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Abstract

Despite the importance of unsupervised object detection,

to the best of our knowledge, there is no previous work

addressing this problem. One main issue, widely known

to the community, is that object boundaries derived only

from 2D image appearance are ambiguous and unreliable.

To address this, we exploit LiDAR clues to aid unsuper-

vised object detection. By exploiting the 3D scene struc-

ture, the issue of localization can be considerably mitigated.

We further identify another major issue, seldom noticed by

the community, that the long-tailed and open-ended (sub-

)category distribution should be accommodated. In this

paper, we present the first practical method for unsuper-

vised object detection with the aid of LiDAR clues. In our

approach, candidate object segments based on 3D point

clouds are firstly generated. Then, an iterative segment la-

beling process is conducted to assign segment labels and

to train a segment labeling network, which is based on fea-

tures from both 2D images and 3D point clouds. The la-

beling process is carefully designed so as to mitigate the

issue of long-tailed and open-ended distribution. The fi-

nal segment labels are set as pseudo annotations for object

detection network training. Extensive experiments on the

large-scale Waymo Open dataset suggest that the derived

unsupervised object detection method achieves reasonable

accuracy compared with that of strong supervision within

the LiDAR visible range.

1. Introduction

Unsupervised object detection requires localization and

classification of object instances without manual annota-

tions in 2D images. Due to the importance of the prob-

lem, various relevant tasks have been studied. For exam-

ple, some weakly-supervised object detection methods [18,

22, 5, 43, 74] seek to detect objects with image-level anno-

*Equal contribution. † This work is done when Hao Tian and Yuntao

Chen are interns at SenseTime Research.
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Figure 1: Illustration of the proposed approach.

tations only, while some semi-supervised object detection

methods [62, 41, 73] are trained on both bounding box an-

notated data and additional massive unlabeled images. Un-

supervised object proposal generation [12, 25, 77, 67, 1]

has also been widely studied. However, to the best of our

knowledge, there is no previous work addressing the unsu-

pervised object detection problem.

Recently, considerable progress has been made in un-

supervised feature learning [55]. The networks with the

unsupervised learned features achieve accuracies on par

with those of strong supervision when fine-tuned on down-

stream tasks. In this trend, some cluster discrimination

based methods [85, 42, 35, 9, 91, 13, 79] have tried to ad-

dress the unsupervised image classification problem. Com-

petitive results compared with semi-supervised learning on

ImageNet [21] are obtained in [79]. However, there is still a

significant gap between unsupervised classification and un-

supervised object detection, which involves both localizing

and classifying multiple object instances in images.

One widely-known issue for unsupervised object detec-
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Figure 2: Examples of object categories and semantic sub-groups discovered in the training images, which are not annotated

in the Waymo Open dataset [71].

tion is how to localize object instances precisely from the

cluttered background without any human annotations. Un-

supervised object localization from 2D images is extremely

challenging because objects are of heterogeneous colors and

textures with various shapes and occlusions. For exam-

ple, unsupervised object proposals are usually generated by

merging over-segmented regions according to color or tex-

ture clues [12, 25, 77, 67, 1], which suffer from ambiguous

and unreliable object boundaries. Although the object re-

call rate can be satisfactory with large proposal numbers,

the precision rate is very low due to the ambiguities.

For the localization challenge, we argue that the key

missing piece is the 3D scene structure, which is essen-

tial for human vision. Object boundaries can be better dis-

tinguished in the 3D point cloud because different objects

cannot occupy the same 3D location. On the other hand,

3D shape information can also be used to better classify ob-

jects. Thanks to the popularization of LiDAR sensors, such

synchronized 2D images and 3D point clouds have become

much easier to obtain. Here we choose to generate can-

didate object segments based on 3D topology and to learn

to label these segments into different categories / clusters1.

The labeling predictions are also based on features of both

2D images and 3D point clouds.

With the localization issue mitigated, we further iden-

tify another major issue, seldom noticed by the com-

munity: accommodating the long-tailed and open-ended

(sub-)category distribution in unsupervised object detec-

tion. Research works in unsupervised classification [85,

42, 35, 9, 91, 13, 79] are mostly experimented on bal-

anced and closed-world datasets (e.g., ImageNet [21] and

CIFAR [45]), which consist of known number of categories

with balanced number of images. In unsupervised object

proposal generation [12, 25, 77, 67, 1], all the object cat-

1The predictions made by our approach are actually of clusters because

no annotations are utilized. But for the coherence of terminology, we use

the term categories without confusion in the paper.

egories merge into one single class of foreground objects.

