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Abstract

Aligning distributions of view representations is a core

component of today’s state of the art models for deep

multi-view clustering. However, we identify several draw-

backs with naı̈vely aligning representation distributions. We

demonstrate that these drawbacks both lead to less separable

clusters in the representation space, and inhibit the model’s

ability to prioritize views. Based on these observations, we

develop a simple baseline model for deep multi-view clus-

tering. Our baseline model avoids representation alignment

altogether, while performing similar to, or better than, the

current state of the art. We also expand our baseline model

by adding a contrastive learning component. This introduces

a selective alignment procedure that preserves the model’s

ability to prioritize views. Our experiments show that the

contrastive learning component enhances the baseline model,

improving on the current state of the art by a large margin

on several datasets1.

1. Introduction

Several kinds of real world data are gathered from dif-

ferent points of view, or by using a collection of different

sensors. Videos, for instance, contain both visual and audi-

ble components, while captioned images include both the

raw image data and a descriptive text. In both of these exam-

ples, the low-level content of the views are vastly different,

but they can still carry the same high-level cluster structure.

The objective of multi-view clustering is to discover this

common clustering structure, by learning from all available

views simultaneously.

Learning from multiple sources at once is not a trivial

task [6]. However, the introduction of deep learning [33],

has led to the development of several promising deep multi-

view clustering models [1, 36, 48, 61, 64]. These models

efficiently learn from multiple views by transforming each

view with a view-specific encoder network. The resulting

representations are fused to obtain a common representation

*UiT Machine Learning Group, machine-learning.uit.no
1The source code for the experiments performed in this paper is available

at https://github.com/DanielTrosten/mvc

for all views, which can then be clustered by a subsequent

clustering module.

The current state of the art methods for deep multi-view

clustering use adversarial training to align the representation

distributions from different views [36, 64].

Aligning distributions leads to view invariant represen-

tations, which can be beneficial for the subsequent fusion

of views, and the clustering module [64]. View invariant

representations preserve the information present in all views,

while discarding information that only exists in a subset of

views. If the view-specific information is irrelevant to the

clustering objective, it will be advantageous for the cluster-

ing module that the encoders learn to remove it. Moreover,

aligning representation distributions introduces an auxiliary

task, which regularizes the encoders, and helps preserve the

local geometric structure of the input space. This has been

shown to improve single-view deep clustering models [21].

Despite these advantages however, we identify three im-

portant drawbacks of distribution alignment for multi-view

clustering:

Aligning representations prevents view-prioritization in

the representation space. Views are not necessarily equally

important to the clustering objective. The model should

therefore be able to adaptively prioritize views, based on the

information contained in the view representations. However,

aligning representation distributions makes it harder for the

model to prioritize views in the representation space, by

making these distributions as similar as possible.

One-to-one alignment of clusters is only attainable when

encoders can separate all clusters in all views. When the

clustering structure is only partially present in the individual

views, alignment causes clusters to merge together in the

representation space. This makes the clustering task more

difficult for the subsequent clustering module.

Aligning representation distributions can make it harder

to discriminate between clusters. Since adversarial align-

ment only considers the representation distributions, a given

cluster from one view might be aligned with a different

cluster from another view. This misalignment of label dis-

tributions has been shown to have a negative impact on

discriminative models in the representation space [62].

The End-to-end Adversarial-attention network for Multi-
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modal Clustering (EAMC) [64] represents the current state

of the art for deep multi-view clustering. EAMC aligns the

view representations by optimizing an adversarial objective

on the encoder networks. The resulting representations are

fused with a weighted average, with weights produced by

passing the representations through an attention network.

Following our reasoning above, we hypothesize that the

alignment done by the adversarial module may defeat the

purpose of the attention mechanism. Thus inhibiting view

prioritization, and leading to less separable clusters after

fusion. Our hypothesis is supported by the empirical results

of EAMC [64], where the fusion weights are close to uni-

form for all datasets. Equal fusion weights cause all views

to contribute equally to the fused representation, regardless

of their contents. Moreover, the fusion weights produced by

the attention network depend on all the samples within the

current batch. Out-of-sample inference is therefore impossi-

ble with EAMC, without making additional modifications to

the attention mechanism.

