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Abstract

Current model extraction attacks assume that the adver-

sary has access to a surrogate dataset with characteris-

tics similar to the proprietary data used to train the vic-

tim model. This requirement precludes the use of existing

model extraction techniques on valuable models, such as

those trained on rare or hard to acquire datasets. In con-

trast, we propose data-free model extraction methods that

do not require a surrogate dataset. Our approach adapts

techniques from the area of data-free knowledge transfer

for model extraction. As part of our study, we identify that

the choice of loss is critical to ensuring that the extracted

model is an accurate replica of the victim model. Further-

more, we address difficulties arising from the adversary’s

limited access to the victim model in a black-box setting.

For example, we recover the model’s logits from its prob-

ability predictions to approximate gradients. We find that

the proposed data-free model extraction approach achieves

high-accuracy with reasonable query complexity – 0.99⇥
and 0.92⇥ the victim model accuracy on SVHN and CIFAR-

10 datasets given 2M and 20M queries respectively.

1. Introduction

Machine learning (ML) and deep learning, in particu-

lar, often require large amounts of training data to achieve

high performance on a particular task [39]. Curating

such data necessitates significant time and monetary invest-

ment [17, 12]. Thus, the resulting ML model becomes valu-

able intellectual property, especially when considering the

computing resources and human expertise required [5, 13].

Often to monetize these models, companies make them

available as a service via APIs over the web (MLaaS). These

models are also deployed to end-user devices, making their

*equal contribution
†Work done while an intern at the Vector Institute.

predictions directly accessible to customers. However, the

exposure of the model’s predictions represents a significant

risk as an adversary can leverage this information to steal

the model’s knowledge [26, 41, 7, 32, 31, 11, 28, 19]. The

threat of such model extraction attacks is two-fold: adver-

saries may use the stolen model for monetary gains or as a

reconnaissance step to mount further attacks [33, 37].

While model extraction is in many ways similar to model

distillation, it differs in that the victim’s proprietary train-

ing set is not accessible to the adversary. To stage a model

extraction attack, the adversary typically queries the victim

using samples from a surrogate dataset with semantic or dis-

tributional similarity to the original training set [31]. In the

classification setting, the victim’s response may be limited

to the most-likely label [6] or include confidence values for

different class labels [19]. The number of queries—i.e., the

query complexity—is also an important consideration for

the adversary. The greater the query complexity, the higher

the cost of the attack—unless the victim model is available

offline (e.g., deployed on-device).

In this work, we first demonstrate in Section 3 that the

success of current established practices for model extrac-

tion, which often take the form of distillation, depends on

the closeness of the surrogate distribution to the victim’s

proprietary training distribution. This finding has important

implications for the practicality of existing model extraction

techniques.

To remedy this, we propose techniques for data-free

model extraction (DFME). In short, we demonstrate the fea-

sibility of extracting ML models without any knowledge of

the distribution of the proprietary training data. In practice,

gathering a surrogate dataset for the purpose of model ex-

traction can be a very expensive process, both in terms of

the time and money required to curate it. In particular, the

most valuable models are often those for which it is most

challenging to curate an appropriate surrogate dataset, i.e.,

when the victim model’s value arises from its proprietary
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dataset. Our work builds on recent advances in data-free

knowledge distillation, which involve a generative model to

synthesize queries that maximize disagreement between the

student and teacher models [27, 14]. Here, the teacher is

the victim model whereas the student is the stolen extracted

model. We innovate on two fronts: the choice of loss to

quantify student-teacher disagreement and an approach for

training the generator without the ability to backpropagate

through the teacher to compute its gradients (because we

only have black-box access to the victim/teacher predictions

in our setting). We observe that it is essential to ensure the

stability of the loss computed, and find that the `1 norm loss

is particularly conducive to data-free model extraction. We

also demonstrate that using inexpensive gradient approxi-

mation (based on the victim model’s outputs) is sufficient

to train a generative model that produces queries relevant

to distill the knowledge of a victim to a student model. In

summary, our main contributions are:

• We demonstrate in Section 3 that successful

distillation-based model extraction attacks require the

adversary to sample queries from a surrogate dataset

whose distribution is close to the victim training data.

• In Section 4, we propose data-free model extraction

(DFME) to extract ML models without knowledge of

private training data, and only using the victim’s black-

box predictions. As a by-product of DFME needing

to approximate gradients of the victim, this leads us to

present a method for recovering per-example logits out

of the probability vector output by a ML model.

• We validate1 our DFME technique in Section 5 on the

SVHN and CIFAR10 datasets and successfully extract

a model with 0.99x the victim accuracy with only 2M

queries for SVHN, and 0.92x the victim accuracy with

20M queries for CIFAR10.