Thus, the long-tail and open-ended distribution problem

does not bother. However, for object detection, the datasets

(e.g., LVIS [34] and Open Images [47]) often have a long-

tailed distribution, due to the nature of natural scenes. In

the situation of unsupervised object detection, the difficulty

is even further magnified, where the actual number of ap-

peared object categories is unknown. Besides, the long-

tailed and open-ended distribution not only exists in object

categories but also exists in different semantic sub-groups

(e.g., different views, poses) of the same object category.

There is no hint which sub-groups belong to the same cat-

egory till final evaluation or human examination. These se-

mantic sub-groups need to be accurately discovered and de-

tected so as to capture the whole semantic categories. The

challenge of long-tailed and open-ended distribution brings

difficulty for the labeling of candidate object segments. The

head categories contain many object segments, while the

tail categories contain very few. Proper labeling mechanism

is necessary so as to avoid the tail categories being buried

with the cluttered background.

This paper presents the first practical method for unsu-

pervised object detection with the aid of LiDAR clues. The

input is a training set composed of synchronized 2D image

and 3D point cloud pairs without any type of human an-

notations, while the output is an object detection network

applicable to 2D images. Our approach is illustrated in Fig-

ure 1. For each training pair, candidate object segments are

first extracted from the 3D point cloud, based on the 3D

topology instead of 2D image appearance. Iterative seg-

ment labeling is then conducted to assign segment labels

and to train a segment labeling network, assuming segments

with similar 2D image appearances and 3D shapes are of the

same category. Such iterative optimization makes the pre-

dicted categories fit the long-tailed and open-ended distri-

butions. The final segment labels are set as pseudo annota-

tions for object detection network training. During testing,
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the trained detection network is applied to 2D images.

In iterative labeling, the segment labeling network and

its training mechanism are carefully designed to accommo-

date the nature of the long-tailed and open-ended distribu-

tion. In the segment labeling network, motivated by [72],

we cancel the competition among foreground categories to

prevent misclassifying objects in tail categories as back-

ground. During network training, only segments labeled as

foreground are utilized to provide training losses, to avoid

the impact of those foreground segments wrongly labeled

as background. The negative examples are generated by jit-

tering the segments labeled as foreground. Starting from a

large number of allowed object categories (10,000 by de-

fault), our approach will automatically discover the effec-

tive number and distribution of appeared categories.

Extensive experiments on the large-scale Waymo Open

dataset [71] suggest that the derived unsupervised object

detection method achieves reasonable accuracy compared

with that of strong supervision within the LiDAR visible

range. Besides, our approach can detect object categories

appear in the training images but are not annotated in the

dataset, such as ‘trash bin’, ‘traffic sign’, and ‘fire hydrant’.

Figure 2 and Figure 4 show some example results of our

proposed approach. Code shall be released.

2. Related Work

Discriminative Unsupervised Feature Learning Re-

cently, learning visual features by discriminative tasks with-

out human supervision has shown great promise [55]. The

networks with the learned features achieve accuracy on par

with those of strong supervision when fine-tuned on down-

stream tasks. Most approaches can be categorized into two

classes: instance discrimination or cluster discrimination.

Instance discrimination methods treat each image in a

dataset as an individual instance and learn discrimination

among instances. [23] firstly proposed to learn a classi-

fier with each image as a category. InstDisc [83] replaces

the classifier with a contrastive loss over the memory bank

that stores previously-computed representations for other

images. CMC [76] further extends it by taking multiview

of the same image as positive samples. MoCo [37, 16]

improves the contrastive learning methods by storing rep-

resentations from a momentum encoder. SimCLR [14, 15]

shows that the memory bank is unnecessary if the batch size

is large enough. Very recently, BYOL [32] even discards

negative sampling in self-supervised learning.

Cluster discrimination methods [9, 10, 101, 2, 40, 29,

11] learn discrimination among groups of images with sim-

ilar appearance instead of among individual images. In

DeepCluster [9], given the encoded features, k-means is ap-

plied to generate pseudo labels. The encoded features are

further refined by learning to classify according to these

pseudo labels. [10] scales this method to massive non-

curated data. [101] improves the performance by replacing

the mutual-exclusive clustering with a local soft-clustering.