In this work, we seek to alleviate the problems that can

arise when aligning distributions of representations in deep

multi-view clustering. To this end, we make the following

key contributions:

• We highlight pitfalls of aligning representation distribu-

tions in deep multi-view clustering, and show that these

pitfalls limit previous state of the art models.

• We present Simple Multi-View Clustering (SiMVC) –

a new and simple baseline model for deep multi-view

clustering, without any form of alignment. Despite its

simplicity compared to existing methods, our experi-

ments show that this baseline model performs similar

to – and in some cases, even better than – current state

of the art methods. SiMVC combines representations

of views using a learned linear combination – a simple

but effective mechanism for view-prioritization. We

empirically demonstrate that this mechanism allows the

model to suppress uninformative views and emphasize

views that are important for the clustering objective.

• In order to leverage the advantages of alignment – i.e.

preservation of local geometric structure, and view in-

variance – while simultaneously avoiding the pitfalls,

we attach a selective contrastive alignment module to

SiMVC. The contrastive module aligns angles between

representations at the sample level, circumventing the

problem of misaligned label distributions. Furthermore,

in the case that one-to-one alignment is not possible,

we make the model capable of ignoring the contrastive

objective, preserving the model’s ability to prioritize

views. We refer to this model as Contrastive Multi-View

Clustering (CoMVC).

2. Pitfalls of distribution alignment in multi-

view clustering

Here, we consider an idealized version of the multi-view

clustering problem. This allows us to investigate and for-

malize our observations on alignment of representation dis-

tributions in multi-view clustering. By assuming that, for

each view, all samples within a cluster are located at the

same point in the input space, we develop the following

proposition2:

Proposition 1. Suppose our dataset consists of V views and

k ground truth clusters, and we wish to cluster the data

according to this ground truth clustering. Furthermore, we

make the following assumptions:

1. For each view, all observations that belong to the same

ground truth cluster, are located at the same point in

the input space.

2. For a given view v, v ∈ {1, . . . , V }, the number of

unique points (i.e. distinct/separable clusters) in the

input space is kv .

3. The views are mapped to representations using view-

specific encoders, and subsequently fused according to

a linear combination with unique weights.

Then, the maximum number of unique clusters after fusion

is

κfused

aligned = min

{

k,

(

min
v=1,...,V

{kv}

)V
}

(1)

if the distributions of representations from different views

are perfectly aligned, and

κfused

not aligned = min

{

k,

V
∏

v=1

kv

}

(2)

if no alignment is performed.

Implications of Proposition 1. κfused
· in Proposition 1 con-

trols how well the clustering module is able to cluster the

fused representations. If κfused
· < k, it means that some of

the clusters are located at the same point after fusion, mak-

ing it impossible for the clustering module to discriminate

between these clusters. In the extreme case that one of the

views groups all the clusters together (i.e. kv = 1), it fol-

lows that κfused
aligned = 1. This happens because all other views

are aligned to the uninformative view (for which kv = 1),

collapsing the cluster structure in the representation space.

Alignment thus prevents the suppression of this view, and

makes it harder to discriminate between clusters in the repre-

sentation space.

2We provide a proof sketch for Proposition 1 in the supplementary.
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(a) SiMVC +Adv. ACC = 0.80 (b) SiMVC. ACC = 0.99. (c) CoMVC. ACC = 0.99. (d) EAMC. ACC = 0.368.

Figure 1: Representations for SiMVC with and without adversarial alignment, CoMVC, and EAMC on our toy dataset.

Figure 2: Toy dataset. View 1: Classes (1-3) and (4,5)

overlap. View 2: Class 1 is isolated, and classes (2,4) and

(3,5) overlap.

However, if we are able to discriminate between all clus-

ters in all views, we have kv = k for all views, resulting in

κfused
aligned = κfused

not aligned = k. In this case it is possible for both

alignment-based models and non-alignment-based models to

perfectly cluster the data, provided that the clustering mod-

ule is sufficiently capable. Alignment-based models can thus

benefit from the advantages of alignment, while still being

able to separate clusters after fusion.

