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Figure 1: One-shot segmentation results. In each task, our segmentation network is given only one example of part labels.

Abstract

While GANs have shown success in realistic image gen-

eration, the idea of using GANs for other tasks unrelated

to synthesis is underexplored. Do GANs learn meaning-

ful structural parts of objects during their attempt to re-

produce those objects? In this work, we test this hypoth-

esis and propose a simple and effective approach based

on GANs for semantic part segmentation that requires as

few as one label example along with an unlabeled dataset.

Our key idea is to leverage a trained GAN to extract a

pixel-wise representation from the input image and use it

as feature vectors for a segmentation network. Our ex-

periments demonstrate that this GAN-derived representa-

tion is “readily discriminative” and produces surprisingly

good results that are comparable to those from supervised

baselines trained with significantly more labels. We be-

lieve this novel repurposing of GANs underlies a new class

of unsupervised representation learning, which can gener-

alize to many other tasks. More results are available at

https://RepurposeGANs.github.io/.

1. Introduction

After seeing what an elephant trunk looks like for the

first time, a young child can identify this conspicuous part

for the whole herd. This key capability in humans is still

*Authors contributed equally to this work.

a fundamental challenge in computer vision. That is, how

can a machine learn to identify an object or its parts by

seeing only one or few examples? A kid does, however,

have access to prior visual information learned constantly

throughout the years, and he or she could quickly learn to

identify human ears perhaps by utilizing the experience of

seeing many faces before. In this paper, we tackle a prob-

lem inspired by this scenario. Given a large photo collection

of human faces, or any other object classes, our goal is to

identify the pixels corresponding to each semantic part for

unseen face images given very few images with part anno-

tations.

This problem setup is different from the typical defini-

tion of few-shot learning, which describes a problem where

a learning algorithm trained with many object classes needs

to classify or operate on new classes with few supervised

examples of those new classes. In contrast, our novel few-

shot setup involves a single object class with few annotated

examples and no other training data from any other classes.

Many methods are proposed in this area of few-shot learn-

ing, and the general idea is to apply prior knowledge learned

externally to the few-shot task. Examples include meta

learning [40] and prototype representation [31, 51] which

extract information from annotations of non-target classes

or image-level annotations to be used as prior knowledge.

However, most of these approaches still learn from some

supervised task that requires expensive labels or part an-

notations. In this work, we introduce a new direction that
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uses a generative model, specifically a generative adversar-

ial network (GAN) [19], to learn this prior knowledge from

zero labels and apply it to semantic segmentation.

GANs have been highly successful in modeling the data

distribution and generating realistic images [25, 26, 4]. We

hypothesize that GANs need to learn meaningful structural

information of objects in order to synthesize them correctly,

and the generative computations required to synthesize dif-

ferent parts of object could provide useful discriminative

information for other tasks [2, 36]. Our main contribution

is a method that leverages a trained GAN to extract mean-

ingful pixel-wise representations from images. These rep-

resentations can then be used directly for semantic part seg-

mentation. Our experiments show that GANs are incredibly

effective for learning such representations and can achieve

surprisingly good segmentation results with only one exam-

ple label (see Figure 1). To our knowledge, this is the first

time such high-quality results are achieved on one-shot part

segmentation.

Despite its remarkable results, this core idea alone heav-

ily relies on time-consuming latent optimization and re-

quires the test image to lie close to the image distribution

learned by GANs. In this paper, we also demonstrate a sim-

ple extension, called auto-shot segmentation, that can by-

pass the latent optimization, leading to faster and more effi-

cient predictions. And importantly, by performing geomet-

ric data augmentation during auto-shot training, we can seg-

ment multiple objects with different sizes and orientations

all at once—a real-world scenario unseen during training.

To summarize, our main contribution is a novel use of

GANs for unsupervised pixel-wise representation learning,

which achieves surprising and unprecedented performance

on few-shot semantic part segmentation. Our findings re-

veal that such a representation is readily discriminative. We

also demonstrate how to extend the main idea to real-world

scenarios to address some of the domain gap between the

GAN’s training data and real-world images.