SeLa [2] and SwAV [11] further formulate the problem

as simultaneous clustering and representation learning by

maximizing the information between pseudo labels and in-

put data indices.

Most of these methods focus on the quality of the learned

features, where the performance is usually evaluated via

linear classifier with fixed features, few-shot image clas-

sification, and transfer learning [31]. While some cluster

discrimination methods [85, 42, 35, 9, 91, 13, 79] would

also directly evaluate the quality of clustering. By viewing

the task as unsupervised classification, they evaluate how

well the learned clusters align with the semantic categories.

Typically, Normalized Mutual Information [9, 91, 13, 79],

Adjusted Rand Index [13, 79], or Accuracy under the best

mapping between learned clusters and ground-truth cate-

gories [85, 42, 35, 13, 79] are used as the evaluation metrics.

The cluster discrimination methods are most relevant to

the proposed method. In our approach, we also iteratively

refine the cluster assignment and conduct feature learning.

The key difference is we leap forward from image clas-

sification to object detection, which involves both localiz-

ing and classifying multiple object instances. Besides, the

datasets in image classification are usually balanced and of

closed-world. While we conduct unsupervised object de-

tection on long-tailed and open-world distributions.

Unsupervised-, Weakly- and Semi-Supervised Object

Detection To reduce the hunger of human annotations,

various training settings have been studied for object de-

tection. [18, 22, 5, 43, 74] seek to detect objects with

image-level annotations only. While [39, 75, 65] train ob-

ject detectors on data with bounding box annotations for

some categories and image-level annotations for other cat-

egories. Another prevalent setting is training on bound-

ing box annotated data with additional massive unlabeled

data [62, 41, 73]. Recently, there are also some works fo-

cusing on training with partial bounding box annotated im-

ages [82, 87, 97, 99].

There are also some relevant tasks focusing on unsu-

pervised object localization, where the classification of ob-

ject instances is not involved. Unsupervised object pro-

posal generation has been widely studied on static 2D im-

ages (e.g., by grouping similar super-pixels) [12, 25, 77,

67, 1]. There are also research works on unsupervised pro-

posal generation on videos [68, 78, 57, 28, 84], 3D point

clouds [44, 19, 24, 6, 98, 7, 36], etc. Motion segmentation

is a binary labeling task of identifying the individual mov-

ing pixels in videos w.r.t. the background motion [8], which

is conducted on 2D image frames via background model-

ing [58, 92] or structure from motion [56, 96, 64, 63].

To the best of our knowledge, there is no previous

work addressing the unsupervised object detection problem.
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Compared with weakly- and semi-supervised object detec-

tion methods, we do not use any type of human annotation.

Our approach is relevant to unsupervised object localiza-

tion. Here we utilize the unsupervised object proposal gen-

eration approach as a component in our method.

Supervised 3D Object Detection A typical 3D object de-

tector takes the point cloud of a scene as its input and pro-

duces oriented 3D bounding boxes localizing each detected

object [33]. These methods can be divided into two cate-

gories: region-proposal-based and single-shot-based meth-

ods. Region-proposal-based methods generate and classify

the region proposals, which typically use multi-view [17,

46, 52, 51], point cloud segmentation [95, 69, 94] or frus-

tum [80, 86, 60, 70] as representations. Single-shot-based

methods directly predict class probabilities and regress 3D

bounding boxes via single-stage networks. The network is

applied on Bird’s Eye View (BEV) [4, 89, 90], discretized

voxel [50, 26, 49, 100, 88, 48], or point clouds [93] as rep-

resentations.

Here we also use point cloud segmentation to generate

region proposals for object detection. Aside from being un-

supervised, the key difference is our approach utilizes the

point clouds in train-time only, providing 3D information to

aid unsupervised object detector training. Our trained ob-

ject detectors are applied to 2D images.

3. Algorithm

3.1. Overview

In our approach, the input is a training set composed of

2D image and 3D point cloud pairs, capturing natural scenes

at synchronized times. Note that no annotations are avail-

able in the training set. The output is an object detection

network applicable to 2D images, which is capable of de-

tecting object categories seen in training2.

Figure 1 provides an overview of our approach. For each

training pair, candidate object segments are extracted from

the 3D point clouds, based on the 3D topology. Each ob-

ject segment is represented by its corresponding 3D points.