• An ablation study of our approach in Section 6 pro-

vides two key insights: (1) measuring disagreement

between the victim and extracted models with the `1
norm achieves higher extraction accuracy than losses

previously considered in the literature; (2) weak gradi-

ent estimates yield sufficient signal to train a generator

despite only having access to the victim’s predictions.

2. Related Work

We covered the seminal results in model extraction based

on surrogate datasets in the introduction. Here, we discuss

data-free knowledge distillation—the technique that under-

lies our approach to data-free model extraction—as well as

the rudiments of generative modeling and gradient approx-

imation required to understand our method.

1Code and models for reproducing our work can be found at

https://github.com/cake-lab/datafree-model-extraction

2.1. Data-Free Knowledge Distillation

Knowledge distillation aims to compress, i.e., transfer,

the knowledge of a (larger) teacher model to a (smaller) stu-

dent model [3, 18]. It was originally introduced to reduce

the size of models deployed on devices with limited compu-

tational resources. Since then, this line of work has attracted

a lot of attention [47, 16, 34, 45, 46]. While the model

owner usually performs knowledge distillation, the original

dataset used to train the teacher model may not be available

during distillation [27], e.g., because the dataset is too large

or confidential. Therefore, others have proposed distilla-

tion techniques that leverage a surrogate dataset with a sim-

ilar feature space or distribution [25, 31]. Others proposed

techniques that altogether remove the need for a surrogate

dataset, i.e., data-free knowledge distillation [14, 27]. Tech-

niques addressing data-free knowledge distillation have re-

lied on training a generative model to synthesize the queries

that the student makes to the teacher [10, 27].

The success of data-free knowledge distillation hints at

the feasibility of data-free model extraction. Kariyappa et

al. observe this as well in concurrent work [20]. They also

tackle data-free model extraction through the synthesis of

queries by a generative model. Key differences include our

loss formulation and optimizer choice (see Section 4). We

show in Sections 5 and 6 that our approach consistently out-

performs theirs.

2.2. Generative Models

Model extraction through data-free distillation involves

the generation of training data with which the student (i.e.,

adversary) queries the teacher (i.e., victim) model. Naively,

one could generate these queries randomly [27, 14]. In

this paper, we instead build on a min-max game between

two adversaries that try to optimize opposite loss functions.

This approach is analogous to the optimization performed

in Generative Adversarial Networks (GANs) [15] to train

the generator and discriminator. Here, we use GANs in a

fashion analogous to their application to semi-supervised

learning [36]: our student and teacher models, in conjunc-

tion, play the discriminator’s role. The key difference here

is that GANs are generally trained to recover an underly-

ing fixed data distribution. However, our generator chases

a moving target: the distribution of data which is most in-

dicative of the discrepancies between the decision surfaces

of the current student model and its teacher model.

2.3. Black-box Gradient Approximation

Zeroth-order optimization is a common approach to ap-

proximating gradients [43, 29, 8, 24]. Such techniques have

previously been used to mount attacks against ML mod-

els in a black-box setting, e.g., to craft adversarial exam-

ples [42, 8, 4]. Various gradient estimation methods solve
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Figure 1. Dataset Interpolation with CIFAR10 as target. � = 0

implies that the inputs are sampled from the target distribution,

while � = 1 implies sampling from the surrogate.

different trade-offs between query complexity and the qual-

ity of the gradient estimate [42, 8, 4]. We use the forward

differences [44] method for its relatively low query utiliza-

tion, and systematically study the impact of its main param-

eter (e.g. the number of random directions) in Section 4.3.

3. How Hard is it to Find a Surrogate Dataset?

To motivate the need for data-free approaches to model

extraction, we evaluate if an adversary must ensure that the

distribution of its surrogate dataset is close to that of the

victim’s training dataset. We hypothesize that in the ab-

sence of this condition, distillation-based model extraction

will return a poor approximation of the victim. We perform

an analysis on the closeness of the distributions along three

axes: (1) similarity in feature space, (2) marginal proba-

bility distribution of inputs, and (3) class-conditional prob-

ability distribution of the inputs. In our experiments, we

attempt to steal ML models trained on CIFAR10 [21] and

SVHN [30] using various surrogate datasets that align dif-

ferently with the axes defined above. We study in details

the experimental setting, optimization problem, surrogate

datasets and hyperparameters in Appendix A.

Our experiments support our hypothesis. For instance, in

case of CIFAR10, with a victim model of accuracy 95.5%,

extracting it using CIFAR100 [21] as surrogate dataset re-

sults in extraction accuracy of 93.5%. This can be largely

attributed to the fact that both the CIFAR10 and CIFAR100

datasets are subsets from the same TinyImages [40] dataset.

However, on using SVHN as surrogate dataset, the model

extraction performance dropped remarkably, attaining a

maximum of 66.6% across all the hyperparameters tried. In

the extreme scenario when querying the CIFAR10 teacher

with MNIST [23]–a dataset with disjoint feature space both

in terms of number of pixels, and number of channels)—

accuracy did not improve beyond 37.2%.