Experiments on toy data. Proposition 1 makes the sim-

plification that all samples within a cluster are located at

the same point, for each view. In order to demonstrate the

potential negative impact of aligning representation distribu-

tions in a less idealistic setting, and to further motivate the

problem, we create a simple two-view dataset. The dataset

is shown in Figure 2, and contains five elliptical clusters in

two two-dimensional views3.

We fit SiMVC and SiMVC with adversarial alignment

(SiMVC +Adv.) to this dataset, in order to demonstrate the

effects of aligning distributions, in a controlled setting. Ad-

ditionally, we fit our CoMVC and the current state of the art,

EAMC, to evaluate more advanced alignment procedures.

Note that, for all of these models, the fusion is implemented

as a weighted average of view representations, as in Proposi-

tion 1. The remaining details on SiMVC and CoMVC are

provided in the next section.

Figures 1a and 1b show that attempting to align distri-

butions with adversarial alignment prevents SiMVC from

separating between clusters 1 and 4. By adding the adversar-

ial alignment to SiMVC, the number of visible clusters after

fusion is reduced from 5 to 4. This is in line with Proposi-

tion 1, since we have κfused
aligned = 4 and κfused

not aligned = 5 for this

dataset. Figure 1c shows that CoMVC, which relies on the

cosine similarity, aligns the angles between the majority of

observations. This alignment does not cause classes to over-

lap in the fused representation. EAMC attempts to align the

distributions of view representations (Figure 1d), resulting in

a fused representation where the classes are hard to separate.

Interestingly, the resulting fused representation exhibits a

single group of points, which is significantly worse than the

upper bound κfused
aligned = 4 in the analogous idealistic setting.

We hypothesize that this is due to EAMC’s fusion weights,

which we observed to be almost equal for this experiment –

thus breaking assumption 3 in Proposition 1.

3We repeat this experiment for a 3-cluster dataset in the supplementary.
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3. Methods

3.1. Simple Multi­View Clustering (SiMVC)

Suppose our dataset consists of n objects observed from

V views. Let x
(v)
i be the observation of object i from view

v. The objective of our models is then to assign the set of

views for each object, {x
(1)
i , . . . , x

(V )
i }, to one of k clusters.

To achieve this, we first transform each x
(v)
i to its repre-

sentation z
(v)
i according to

z
(v)
i = f (v)(x

(v)
i ) (3)

where f (v) denotes the encoder network for view v. We then

compute the fused representation as a weighted average

zi =

V
∑

v=1

wvz
(v)
i (4)

where w1, . . . , wv are the fusion weights, satisfying wv > 0
for v = 1, . . . , V and

∑V
v=1 wv = 1. We enforce these

constraints by keeping a set of unnormalized weights, from

which we obtain w1, . . . , wV using the softmax function.

We let the unnormalized weights be trainable parameters – a

design choice which has the following advantages: (i) Dur-

ing training, the model has a simple and interpretable way to

prioritize views according to its clustering objective. By not

relying on an auxiliary attention network, we also make the

model more efficient – both in terms of memory consump-

tion and training time4. (ii) In inference, the weights act

as any other model parameters, meaning that out-of sample

inference can be done with arbitrary batch sizes, without any

modifications to the trained model. Fixed fusion weights also

result in deterministic predictions, which are independent of

any other samples within the batch.

To obtain the final cluster assignments, we pass the fused

representation through a fully connected layer, producing

the hidden representation hi. This is processed by another

fully connected layer with a softmax activation, to obtain the

k-dimensional vector of soft cluster assignments, αi.

Loss function. We adopt the Deep Divergence-based Clus-

tering (DDC) [30] loss, which has shown state of the art

performance in single-view image clustering [30]. This is

also the clustering loss used by EAMC [64] – the current

state of the art method for multi-view clustering.