2. Related Work

Representation Learning The goal of representation

learning is to capture the underlying information from raw

data that is useful and more convenient to process for down-

stream tasks. Many approaches learn these representations

from solving one task and employ them to help improve the

performance on another task [12, 41, 18, 39, 10, 23]. Re-

cent studies have demonstrated that representations learned

through a self-supervised task can boost the performance

of supervised tasks such as classification and segmentation.

Examples of these self-supervision tasks include spatial rel-

ative position prediction [11, 33], image colorization [28],

and image transformation classification [25, 15]. In con-

trast, our work explores a representation learned from a gen-

erative task, i.e., image synthesis, and extracts feature vec-

tors at the pixel level that is more effective for segmentation

problems.

Generative Models Deep generative models have

shown promising results in modeling image distribution,

thus enabling synthesis of realistic images. There are

several classes of visual generative models which include

autoregressive models [34, 48], autoencoders based on

encoder-decoder architectures such as VAE and its variants

[27, 21, 6, 47], and generative adversarial networks (GANs)

[19]. Currently, GANs are best in class in image synthesis

and have been applied to many other tasks such as image

completion [35] and image-to-image translation [24, 58].

State-of-the-art GANs, such as StyleGAN2 [26] and Big-

GAN [4], can generate extremely realistic images at high

resolution. Our work employs GANs for representation

learning, and we provide a study that shows the effective-

ness of GANs over alternative models.

Motivated by the impressive results from GANs, numer-

ous studies attempt to understand and interpret the inter-

nal representations of GANs. GANs dissection [3] applies

an external segmentation model to find the relationship be-

tween feature maps and output objects, which also allows

adding and removing objects in the output image. Suzuki et

al. [44] show that interchanging activations between images

can result in interchanging of objects in the output image.

Edo et al. [9] use clustering to find distinctive groups of fea-

ture maps and allow spatially localized part editing. Tsutsui

et al. [46] improve one-shot image recognition by combin-

ing images synthesized by GANs with the original training

images. [13] uses representations learned from BigGAN

and achieves state-of-the-art performance on unsupervised

representation learning on ImageNet [38].

Some other studies analyze GANs through manipula-

tion of the latent code and attempt to make GANs’ inter-

nal representations more interpretable. Chen et al.[7] use

mutual information to force the network to store human-

interpretable attributes in their latent code. Shu et al.[42]

solve a similar problem via an additional encoder network,

which allows users to have control over the generated re-

sults. AttGAN [20] exploits an external classifier network

to enable attribute editing. Voynov & Babenko [49] propose

an unsupervised method to discover interpretable directions

in the latent space. In this paper, we leverage the insight

that GANs internal representations are tightly coupled to

the generated output and that they can hold useful semantic

information.

Semantic Part Segmentation Semantic part segmenta-

tion aims to segment parts within an object as opposed to

objects within a scene as in semantic segmentation. This

problem can be more challenging because two parts some-

times do not have a visible boundary between them, such

as nose and face. Considerable progress has been made in

semantic part segmentation [50, 52, 45, 32], but these tech-
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niques demand a vast number of pixel-wise annotations.

To avoid using pixel-wise annotations, some approaches

rely instead on other kinds of annotations that are cheaper

to obtain, such as keypoints [16], body poses [54], or edge

maps [56]. However, they are often inflexible and only

work on some specific domains, such as human body parts.

Some other attempts forgo the annotations completely with

self-supervised techniques. For example, [22] uses equiv-

ariance, geometric, and semantic consistency constraints to

train a segmentation network, and [29, 53] exploit motion

information from videos. One main drawback of these un-

supervised methods is that there is little control over the par-

tition of object parts, which can lead to arbitrary segmenta-

tion. Unlike these approaches, our method allows complete

control over the partition of object parts by requiring only

few annotated examples.

