defense, there is a possible shortcut due to the modal-

ity bias issue. An audio-visual defense model might mainly

make use of information from one dominant modality. If so,

the attacks on another modality will not much affect per-

formance, which might make the defense method achieve

pretty good results in terms of the Avg. However, the biased

audio-visual defense model fails to joint perception and its

✓AV will achieve worse performance. To address the issue,

we propose a relative improvement (RI) metric:
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visual

audio

w/o MinSim w/  MinSim

Figure 5: t-SNE visualizations of audio and visual embeddings from w/o MinSim and w/ MinSim models on the MIT-

MUSIC. We use symbols: N and • to denote visual and audio modalities, respectively. Different colors refer to different

categories. Our MinSim model can learn more intra-class compact and separable embeddings in separated unimodal spaces.

RI = (✓AVm + Avgm) − (✓AVn + Avgn),

where we consider results from both clean and attacked

models, and the m refers to a defense method and n refers

to a base model, which is the baseline: None in our exper-

iments. If a defense method decreases clean model perfor-

mance, the RI will penalize it accordingly.

Results: Table 3 shows defense results of different meth-

ods on the MIT-MUSIC and Kinetics-Sound. Although the

single-modality model: Unimodal A is not affected by the

visual attack, it achieves worse results on the ✓AV and ✗A.

We can obtain a similar observation from another modality-

biased defense model: Unimodal V. The both defense meth-

ods fail to improve robustness on the MIT-MUSIC dataset.

Interesting results are from the recent defense method:

PCL. We can find that the PCL is almost invulnerable to

audio attacks (see ✓AV vs. ✗A and ✗V vs. ✗AV) and can

also improve the model robustness under visual and audio-

visual attacks. From the observation, we can learn that the

PCL is a visual-biased defense model. Although the PCL

can achieve good results in terms of Avg and even RI, it fails

to learn an effective multimodal model. The results further

remind us to consider both the modality issue and defense

results when we evaluate audio-visual defense methods.

The MaxSim can achieve better performance against

audio-visual attacks, however, it is limited in handling

single-modality attacks. The results validate that the

MaxSim fails to learn compact and powerful unimodal au-

dio and visual embeddings. Compared to the MaxSim, our

MinSim is overall more robust against both single-modality

and audio-visual attacks. Adding the external feature mem-

ory bank, the performance of our defense model is further

improved. From the results, we can see that our full de-

fense model outperforms all the compared methods on the

RI and can achieve comparable or even better clean model

performance than the base model.

To further validate our MinSim defense, we show t-

SNE [44] visualizations of learned audio and visual embed-

dings from w/o MinSim and w/ MinSim in Fig. 5. We can

see that our MinSim model learns more intra-class compact

and inter-class separable embeddings (especially for the vi-

sual) in separated unimodal feature spaces.

5. Conclusion and Future Work

In this paper, we investigate the audio-visual model ro-

bustness under multimodal attacks. We cast multimodal

attacks into two different categories: single-modality at-

tacks and audio-visual attacks. Using the audio-visual event

recognition task as a proxy with different fusion and at-

tack methods, we find that audio-visual integration does

not always strengthen the perception robustness under mul-

timodal attacks, and it could even decrease performance

when the input modalities are not reliable.

We use the human perception system as a guidance to

help us develop computational models. However, there

are indeed gaps between AV models and the real percep-

tion system and our research is limited by existing learning

tools. Humans can perceive events from single modalities

when the other modalities are missing. However, our study

shows that AV models are susceptible to attacks since they

try to exploit information from both modalities fully. Con-

sidering the observation and our results, a promising future

direction is to design robust AV models that can perform

attacked modality-aware predictions.
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