A segment labeling network is trained to assign labels for

the candidate segments, indicating whether the segments

highly overlap with the object instances (foreground / back-

ground), and which categories they belong to. Iterative op-

timization is conducted to assign labels and to train the seg-

ment labeling network. Assuming segments with similar

2D image appearances and 3D shapes are of the same cate-

gory, we may expect such iterative optimization can correct

2The trained object detection network can localize and classify the ob-

jects in the test input image. However, it is unaware of the semantic naming

of the categories. For example, the network can localize frontal and side-

view cars in the image, and classify them to be of “1-st category” and “2-

nd category” respectively. But it has no information to associate the “1-st

category” and the “2-nd category” to “car”. Further category naming asso-

ciation is necessary for numerical evaluation, as described in Section 3.4.

inconsistent segment labels. The final segment labels are set

as pseudo annotations for object detection network training.

The trained network is applied to 2D images.

3.2. Exploiting 2D Images and 3D Point Clouds

Object Segment Generation on Point Cloud We generate

a set of candidate segments based on some object proposal

approaches. Foreground objects and their object categories

are discovered by labeling the generated object segments.

We found it more reliable to differentiate objects on 3D

point clouds than on 2D images because different objects

cannot occupy the same 3D location. Here we utilize the

3D point cloud segmentation algorithm in [7] to generate

candidate segments. For each image x and its correspond-

ing 3D point cloud P , the generated candidate segments are

represented by S = {ςi}
n
i=1

, where n is the number of seg-

ments, and ςi denotes the i-th segment. A segment ςi ⊆ P

is a collection of 3D points, as a subset of point cloud P .

Each segment ςi corresponds to a 2D bounding box bi, by

projecting it on the image plane. Some segments may well

localize the objects, while others are on the cluttered back-

ground.

Exploiting 2D Images and 3D Point Clouds in Segment

Labeling Network The segment labeling network N takes

both the 2D image and 3D point cloud as input. There

are two sub-network extracting 2D image features and 3D

point cloud features, respectively. Given the 3D segment

ςi, PointNet [61] is applied to extract a 1024-d 3D shape

feature. Given the image x and the 2D bounding box bi,

Fast R-CNN [30] with ResNet-50 [38] is applied to extract

a 1024-d 2D image appearance feature for the i-th segment.

The concatenation of these two features is further fed into

a linear classifier, producing a C-d vector (C denotes the

number of foreground categories) followed by a sigmoid

function to predict the foreground category probabilities si,

which shall be further discussed in network design & train-

ing in Section 3.3.

3.3. Iterative Segment Labeling

Assuming the maximum number of allowed object cat-

egories is C, for each image x, labels Y = {yi}
n
i=1

are

assigned for all the candidate segments S = {ςi}
n
i=1

, where

yi ∈ {0, 1, ..., C}. yi = 0 indicates the segment ςi is on

cluttered background. yi = c > 0 indicates the segment

ςi highly overlaps with an object belonging to the c-th cat-

egory. In unsupervised object detection, the (sub-)category

distribution is long-tail and open-ended. Because there is

no hint whether a tail category corresponds to / is a sub-

group for an annotated category for evaluation, we need to

ensure the labeling quality for both the head and tail cate-

gories. Here the segment labeling is conducted in an iter-

ative manner, where the assigned labels gradually conform
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to the underlying long-tail and open-ended distribution.

Segment Label Initialization First, we need to derive an

initial guess of the labels {yi}
n
i=1

. Here each object seg-

ment is assigned as one of the C foreground categories. We

conduct clustering based on the concatenation of the Point-

Net features extracted on 3D segment ςi, and the ResNet-

50 features extracted from 2D image patch within bound-

ing box bi. The PointNet sub-network is randomly initial-

ized. While the ResNet-50 backbone is initialized with Im-

ageNet [21] MoCo v2 [16] pre-trained weights. Note that

no annotated labels are involved here. The 3072-d concate-

nation of PointNet and ResNet-50 features form the repre-

sentation of the object segments. The features are tuned by

applying MoCo v2 self-supervised training, where each ob-

ject segment is treated as an individual sample. The Point-

Net and ResNet-50 network weights are updated accord-

ingly. After MoCo v2 training, k-means clustering [3] is

performed on the trained 3072-d object segment features

(with C clusters). Each object segment is assigned with

the corresponding cluster index as its initial category label,

yi ∈ {1, 2, ..., C}.