Few-shot Semantic Segmentation Past research has at-

tempted to solve segmentation with few annotations. A

meta learning approach [40] first trains a segmentation net-

work on an annotated dataset then fine-tunes the network

parameters on one annotation of the target class. Prototyp-

ical methods [14, 31, 51] use a support set to learn a pro-

totype vector for each object class. Both meta learning and

prototypical methods construct two training branches where

the support branch is trained on annotations of non-target

classes or image-level annotations, and the query branch

then takes an input image as well as the extracted feature

to predict segmentation masks. Similarity guidance net-

work [55] masks off the background in the support image,

then finds the pixels in the query branch with similar fore-

ground features. Some work [43, 5] segment objects in all

video frames with only the first frame annotated. Nonethe-

less, these methods have not shown success in semantic part

segmentation. Meta learning requires annotation masks of

similar object classes, and hence learning part-specific pro-

totypes is not viable. Leveraging the information from the

support set is also difficult due to the lack of part-level an-

notations. In contrast, our representation extracted from

GANs contains part-level information and can be learned

without supervision.

3. Approach

Our problem concerns semantic part segmentation with

the following novel setup. Given a set of unlabeled images

and a few images (1-10) with part annotations from a single

object class, our goal is to part-segment an unseen object

from the same class. These part annotations can be speci-

fied by the user with binary masks. Note that semantic part

segmentation can also be considered as an n-way per-pixel

classification problem where n is the number of parts.

This problem would become trivial if there existed a

function f that maps each pixel value, which by itself lacks

semantic meaning, to its own feature vector that contains
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Figure 2: Representation extraction To extract a represen-

tation from an image, we embed the image into the latent

space of GAN by optimizing for the latent z that reproduces

the input image. z is then fed to the generator and we col-

lect multiple activation maps a1, a2, ..., an of dimensions

(h1, w1, c1), ..., (hn, wn, cn). Each of these maps is upsam-

pled to Ai with dimension (hn, wn, ci). The representation

is a concatenation of all Ai along the channel dimension.
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Figure 3: Few-shot segmentation pipeline For training,

we use a trained GAN to generate a few images along with

their representations by feeding random latent codes. Then,

we manually annotate these images and train our few-shot

segmenter to output segmentation maps that match our an-

notated masks. For inference, we extract a representation

from a test image (Figure 2) then input it to the few-shot

segmenter to obtain a segmentation map.

discriminative information for part classification. We pro-

pose to derive such a function from a GAN trained to syn-

thesize images of the target class. In the following sections,

we will explain how a GAN is utilized for this task, how to

use the computed per-pixel features for segmentation, and

finally a simple extension that allows segmentation without

requiring a GAN or its expensive mapping during inference.
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Figure 4: Auto-shot segmentation pipeline during train-

ing, the auto-shot segmenter uses generated images from

the trained GAN as input and segmentation masks predicted

by the few-shot segmenter as ground truth.

3.1. Representation Extraction from GANs

Using GANs as a mapping function is not straightfor-

ward simply because GANs take as input a random la-

tent code, not the image pixels to be mapped. To under-

stand our process, first consider a typical scenario where

we generate an image by feeding a random latent code to

a convolutional-based GAN. In this case, the synthesized

output image is constructed by the generator through a se-

ries of spatial convolutions, and each output pixel is a re-

sult of a unique generative computation that can be traced

back through each convolution layer down to the initial la-

tent code.

Our key idea is to use these unique computational

“paths” for feature representation. Generally, the computa-

tional path for generating a pixel is a directed acyclic graph

with nodes representing the network parameters or the input

latent code involved in the computation of that pixel. How-

ever, in our work these nodes represent activation values,

and we simply represent the path with a single sequence

of activations from all layers within the generator that are

spatially aligned with that pixel. In particular, as shown in

Figure 2, we extract the activation map from every layer

(or some subset of layers) of the generator, a1, a2, . . . , an,

each with dimension (hi, wi, ci), and compute our pixel-

wise representation as

F = U(a1)⊕c U(a2)⊕c ...⊕c U(an) (1)

where U(·) spatially upsamples the input to the size of the

largest activation map (hn, wn) and ⊕c is a concatenation

along the channel dimension. This process maps each 3-

dimensional RGB pixel to a C−dimensional feature vector,

where C =
∑

n

i=1
ci.