The clustering loss consists of three terms, enforcing

cluster separability and compactness, orthogonal cluster as-

signments, and closeness of cluster assignments to simplex

corners, respectively. The first loss term is derived from

the multiple-density generalization of the Cauchy-Schwarz

divergence [28], and requires clusters to be separable and

4Average training times for SiMVC, CoMVC, and EAMC are given in

the supplementary.

compact in the space of hidden representations:

L1 =

k−1
∑

i=1

k
∑

j=i+1

(

k
2

)−1 n
∑

a=1

n
∑

b=1

αaiκabαbj

√

n
∑

a=1

n
∑

b=1

αaiκabαbi

n
∑

a=1

n
∑

b=1

αajκabαbj

(5)

where k denotes the number of clusters, κij = exp(−||hi −
hj ||

2/(2σ2)), and σ is a hyperparameter.

The second term encourages the cluster assignment vec-

tors for different objects to be orthogonal:

L2 =

(

n

2

)−1 n−1
∑

i=1

n
∑

j=i+1

αT
i αj . (6)

Finally, the third term pushes the cluster assignment vectors

close to the standard simplex in R
k:

L3 =

k−1
∑

i=1

k
∑

j=i+1

(

k
2

)−1 n
∑

a=1

n
∑

b=1

maiκabmbj

√

n
∑

a=1

n
∑

b=1

maiκabmbi

n
∑

a=1

n
∑

b=1

majκabmbj

(7)

where mij = exp(−||αi − ej ||
2), and ej is corner j of the

standard simplex in R
k.

The final clustering loss which we minimize during train-

ing of SiMVC is the sum of these three terms:

Lcluster = L1 + L2 + L3. (8)

3.2. Contrastive Multi­View Clustering (CoMVC)

Contrastive learning offers a way to align representations

from different views at the sample level, forcing the la-

bel distributions to be aligned as well. Our hypothesis is

therefore that a selective contrastive alignment will allow

the model to learn common representations that are well

suited for clustering – while simultaneously avoiding the

previously discussed pitfalls of distribution alignment. Self-

supervised contrastive models have shown great potential

for a large variety of downstream computer vision tasks

[5, 12, 13, 20, 22, 40, 49]. These models learn image rep-

resentations by requiring that representations from positive

pairs are mapped close together, while representations from

negative pairs are mapped sufficiently far apart. In multi-

view learning, each object has a set of observations from

different views associated with it. This admits a natural def-

inition of pairs: Let views of the same object be positive

pairs, and views of different objects be negative pairs.
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Figure 3: Overview of our proposed models for a two-view

dataset. In both SiMVC and CoMVC, the views are first

encoded by the view-specific encoder networks f (1) and

f (2). The resulting representations are fused with a weighted

mean, and then clustered by the clustering module. CoMVC

includes an additional contrastive module.

Following [12], we compute the similarity of two repre-

sentations z
(v)
i and z

(u)
j as the cosine similarity:

s
(vu)
ij =

z
(v)
i

T z
(u)
j

||z
(v)
i || · ||z

(u)
j ||

. (9)

Note that in [12], they show that the addition of a projection

head between the representations and the similarity, results

in better representations – in terms of linear classification

accuracy on the learned representations. We found that this

was not the case for our model, so we chose to compute the

similarity on the representations directly. Experiments com-

paring versions of our model with and without the projection

head can be found in the supplementary.

In order to define a contrastive loss for an arbitrary num-

ber of views, we introduce the following generalized version

of the NT-Xent loss [12]:

Lcontrastive =
1

nV (V − 1)

n
∑

i=1

V
∑

v=1

V
∑

u=1

1{u 6=v}ℓ
(uv)
i (10)

where 1{u 6=v} evaluates to 1 when u 6= v and 0 otherwise,

and

ℓ
(uv)
i = − log

es
(uv)
ii

/τ

∑

s′∈Neg(z
(v)
i

,z
(u)
i

)
es′/τ

. (11)

Here, τ is a hyperparameter5, and Neg(z
(v)
i , z

(u)
i ) denotes

the set of similarities for negative pairs corresponding to the

positive pair (z
(v)
i , z

(u)
i ).