Segment Labeling Network Design and Training At

each round in the iterative segment labeling, given the seg-

ment labels {yi}
n
i=1

generated from the previous round, the

segment labeling network is re-trained from initialization.

Note that no annotated data is utilized in initializing the

segment labeling network. The PointNet sub-network is

initialized from the weights in segment label initialization.

While the ResNet-50 backbone in Fast R-CNN is initialized

with ImageNet MoCo v2 pre-trained weights. The remain-

ing weights in the network are randomly initialized.

Due to the long-tail distribution, a straight-forward im-

plementation of letting segment labeling network directly

predict yi does not work well. The segments correspond-

ing to tail categories are usually low scored, which are hard

to be differentiated from the background. Careful sample

reweighing in training the segment labeling network may

mitigate the problem. But in our approach, the sample la-

bels are actually the predictions by the segment labeling net-

work in the previous iteration. The errors can get magnified

if the sample reweighing is not well-tuned.

Here, we find a simple design of the segment labeling

network can make it much more robust to long-tail distribu-

tion. Motivated by [72], in the segment labeling network,

the probabilities of each foreground category are indepen-

dently predicted using the sigmoid function. In the design,

no competition is involved between foreground categories.

Each foreground category only needs to differentiate itself

from the background clutters, as

si = sigmoid (N(x, bi, ςi|θ)) , (1)

where N denotes the object segment classification network,

θ is the network parameter, si ∈ [0, 1]C are the probabilities

that segment ςi belongs to different foreground object cate-

gories, which is trained with a simplified version of Equal-

ization Loss [72], which shall be further elaborated.

Given the scores si of ςi, the label yi is derived as

yi =

{

0, if max si < η,

argmax si, otherwise,
(2)

where η is the foreground probability threshold. If the seg-

ment ςi has the estimated foreground probabilities si less

than η for all categories (η = 0.95 by default), it is assumed

to be on background (yi = 0). Otherwise, the category with

the largest probability is set as the label (yi = argmax si).
During training, object segments labeled as foreground

are utilized to provide training losses. While the object seg-

ments labeled as background are discarded. This is because

we find some actual foreground segments maybe wrongly

labeled as background. Such labeling error deteriorates per-

formance. Here we generate background training examples

by randomly jittering the foreground segments. Given a

foreground segment ςi (yi > 0) and its 2D bounding box

bi, random jittering is applied to produce jittered segment

ς̂i and bounding box b̂i. Specifically, for each bounding

box bi, a target box IoU value IoUtarget is randomly sam-

pled from a uniform distribution between 0.1 and 1.0. Then

the jittered box b̂i is generated by randomly sampling the

top-left and bottom-right corners until the box IoU between

bi and b̂i is within [IoUtarget − 0.005, IoUtarget +0.005]. The

jittered segment ς̂i is derived from modifying ςi according

to b̂i. In it, the 3D points whose projected 2D coordinates

locate outside of the jittered bounding box b̂i are removed

from ςi. The foreground / background label ẑi ∈ {0, 1} is

defined as ẑi = 1 if the jittered bounding box b̂i overlaps

with bi large than 0.5 in terms of box IoU, and ẑi = 0 oth-

erwise.
These jittered segments serve as training samples. The

training loss for each jittered segment is defined as

L(ŝi; ẑi, yi) = −ẑi log(ŝi,yi)−

C∑

c=1

(1− ẑi) log(1− ŝi,c) (3)

where ŝi = N(x, b̂i, ς̂i|θ) are the predictions made by the

segment labeling network, ŝi,c denotes the c-th value in ŝi,

which is the predicted probability that segment ς̂i belonging

to the c-th category, yi is the segment label assigned in the

previous iteration. This loss function is a simplified version

of Equalization Loss [72]. In the Equalization Loss, to pre-

vent misclassifying objects in tail categories as background,

the classifier of each tail category will ignore the discourag-

ing gradients from foreground samples of other categories.

However, how to define tail categories needs careful tun-

ing. We experimentally found that treating all categories as

tail in the Equalization Loss works well. In our simplified
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Equalization Loss, jittered segments labeled as foreground

(ẑi = 1) with category yi will encourage the probability

prediction ŝi,yi
. Background segments (ẑi = 0) will dis-

courage the probability predictions for all foreground cat-

egories. During training, the jittered segments with fore-

ground and background labels are randomly sampled with

a 1:3 ratio.