Normally, this extraction process only works for images

that are synthesized by the generator and cannot be used

directly for real test images. However, given any test im-

age, one can optimize for a latent code that generates that

given test image with any gradient-based optimization or

with more sophisticated schemes [26, 1, 17]. The resulting

latent code then allows the feature map to be constructed in

a similar manner.

3.2. Segmentation with Extracted Representation

To solve few-shot segmentation, we first train a GAN on

images of our target class and generate k random images

by feeding it random latent codes. Then, we compute the

feature maps and manually annotate object parts for these k

images. The k feature maps and annotations together form

our supervised training pairs which can be used to train a

segmentation model, such as a multilayer perceptron or a

convolutional network (see Figure 3). To segment a test im-

age, we compute a pixel-wise feature map for the test image

using the aforementioned latent code optimization and feed

it to our trained segmentation network.

3.3. Extension: Auto­shot Segmentation Network

Computing pixel-wise feature vectors using a GAN does

have a number of restrictions. First, the test image needs to

lie close to the image distribution modeled by the GAN; oth-

erwise, the latent optimization may fail to reproduce the test

image, leading to poor feature vectors. This constrain can

be severely restricting for classes like human face because

the input image has to contain exactly one face aligned and

centered similar to the trainset. Second, relying on a GAN

to generate feature vectors through the latent optimization

process is expensive and time-consuming as it requires mul-

tiple forward-backward passes through the generator.

To overcome these limitations, we use our trained GAN

to synthesize a large set of images and predict segmentation

maps for those images using our network to form paired

training data. To retain all the probability information from

our network’s prediction process, each pixel in our segmen-

tation maps is represented by a set of logit values of all part

labels rather than a single part ID. That is, we do not ap-

ply softmax and argmax to produce the segmentation maps.

With this training data, we train another network, e.g. a

UNet [37], to solve the segmentation in a single network

pass from raw images without relying on a GAN or its fea-

ture mapping (see Figure 4). We call this process auto-shot

segmentation. Additionally, we apply data augmentation

that allows detection of objects at different scales and orien-

tations. Interestingly, we demonstrate how this simple ap-

proach can successfully segment multiple object instances

at the same time with good quality in our experiments and

supplementary video.
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4. Implementation

Our training pipeline starts by training a GAN on a

dataset of the target class. Then, we use the trained GAN

to generate a few images along with their pixel-wise rep-

resentations (Section 3.1) and manually annotate these im-

ages with the desired part segmentation. Finally, we train a

few-shot segmentation network that takes as input the pixel-

wise representation to predict an output segmentation. For

the auto-shot segmentation, we use the same GAN to gen-

erate a large dataset of images and use our trained few-shot

network to predict segmentation maps for those images.

These generated images and their corresponding segmenta-

tion maps are then used to train the auto-shot segmentation

network.

4.1. Generative Adversarial Network

We use StyleGAN2 [26] for our pipeline. StyleGAN2

has 9 pairs of convolution layers with activation outputs of

sizes: 42, 82, 162, 322, 642, 1282, 2562, 5122, and 10242.

For feature extraction, we use all pairs except the last which

generates the output image. We also use StyleGAN2’s pro-

jection method proposed in their paper to embed an image

into the latent space (latent code optimization explained in

Section 3.1).

4.2. Few­shot Segmentation Network

The few-shot network takes the C-channel pixel-wise

representation as input and outputs a segmentation map. We

explore 2 different architectures: fully convolutional net-

works (CNN) and multilayer perceptrons (MLP).

CNN: We first use a linear embedding layer (1x1 con-

volution) to reduce the input dimension from C to 128, fol-

lowed by 8 convolutional layers with a kernel size of 3 and

dilation rates of 2, 4, 8, 1, 2, 4, 8, and 1. The dimensions

of the output channels are: 64 for the first 6 layers, 32, and

the number of classes. All layers except the output layer use

leaky ReLU activation functions.