5We set τ = 0.1 for all experiments, following [12].

A straightforward way to construct Neg(z
(v)
i , z

(u)
i ) would

be to include the similarity between all views of object i,
and all views of all the other objects within the current

batch. However, minimizing Eq. (11) will result in neg-

ative samples having a low similarity score. This is indeed

the objective of ordinary contrastive learning, but it might

be counteractive to the clustering objective, where we want

objects from the same cluster to be grouped together in the

representation space, and thus be similar to each other. To

prevent the contrastive loss from breaking this group struc-

ture, we construct Neg(z
(v)
i , z

(u)
i ) in the following manner:

First, we define the set

Ni = {s
(uv)
ij : j = 1, . . . , n, j 6= i, u, v = 1, . . . , V,

argmaxαi 6= argmaxαj}, (12)

which consists of all similarities between all views of ob-

ject i, and all views of all other objects that were assigned

to a different cluster than object i. We then construct

Neg(z
(v)
i , z

(u)
i ) by sampling a fixed number of similarities

from Ni. This procedure ensures that we only repel repre-

sentations of objects that were assigned to different clusters

by the clustering module.

CoMVC is the result of adding this contrastive learning

framework to SiMVC. Figure 3 shows a schematic overview

of the model for a dataset containing two views.

The loss we use to train CoMVC is

L = Lcluster + δ ·min{w1, . . . , wV }Lcontrastive (13)

where Lcluster is the clustering loss defined in Eq. (8), and

δ is a hyperparameter which influences the strength of the

contrastive loss. w1, . . . wV are the fusion weights from

SiMVC6.

Minimizing the contrastive loss results in representations

that have high cosine similarities. The contrastive alignment

is therefore (i) approximate, since only the angles between

representations, and not the representations themselves, are

considered; and (ii) at the sample level, preventing mis-

aligned label distributions. Furthermore, multiplying the

contrastive loss with the smallest fusion weight automati-

cally adjusts the strength of the contrastive loss, according

to the weight of the least informative view. The alignment is

therefore selective: If the model learns to discard a view by

setting its fusion weight to 0, it will simultaneously disable

the alignment procedure. By adapting the alignment weight

and not relying on adversarial training, CoMVC can bene-

fit from the advantages of aligning representations, while

circumventing both the drawbacks of adversarial alignment,

and possible difficulties with min-max optimization [4, 19].

6Note that we do not propagate gradients through the min operation, in

order to avoid the trivial solution of setting the smallest fusion weight to 0.
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4. Related work

In this section we will give a brief summary of the exist-

ing work on multi-view clustering, as well as related work

discussing modality alignment in multi-modal learning. Ex-

isting methods for multi-view clustering can be divided into

two categories: Traditional (non-deep learning based) meth-

ods and deep learning based methods.

Traditional methods. Two-stage methods first learn a

common representation from all the views, before cluster-

ing them using a single-view clustering algorithm [7, 11].

However, recent work shows that letting the learned rep-

resentation adapt to the clustering algorithm leads to bet-

ter clusterings [56]. In order to avoid this drawback of

two-stage approaches, non-negative matrix factorization

[8, 15, 24, 57, 63] has been used to compute the cluster

assignment matrix directly from the data matrices. Simi-

larly, subspace methods assume that observations can be

represented by one or more self-representation matrices

[5, 10, 37, 41, 55, 58, 59, 61] and use the self-representation

matrices to identify linear subspaces of the vector space

spanned by all the observations, that represent distinct clus-

ters. Alternative popular approaches include methods based

on graphs [44, 48, 50, 51, 60, 65] and kernels [16, 18, 35, 39],

which both assume that the data can be represented with one

or more kernel (or affinity) matrices such that respective

clusterings can be found based on these matrices.