Summary Figure 1 illustrates the iterative segment la-

beling process. First, we get the initial guess of the la-

bels {yi}
n
i=1

via k-means clustering [3] based on features

learned with self-supervised training. Then, the network

training and segment labeling process are applied iteratively

for several rounds. By such iterative labeling, the predicted

categories fit the long-tailed and open-ended distribution.

Here, as the actual number of appeared object categories

is unknown, the maximum number of allowed object cate-

gories C is set as a large number in this paper (by default,

C = 10, 000). We empirically observed that as the iteration

runs, the produced segment labels naturally follow the long-

tail distribution. The head categories occupy most candi-

date segments, while the tail categories are of the minority.

Those non-existing categories within {1, . . . , C} finally do

not claim any segments. More ablation studies are provided

in Section 4.3.

3.4. Object Detector Training and Evaluation

In our implementation, Faster R-CNN [66] with

FPN [53] is chosen as the object detection network, where

ImageNet MoCo v2 pre-trained ResNet-50 is utilized as the

backbone. In training, the 2D bounding boxes and labeled

categories of foreground segments (ςi with yi 6= 0) are set

as pseudo annotations. During testing, the trained network

is applied to 2D images.

A key point during training is to avoid feeding missed

foreground objects as negative training examples. In Faster

R-CNN, for the RPN head, thanks to excessive background

anchor boxes, by uniform random sampling (which is the

default choice), the chances of sampling a missed fore-

ground object as negative is low. But for the Fast R-CNN

head, the negative region proposals produced by RPN have

a good chance to be an actually missed foreground object.

Therefore, we only collect region proposals with box IoU

between 0.1 and 0.5 with the pseudo annotated boxes as

negative examples for Fast R-CNN training. By forcing

the sampled region proposals to overlap with the pseudo-

annotated boxes, we considerably reduce the chance of sam-

pling a missed foreground object as a negative example.

To mitigate the issue of long-tailed distribution, the sim-

plified version of Equalization Loss [72] in Eq. (3) is also

applied for training the classifier in the Fast R-CNN head.

Because the competition between foreground categories is

canceled, each regional proposal may have multiple high-

confidence category predictions. Class-agnostic NMS is

utilized following the Fast R-CNN head to force each de-

tected object with only one category label.

During the evaluation, we test the accuracy of the predic-

tions made by the object detection network w.r.t. the anno-

tated ground-truths. However, we have no idea which dis-

covered cluster3 in training corresponds to which semantic

category annotated, without annotations or human exami-

nation. Besides, it is also possible that a discovered cluster

captures just a subgroup of an annotated category. Thus, for

quantitative evaluation, a many-to-one mapping between

the discovered clusters and the ground-truth semantic cat-

egories is indispensable. Here we set up the mapping on

the training set. Assuming there are K ground-truth cate-

gories labeled in the dataset, each cluster in our approach is

mapped to one of the K labeled categories or a special “oth-

ers” category. The “others” category is introduced because

our approach will discover unlabeled categories. Specifi-

cally, for each generated candidate object segment during

training, if the segment has overlapped with some ground-

truth bounding boxes larger than 0.5, it will be assigned

with the ground-truth category label of the bounding box

with the largest overlap. Otherwise, the segment will be as-

signed as “others”. Then, each cluster will be assigned to

either a ground-truth category or the “others” category to

achieve the minimum error rate. The category mapping and

the object detector are finally applied on the test set, where

the traditional AP metric can be utilized for evaluation.

4. Experiments

4.1. Dataset and Implementation Details

Evaluation is conducted on Waymo Open [71], which is

a recently released large-scale dataset for autonomous driv-

ing. The dataset collects 2D videos and 3D point clouds at

synchronized time steps. The training and validation sets

contain 798 and 202 videos with around 158k and 40k im-

age frames, respectively. In experiments, 2D images from

the ‘front’ camera and 3D point clouds from the ‘top’ Li-

DAR are utilized. The temporal information from videos

is not used. There are 3 object categories annotated with

2D bounding boxes in the dataset, i.e., ‘vehicles’, ‘pedes-

trians’, and ‘cyclists’. We test the feature transferability by

fine-tuning on Cityscapes [20] and PASCAL VOC [27].

We also establish a manual-annotated detector baseline.