MLP: We use a 2-layer MLP with 2,000 and 200 hidden

nodes for the first and second layers. All layers except the

output layer use ReLU activation functions.

Both MLP and CNN were trained for 1,000 epochs with

a cross-entropy loss and a weight decay of 0.001 using

Adam optimizer. Our initial learning rate is 0.001 with a

decay factor of 0.9 every 50 epochs.

4.3. Auto­shot Segmentation Network

This network is trained with GAN’s generated images

and their corresponding segmentation maps from the few-

shot network. We adopt a UNet architecture described in

our supplementary. Additionally, we perform the following

data augmentation on this training set: 1) random horizontal

flips, 2) random scales between 0.5 and 2, 3) random rota-

tions between -10 and 10 degree, 4) random vertical and

Table 1: Weighted IOU scores on few-shot human face seg-

mentation.

Segmentation Network Shots 3-class 10-class

1 71.7 77.9

CNN 5 82.1 83.9

10 83.5 85.2

1 75.3 74.1

MLP 5 77.8 79.6

10 77.2 77.2

1-shot 5-shot 10-shot Ground 
TruthInput

Figure 5: Few-shot face segmentation results on

CelebAMASK-HQ.

horizontal translations between 0% and 50% of the image

size. This network is trained for 300 epochs using Adam

optimizer with an initial learning rate of 0.001 and a decay

factor of 0.1 when the validation score does not decrease

within 20 epochs.

5. Experiments

We perform the following experiments in this section:

1) we evaluate the performance of our few-shot and auto-

shot segmenters on 3 object classes and compare them to

baselines, 2) we evaluate alternative structures of the few-

shot segmentation network. Additionally in our supplemen-

tary material, 3) we show segmentation results on videos,

4) we study whether the choice of layers used for feature

extraction affects the segmentation performance, 5) we test

whether our method can segment parts that have arbitrary or
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Table 2: IOU scores of our 10-shot vs auto-shot segmenters on 10-class face segmentation. The auto-shot segmenter is

trained with a dataset generated by the 10-shot segmenter. Both techniques have similar performance, which demonstrates

the effectiveness of the dataset generation and auto-shot training process.

Network Weighted IOU Eyes Mouth Nose Face Clothes Hair Eyebrows Ears Neck BG

10-shot segmenter 85.2 74.0 84.6 82.9 90.0 23.6 79.2 63.1 27.0 73.6 84.2

Auto-shot segmenter 84.5 75.4 86.5 84.6 90.0 15.5 84.0 68.2 37.3 72.8 84.7
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Figure 6: 10-class face segmentation results of supervised

baseline and the number of segmentation labels used. Our

few-shot segmentation results are shown in dot line for com-

parison. Supervised baseline consumes over 100 annota-

tions to surpass our 1-shot segmenter, and around 500 anno-

tation to reach same-level of IOU on our 10-shot segmenter.

Table 3: Per-class IOU scores on 3-class human face seg-

mentation.

Weighted IOU Eyes Mouth Nose

1-shot 71.7 57.8 71.1 76.0

5-shot 82.1 73.6 84.0 82.1

10-shot 83.5 75.9 85.3 82.7

Table 4: IOU scores on PASCAL-Parts car segmentation.

Model Body Plate Light Wheel Window BG Average

CNN[45] 73.4 41.7 42.2 66.3 61 67.4 58.7

CNN+CRF[45] 75.4 35.8 36.1 64.3 61.8 68.7 57

Ours (Auto-shot) 75.5 17.8 29.3 57.2 62.4 70.7 52.2

OMPS[57] 86.3 50.5 55.1 75.5 65.2 - 66.5

Ours (Auto-shot) w/o bg 76.4 17.5 29.3 52.5 64.1 - 47.9

Table 5: IOU scores on PASCAL-Parts horse segmentation.

“-” indicates no available result.