Deep learning based methods. Deep learning based two-

stage methods [2, 43, 52] work similarly to the two-stage

methods described above, but instead use deep neural net-

works to learn the common representation. However, the

two-stage methods are regularly outperformed by deep end-

to-end methods that adapt their representation learning net-

works to the subsequent clustering module. Deep graph-

based methods [14, 25, 26, 34] for instance, use affinity

matrices together with graph neural networks to directly

cluster the data. Similarly, deep subspace methods [1, 3]

make the same subspace assumption as above, but compute

the self-representation matrix from an intermediate repre-

sentation in their deep neural network. Lastly, adversarial

methods [36, 64] use generators and discriminators to align

distributions of hidden representations from different views.

These adversarial methods have outperformed the previous

approaches to multi-view clustering, yielding state of the art

clustering performance on several multi-view datasets.

Distribution alignment. Outside the field of multi-view

clustering, the problem of naı̈vely aligning distributions has

recently found increasing attention [62, 53], and led to more

efficient fusion techniques [23, 9, 46]. However, this ef-

fort has largely been restricted to supervised multi-modal

learning frameworks and domain adaptation approaches.

5. Experiments

5.1. Setup

Implementation. Our models are implemented in the Py-

Torch [45] framework. We train the models for 100 epochs

on mini-batches of size 100, using the Adam optimization

technique [31] with default parameters. We observe that 100
epochs is sufficient for the training to converge. Training

is repeated 20 times, and we report the results from the run

resulting in the lowest value of L1 in the clustering loss. The

σ hyperparameter was set to 15% of the median pairwise

distance between hidden representations within a mini-batch,

following [30]. For the contrastive model, we set the number

of negative pairs per positive pair to 25 for all experiments.

We set δ = 0.1 for the two-view datasets, and δ = 20 for the

three-view datasets. We observe that the three-view datasets

benefit from stronger contrastive alignment. Our implemen-

tation and a complete overview of the architecture details

can be found in the supplementary.

Datasets. We evaluate our models using six well-known

multi-view datasets [36, 64], containing both raw image

data, and vector data. These are: (i) PASCAL VOC 2007

(VOC) [17]. We use the version provided by [27], which

contains GIST features and word frequency counts for man-

ually tagged natural images. (ii) Columbia Consumer Video

(CCV) [29], which consists of SIFT, STIP and MFCC fea-

tures from internet videos. (iii) Edge-MNIST (E-MNIST)

[38], which is a version of the ordinary MNIST dataset where

the views contain the original digit, and an edge-detected

version, respectively. (iv) Edge-FashionMNIST (E-FMNIST)

[54], which consists of grayscale images of clothing items.

We synthesize a second view by running the same edge-de-

tector as the one used to create E-MNIST. (v) COIL-20 [42],

which contains grayscale images of 20 items, depicted from

different angles. We create a three-view dataset by ran-

domly grouping the images for an item into groups of three.

(vi) SentencesNYU v2 (RGB-D) [32], which consists of im-

ages of indoor scenes along with descriptions of each image.

Following [64], we use image features from a ResNet-50

without the classification head, pre-trained on the ImageNet

dataset, as the first view. Embeddings of the image descrip-

tions using a pre-trained doc2vec model on the Wikipedia

dataset constitute the second view7.

Note that, for the datasets with multiple labels, we select

the objects with exactly one label. See Table 1 for more

information on the evaluation datasets.

Baseline models. We compare our models to an extensive

set of baseline methods, which represent the current state

of the art for multi-view clustering: (i) Spectral Cluster-

ing (SC) [47] on each view, and the concatenation of all

views SC(con); (ii) Robust Multi-view K-means Cluster-

ing (RMKMC) [8]; (iii) tensor-based Representation Learn-

7We provide the details of these pre-trained models in the supplementary.
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Dataset Objs. Cats. Views Dims.