In our approach, the discovered objects for training are all

LiDAR visible. However, for the manual-annotated 2D

bounding boxes, the LiDAR invisible distant boxes (with

distance more than 75 meters) are also included. For a fair

comparison, the manual-annotated baseline is trained with

LiDAR-visible 2D bounding box annotations only.

Evaluation is measured by the traditional AP metric at

3Here we call the predictions by our approach cluster to avoid confu-

sion with the annotated categories.
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annotation setting #images #bboxes
network weights vehicles pedestrians cyclists

initialized from AP APS APM APL AP APS APM APL AP APS APM APL

(a) our approach 158k 0 ImageNet MoCo v2 28.7 1.0 34.0 77.2 28.5 6.8 46.0 60.2 1.0 0.0 0.0 1.7

(b) manual annotations 15k 91k ImageNet MoCo v2 29.2 1.0 33.8 83.2 22.7 1.9 38.9 57.0 3.9 0.0 3.3 17.9

(c) manual annotations 15k 91k ImageNet supervised 30.1 1.0 36.3 84.1 22.2 1.8 36.6 63.3 4.6 0.0 3.3 23.4

(d) manual annotations 158k 1087k ImageNet MoCo v2 34.7 1.0 43.8 89.0 37.7 9.6 61.9 79.1 23.8 3.8 28.6 80.2

Table 1: Comparison of different annotation settings on Waymo Open validation.

pre-training task and dataset
Cityscapes PASCAL VOC

APbbox APbbox
50 APbbox

75 APmask APmask
50 APmask

75 APbbox APbbox
50 APbbox

75

random initialization 30.6 55.0 29.9 24.6 48.8 19.8 45.3 71.8 48.9

image classification on ImageNet 37.5 62.1 38.5 31.8 56.9 29.7 54.6 80.9 60.8

our unsupervised object detection on Waymo 36.1 60.8 36.2 30.6 57.1 27.0 53.8 79.3 59.3

Table 2: Transfer results of different pre-trained models on Cityscapes and PASCAL VOC.

the box IoU threshold of 0.5. For better analysis, following

COCO evaluation [54], results are also reported on small

(area < 322 pixels), medium (322 pixels < area < 962 pix-

els) and large objects (area > 962 pixels), denoted as APS,

APM and APL, respectively.

In our approach, the iteration number for iterative seg-

ment labeling is set as 10 rounds when compared with man-

ual annotations, and 1 round in ablation study by default, for

experimental efficiency. Note that no manual annotation is

involved until the final evaluation. For all experiments, the

hyper-parameter setting for Faster R-CNN [66] follows the

open source Detectron2 [81] code base. For more dataset

and implementation details please refer to Appendix.

4.2. Comparison on Annotation Settings

Table 1 compares the results of our unsupervised ob-

ject detection approach and those with manual annotations.

Comparing Table 1 (a) and (b), our purposed approach

achieves on par accuracy on the ‘vehicles’ and ‘cyclists’ cat-

egories with that of using 10% manual annotations, where a

considerable higher AP is achieved on the ‘pedestrians’ cat-

egory. Table 1 (d) also presents the result of training with

100% manual annotations, which achieves relatively high

APs. Our unsupervised approach delivers reasonable accu-

racy compared to those of strongly supervised.

Because traditional supervised object detection methods

use ImageNet supervised pre-training features, we also ab-

late the effect of unsupervised pre-training (i.e., MoCo v2).

Comparing Table 1 (b) and (c), the difference of unsuper-

vised and supervised pre-training is negligible.

Table 2 presents the feature transferability performance

by fine-tuning on Cityscapes [20] and PASCAL VOC [27].

Pre-training by our unsupervised object detection approach

demonstrates good feature transferability, which achieves

on par performance with that of ImageNet pre-training,

which is much better than that of random initialization.

Note that our approach only uses around 10% number of

unlabeled images for pre-training compared with that of Im-

ageNet, which consists of 1.28M images with manual clas-

sification annotations.

4.3. Ablation Study

Due to limited space, here we only ablate some key fac-

tors. More detailed ablations are provided in Appendix.

In the ablation studies, for experimental efficiency, only 1

round is applied in iterative segment labeling by default.

Exploiting 2D Images and 3D Point Clouds During train-

ing, our unsupervised object detection approach utilizes 3D

point clouds for object segment generation and in the seg-

ment labeling network. Here, we ablate the necessity of 3D

information. Table 3a presents the results of not using 3D

point clouds. Without point clouds in the segment labeling

network, the result is considerably worse, which indicates

the classification can benefit from 3D shape information.