Model Head Neck Torso Neck+Torso Legs Tail BG

Shape+Appearance[50] 47.2 - - 66.7 38.2 - -

CNN+CRF[45] 55.0 34.2 52.4 - 46.8 37.2 76.0

Ours (Auto-shot) 50.1 - - 70.5 49.6 19.9 81.6

unusual shapes that do not correspond to any semantic parts,

6) we explore and evaluate features learned from other gen-

erative models, such as VAE, or from other supervised and

self-supervised learning methods and compare against our

features learned from GANs.

Table 6: Average IOU scores on PASCAL-Parts horse seg-

mentation.

Model RefineNet [16] Pose-Guided [32] Ours(Auto-shot)

Horse IOU 36.9 60.2 53.1

5.1. Semantic Part Segmentation

We evaluate segmentation performance of the few-shot

and auto-shot segmenters on 3 object classes: human face,

car, and horse.

Datasets: To train the few-shot segmenter, we use

face images and annotated segmentation masks from

CelebAMask-HQ [30]. For horse and car, we use images

generated by pretrained StyleGAN2s and manually anno-

tate them ourselves. For the auto-shot segmenter, we use

5,000 images generated from each GAN trained on each

object class and the predicted annotations from the few-shot

segmenter. Our models are evaluated on CelebAMask-HQ

for faces and PASCAL-Part dataset [8] for car and horse.

Evaluation metric: We use intersect-over-union (IOU)

to evaluate individual object parts and report weighted IOU

scores, where the weight of each class is the ratio of the

number of ground-truth pixels belonging to the class to the

total number of pixels.

5.1.1 Human Face Part Segmentation

We perform experiments with 12 combinations of settings

that vary 1) the architecture of the few-shot segmenter

(CNN or MLP), 2) the number of part classes (3 or 10), and

3) the number of examples with part annotations (1-shot, 5-

shot, 10-shot). One interesting finding in Table 1 is that the

MLP segmenter, which can only look at the features of in-

dividual pixels to make per-pixel predictions, performs well

and almost similarly to the CNN segmenter that has a wide

receptive field and can exploit structure priors for predicting

a segmentation map.

Table 2 shows IOU scores of the 10-shot segmenter and

auto-shot segmenter on 10-class face segmentation. Sur-

prisingly, the auto-shot segmenter achieves similar IOU

scores to those of 10-shot segmenter in all classes except

for clothes, even though it relies only on the dataset gener-

ated by the 10-shot segmenter. Note that the few-shot net-

work also performs poorly on clothes relative to other parts,
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Part Annotation

Good Results Reasonable Results Bad Results

One-shot Segmentation Results

Figure 7: One-shot car part segmentation results on GAN’s generated images. The segmentation network can segment car

images from varied points of view even though it is trained on annotations of one car from one angle. However, there are

some failure cases when the cars appear unusually big or small, or when GANs generate unrealistic cars.

Input 1-shot 5-shot 10-shot

Figure 8: Results on few-shot horse part segmentation from

GAN’s generated images. Compared to cars and faces with

good 1-shot results, horses need more labels. 1-shot horse

segmentation often mistakes the rider as a part of horse.

which could be due to the large variation in clothing. The

auto-shot segmenter can also segment unaligned images at

various scales due to the data augmentation during train-

ing. Figure 6 shows a 10-class segmentation comparison

between our few-shot and auto-shot segmenters and a su-

pervised baseline which uses the same architecture as the

auto-shot segmenter and is trained on ground-truth masks

from CelebAMask-HQ with varying numbers of labels. Our

few-shot segmenter trained with a single label produces a

comparable IOU score to the supervised baseline trained

with about 150 labels. And with 10 labels, both of our seg-

menters match the baseline performance with 500 labels.

Qualitative and quantitative results for the CNN-based few-

shot network are shown in Figure 5 and Table 3.