VOC 5649 20 2 512, 399
CCV 6773 20 3 5000, 5000, 4000
E-MNIST 60000 10 2 28× 28
E-FMNIST 60000 10 2 28× 28
COIL-20 480 20 3 128× 128
RGB-D 1449 13 2 2048, 300

Table 1: Summary of the datasets used for evaluation. Objs.

and Cats. denote the number of objects and categories

present in the dataset, respectively. Views and Dims. de-

note the number of views, and the dimensionality of each

view, respectively. Note that for E-MNIST, E-FMNIST, and

COIL-20, the input dimensionality is the same for all views.

ing Multi-view clustering tRLMvc [15]; (iv) Consistent and

Specific Multi-view Subspace Clustering (CSMSC) [41];

(v) Weighted Multi-view Spectral Clustering (WMSC) [65];

(vi) Multi-view Consensus Graph Clustering (MCGC) [60];

(vii) Deep Canonical Correlation Analysis (DCCA) [2];

(viii) Deep Multimodal Subspace Clustering (DMSC) [1];

(ix) Deep Adversarial Multi-view Clustering (DAMC) [36];

and (x) End-to-end Adversarial attention network for Multi–

modal Clustering (EAMC) [64].

Evaluation protocol. To ensure a fair comparison, we

report the baseline results over multiple runs, following [64]8.

To assess the models’ clustering performance, we use the

unsupervised clustering accuracy (ACC) and normalized

mutual information (NMI). For both these metrics, higher

values correspond to better clusterings.

5.2. Results

Quantitive results on VOC, CCV and E-MNIST are shown

in Table 2. The results illustrate that not aligning represen-

tations can have a significant improvement (relative gain in

ACC larger than 29% on E-MNIST) compared to adversar-

ial alignment, while selective alignment always improves

performance. Note that entries for E-MNIST in Table 2

are missing as the number of samples makes the traditional

approaches computationally infeasible.

Table 3 compares SiMVC and CoMVC to the previous

state of the art, EAMC on E-FMNIST, COIL-20 and RGB-D.

Again, we observe that naı̈vely aligning feature represen-

tations tends to worsen performance. This highlights the

importance of being considerate when aligning representa-

tions in multi-view clustering.

Ablation study. We perform an ablation study in order

to evaluate the effects of the different components in the

contrastive loss9. Specifically, we train CoMVC with and

without the proposed negative pair sampling and the adap-

tive weight factor (min{w1, . . . , wV }), on E-MNIST and

8The details of the evaluation protocol are given in the supplementary.
9We include an ablation study with the DDC loss in the supplementary.

Dataset VOC CCV E-MNIST

Metric ACC NMI ACC NMI ACC NMI

SC(1) 38.4 39.2 10.2 0.5
SC(2) 40.2 41.1 18.8 17.3
SC(3) 11.3 0.8
SC(con) 37.2 38.7 9.3 7.4

RMKMC 45.8 46.9 17.6 16.5
tRLMvc 53.4 54.7 21.2 22.6
CSMSC 48.8 49.6 19.4 18.6
WMSC 47.1 46.2 20.5 19.6
MCGC 52.7 54.6 22.4 21.6
DCCA 39.7 42.5 17.3 18.2 47.6 44.3
DMSC 54.1 53.8 18.3 19.4 65.3 61.4
DAMC 56.0 55.2 24.3 23.1 64.6 59.4
EAMC 60.7 61.5 26.1 26.6 66.8 62.8

SiMVC
55.1
(-5.6)

61.5
(+0.0)

14.4
(-11.7)

11.2
(-15.4)

86.2
(+19.4)

82.6
(+19.8)

CoMVC
61.9

(+1.2)
67.5

(+6.0)
29.5

(+3.4)
28.7

(+2.1)
95.5

(+28.7)
90.7

(+27.9)

Table 2: Clustering metrics [%] on VOC, CCV, and E-

MNIST. The best and second best are highlighted in bold.

The differences between our models and the best baseline

model are shown in parentheses. Green differences indicate

improvements. Baseline results are taken from [64].

Dataset E-FMNIST COIL-20 RGB-D

Metric ACC NMI ACC NMI ACC NMI

EAMC 55.2 62.5 69.0 75.3 32.3 20.7

SiMVC
56.8

(+1.6)
50.7

(-11.8)
77.5

(+8.5)
91.8

(+16.5)
39.6

(+7.3)
35.6

(+14.9)

CoMVC
59.5

(+4.3)
52.3

(-10.2)
89.4

(+20.4)
95.7

(+20.4)
41.3

(+9.0)
40.5

(+19.8)

Table 3: Clustering metrics [%] on E-FMNIST, COIL-20

and RGB-D. Same formatting as in Table 2.