We further tried generating object segments on 2D images.

Here we adopt MCG [59] to generate candidate segments

from 2D images, which incurs large drop in AP. This indi-

cates 3D point clouds are important in localizing objects.

Iterative Segment Labeling Table 4 and Figure 3 present

the results of applying different iteration rounds in the it-

erative segment labeling. At initialization, the number of

object segments in different categories are close to uniform

(see Figure 3). As the algorithm iterates, the predicted cat-

egories gradually conform the long-tail distribution. The

redundant categories in initialization disappear. The final

detector accuracy also gets improved as the iteration runs,

where the generated pseudo annotations fit better with the

underlying distributions.

Loss Function for Foreground Classification In this

work, we use a simplified version of Equalization Loss [72]

(see Eq. (3)) to mitigate the classification challenge of long-
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setting
AP

veh ped cyc

our approach 26.9 21.1 5.2

– segment labeling network N

without point clouds
26.3 18.7 3.3

– – candidate segments S estimated

by MCG [59] on 2D images
11.0 0.0 0.0

(a) exploiting 2D images and 3D point clouds (1-st iter)

loss

function

AP

veh ped cyc

softmax loss 25.4 20.3 2.0

sigmoid loss 23.8 20.7 0.6

our approach 28.7 28.5 1.0

(b) loss function for classification

(10-th iter)

video

sequences

AP

veh ped cyc

10% 23.1 15.5 1.6

25% 25.8 19.2 2.6

50% 26.0 21.6 4.9

100% 26.9 21.1 5.2

(c) quantity of training data (1-st iter)

Table 3: Ablations on Waymo Open validation, where ‘veh’, ‘ped’ and ‘cyc’ are abbreviations for ‘vehicles’, ‘pedestrians’

and ‘cyclists’, respectively. Table (a) gradually removes the usage of 3D point clouds. Table (b) verifies our simplified version

of Equalization Loss [72]. Table (c) explores the effectiveness of training data.
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Figure 3: Cluster distribution during the

iterative segment labeling.

iterations 1 2 3 4 5 6 7 8 9 10

AP

vehicles 26.9 27.7 28.5 28.2 27.9 28.7 28.7 28.9 28.8 28.7

pedestrians 21.1 23.8 25.6 26.8 27.0 27.9 28.0 28.3 28.5 28.5

cyclists 5.2 5.5 6.0 6.3 4.9 2.6 3.2 2.5 1.9 1.0

#cluster

100% segments 4699 2921 2278 1889 1586 1353 1152 986 834 729

90% segments 1813 1282 982 772 610 489 402 332 281 243

80% segments 1240 888 673 521 403 320 260 216 185 161

Table 4: Ablation on iterations in the iterative segment labeling on Waymo Open

validation.

Figure 4: Object detection results on Waymo Open validation by Faster R-CNN trained with our unsupervised object detec-

tion method. Different colors of bounding boxes indicate the corresponding cluster id.

tailed distribution. Here we also tried using the vanilla soft-

max loss and sigmoid loss. Table 3b presents the results af-

ter 10 iterations. Using the vanilla softmax loss and sigmoid

loss achieve relatively lower performance, which indicates

the effectiveness of the proposed loss function.

Quantity of Training Data We further explore the impact

of data quantity. Different portions of video sequences are

randomly sampled from Waymo for training. As showed

in Table 3c, our approach can effectively exploit vast unla-

beled images for unsupervised object detection.

4.4. Visualization

Example detection results produced by our unsupervised

approach are presented in Figure 4. Our approach can dis-

cover object categories and semantic subgroups in the train-

ing images but are not annotated. Figure 2a shows some

discovered unlabeled categories. Figure 2b shows some dis-

covered semantic subgroups in the ‘vehicles’ category.

5. Conclusion

In this paper, we present the first practical method for

unsupervised object detection. During training, 3D point

clouds are utilized to mitigate the difficulty of differenti-

ating and localizing objects. We further identify another

major issue, seldom noticed by the community: the accom-

modation of the long-tailed and open-ended distribution

in object (sub-)categories. A carefully designed iterative

segment labeling process is conducted to generate pseudo

annotations for object detection network training. Exten-

sive experiments on the large-scale Waymo Open dataset

demonstrate the effectiveness of our approach.
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