5.1.2 Car Part Segmentation

Unlike well-aligned face images in CelebA-HQ, car images

in PASCAL-Part have larger variations in pose and appear-

ance. Despite this challenge, our one-shot segmenter pro-

duces good segmentation results and can identify wheels,

windows, and the license plate shown in Figure 7. We

compare our method to DeepCNN-DenseCRF [45] and the

Ordinal Multitask Part Segmentation [57] on the car class

in PASCAL-Part. Details on the experiment setup can

be found in our supplementary material. Table 4 shows

our results using the auto-shot segmenter trained on a 10-

shot dataset (dataset generated from our few-shot segmenter

with 10 labels), which compares favorably to the fully su-

pervised baselines. Note that we compare to [57] by exclud-

ing the background class similarly to how their scores were

reported.

5.1.3 Horse Part Segmentation

Horse segmentation is more challenging than the other two

because horses are non-rigid and can appear in many poses

such as standing or jumping. Also, the boundaries between

legs and body are not clearly visible. Our one-shot seg-

menter has lower performance compared to those of faces

and cars; however, the result improves significantly with a

few more annotations as shown in Figure 8. In Table 5,

we compare our auto-shot segmentation (also learned from

dataset by 10-shot segmenter) IOU scores on each class

to Shape+Appearance [50] and CNN+CRF [45]. Table 6
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Figure 9: Some examples of auto-shot segmentation trained with datasets generated by 10-shot segmenters on CelebAMask-

HQ, PASCAL-Part Car and PASCAL-Part horse. The pretrained StyleGAN2 for each class was trained on FFHQ, LSUN-Car

and LSUN-Horse.

Table 7: IOU scores on 1-shot face segmentation of differ-

ent size of few-shot segmenters.

Model Size Weighted IOU

MLP

0 hidden layers 74.0

1 hidden layer 72.2

2 hidden layers 74.1

CNN

S 73.4

M 75.2

L 77.9

0-hidden 1-hidden 2-hidden Ground 
TruthInput

Figure 10: Results on 1-shot segmentation of MLP-based

segmentors containing 0, 1, or 2 hidden layers.

shows the overall IOU scores of our auto-shot segmenter,

RefineNet [16], and Pose-Guided Knowledge Transfer [32].

The score of RefineNet is taken from [32]. Our method

surpasses RefineNet, and our IOU is slightly lower than

Pose-Guided Knowledge Transfer [32] which is a fully-

supervised method trained with over 300 annotated images

and additional annotated keypoints. Experimental details

can be found in our supplementary material. Auto-shot seg-

mentation results are presented in Figure 9.

5.2. Analysis on GAN­derived Representation

One desirable property of a good representation is that it

should contain meaningful semantic information in a read-

ily discriminative form. We could test this by evaluating

how well a simple linear classifier or smaller networks with

limited capability perform given our representation as input.

We evaluate several architectures on one-shot face seg-

mentation: 3 sizes of multilayer perceptrons: i) 0 hidden

layers, ii) 1 hidden layer with 2000 nodes, and iii) 2 hidden

layers with 2000 and 200 nodes, as well as small, medium,

and large convolutional networks described in the supple-

mentary material (Table C - E). We found that a linear clas-

sifier (0 hidden-layer) gives reasonable segmentation masks

shown in Figure 10; however, a non-linear MLP classifier

(2 hidden layers) is needed to obtain more accurate bound-

aries in complex areas such as hair. As shown in Table 7,

L-network obtains the highest IOU score, although smaller

networks or even a linear classifier do not perform signifi-

cantly worse with IOU differences of only around 2.7-5.7.

6. Conclusion

We present a simple and powerful approach that repur-

poses GANs, used predominantly for synthesis, for few-

shot semantic part segmentation. Our novelty lies in the un-

conventional use of readily discriminative pixel-wise repre-

sentation extracted from the generative processes of GANs.

Our approach achieves promising and unprecedented per-

formance that allows part segmentation given very few an-

notations and is competitive with fully-supervised baselines

that require 10-50× more label examples. We also pro-

pose a more efficient extension to our segmentation pipeline

that bypasses the required latent optimization and general-

izes better to real-world scenarios with multiple objects of

varying sizes and orientations. We believe this novel use of

GANs for unsupervised representation learning can serve as

an effective and generic “upstream” task in transfer learn-

ing for problems that involve reasoning about object parts,

scene semantics, or make pixel-level predictions.
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