Neg. samp. Ad. weight ACC [%] NMI [%]

E
-M

N
IS

T – – 87.4 86.8
– ✓ 94.7 89.5
✓ – 87.5 86.6
✓ ✓ 95.5 90.7

V
O

C

– – 54.7 61.3
– ✓ 55.3 60.7
✓ – 58.5 67.4
✓ ✓ 61.9 67.5

Table 4: Ablation study results for CoMVC on E-MNIST

and VOC.

VOC. When we remove the negative sampling, we con-

struct Neg(z
(v)
i , z

(u)
i ) by including the similarities between

all views of object i, and all views of all the other objects

within the current batch.
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EAMC SiMVC CoMVC

View 1 2 3 1 2 3 1 2 3

VOC 48 52 47 53 64 36
CCV 26 38 36 32 35 33 1 75 24
E-MNIST 48 52 95 05 67 33
E-FMNIST 53 47 78 22 99 1
COIL-20 32 32 36 33 35 32 34 32 34
RGB-D 53 47 59 41 59 41

Table 5: Fusion weights [%] for EAMC, SiMVC, and

CoMVC. For EAMC, we split the entire dataset into batches

of size 100 and report the average weight over these batches.
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Figure 4: Fusion weights and clustering accuracy (ACC) on

E-MNIST, with increasing levels of Gaussian noise added to

the second view.

Results of the ablation study (Table 4) show that dropping

the adaptive weighting and the negative sampling strategy

both have a negative impact on CoMVC’s performance. This

justifies their inclusion in the final contrastive loss.

View prioritization. Table 5 shows the weight parameters

that are obtained for EAMC, SiMVC and CoMVC for all

datasets. EAMC always produces close to uniform weight

distributions, while SiMVC and CoMVC are able to suppress

uninformative views. Note, for datasets, such as COIL-20,

where views are assumed equally important10, we do also

observe close to uniform weight distributions for SiMVC

and CoMVC.

To further assess our models’ capabilities to prioritize

views, we corrupt the edge-view (view 2) in E-MNIST with

additive Gaussian noise, and record the models’ performance

as the standard deviation of the noise increases. We also re-

peat the experiment for the EAMC model, as it represents the

current state of the art. Figure 4 shows the resulting fusion

weights for the noisy view and the clustering accuracies, for

different noise levels. For SiMVC and CoMVC, we observe

that the weight of the noisy view decreases as the noise in-

creases. The mechanism for prioritizing views thus works

as expected. SiMVC and CoMVC can therefore produce ac-

curate clusterings, regardless of the noise level. Conversely,

10Since views in COIL-20 refer to objects depicted from random angles.
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Figure 5: Learned representations before and after fusion

for regular (top) and noisy (σ = 1) E-MNIST (bottom).

Projected to 2-D using T-SNE.

we observe that the attention mechanism in EAMC is unable

to produce fusion weights that suppress the noisy view. This

results in a significant drop in clustering accuracy, as the

noise increases.

Selective alignment in CoMVC. Figure 5 demonstrates

the selective alignment in CoMVC, for the noise-free and

noisy variants of the E-MNIST dataset. In the noise-free

case, CoMVC aligns the representations, resulting in clusters

that are well separated. When the second view has been

corrupted by noise however, it is discarded by the view

prioritization mechanism, by setting its fusion weight to

0. This simultaneously disables the alignment procedure,

preventing the fused representation from being corrupted by

the noisy view, thus preserving the cluster structure.

6. Conclusion

Our work highlights the importance of considering repre-

sentation alignment when performing multi-view clustering.

Comparing the results of our SiMVC to previous results

illustrates that naı̈vely aligning distributions using adver-

sarial learning can prevent the model from learning good

clusterings, while CoMVC illustrates the benefit of selective

alignment, leveraging the best of both worlds.
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