On the contrary, we notice that the victim trained on

the SVHN dataset is much easier for the adversary to ex-

tract. Surprisingly, even when the victim is queried with

completely random inputs, the extracted model attains an

accuracy of over 84% on the original SVHN test set. We

hypothesize that this observation is linked to how the digit

classification task, at the root of SVHN, is a simpler task

for neural networks to solve, and the underlying representa-

tions (hence, not being as complex as for CIFAR10) can be

learnt even when queried over random inputs.

While these correlations agree with our hypothesis, these

experiments can not systematically quantify the distance

between two distributions (viz. the surrogate and the tar-

get). To more systematically understand how the shift away

from the target distribution affects extraction performance

we interpolated inputs (xin) from the surrogate (xs) and tar-

get (xt) datasets, s.t. xin = (1 � �) · xt + � · xs. Figure 1

shows the decrease in extraction accuracy as the distribution

diverges from target (CIFAR10) for two different surrogate

datasets (SVHN and MNIST).

We make two conclusions from our observations: (1) the

success of distillation-based model extraction largely de-

pends on the complexity of the task that the victim model

aims to solve; and (2) similarity to source domain appears

to be critical for extracting ML models that solve com-

plex tasks. We posit that it may be nearly as expensive for

the adversary to extract such models with a good surrogate

dataset, as is training from scratch. A weaker or non-task

specific dataset may have lesser costs, but has high accu-

racy trade-offs.

4. Data-Free Model Extraction

The goal of model extraction is to train a student model S
to match the predictions of the victim V on its private target

domain DV . That is to say, find the student model’s param-

eters ✓S that minimize the probability of errors between the

student and victim predictions S(x) and V(x) 8x 2 DV :

argmin
✓S

Px∼DV

✓

argmax
i

Vi(x) 6= argmax
i

Si(x)

◆

(1)

Since the victim’s domain, DV , is not publicly available,

the proposed data-free model extraction attack minimizes

the student’s error on a synthesized dataset, DS . The error

is minimized by optimizing a loss function, L, which mea-

sures disagreement between the victim and student:

argmin
✓S

Ex∼DS
[L(V(x),S(x))] (2)

This section describes how we minimize the number of

queries made to the victim model with a novel query gener-

ation process, and how we train the student model itself.

4.1. Overview

The overall attack setup is inspired by Generative Adver-

sarial Networks [15]. A generator (G) model is responsible

for crafting some input images, and the student model S
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Figure 2. Date-Free Model Extraction Attack Diagram

serves as a discriminator while trained to match the victim

V predictions on these images. In this setting, the two ad-

versaries are S and G, which respectively try to minimize

and maximize the disagreement between S and V .

The data flow is shown as a black arrow in Figure 2: a

vector of random noise z is sampled from a standard nor-

mal distribution and fed into G which produces an image x.

Then the victim V and student S each perform inference on

x to finally compute the loss function L.

During the back-propagation phase (shown with red ar-

rows) gradients from two different sources need to be com-

puted: the gradients of L with regards to the student’s pa-

rameters ✓S and the gradient of L with regards to the gen-

erator’s parameters ✓G. Because the victim is only accessi-

ble as a black-box, it is not possible to propagate gradients

through it. The dashed arrow indicates the need for gradient

approximation (see Section 4.3).

Student. Prior work on knowledge distillation showed

that a student model S can learn from a teacher and reach

high accuracy even though its architecture is smaller and

different [9, 27]. Therefore, in the context of model extrac-

tion, the adversary only needs to select a model architecture

which has sufficient capacity. This does not require knowl-

edge of the victim architecture but rather generic knowledge

of architectural choices made for the task solved by the vic-

tim (e.g., a convolutional neural network is appropriate for

an object recognition task). In our work, we used a student

with ResNet-18-8x architecture for model extraction.

The loss function L is used to measure the disagreement

between S and V . For this function, we use the `1 norm

loss between victim and student logits (i.e. pre-softmax ac-

tivations), li(x) and si(x) respectively. This requires us to

recover the logits from the softmax outputs, since the ad-

versary only has access to the later. We introduce an ap-

proach for doing so and further elaborate on the choice of

L is detailed in Subsection 4.2. It is important to note that

the gradient of the loss with regard to the student’s weights

✓S does not require gradients of V since the victim’s predic-

tions don’t depend on the weights ✓S .

Algorithm 1: Data-Free Model Extraction

Input: Query budget Q, generator iterations nG ,

student iterations nS , learning rate ⌘,

random directions m, step size ✏

Result: Trained S
while Q > 0 do

for i = 1 . . . nG do
z ⇠ N (0, 1)
x = G(z; ✓G)
approximate gradient r✓G

L(x)
✓G = ✓G � ⌘r✓GL(x)

end

for i = 1 . . . nS do
z ⇠ N (0, 1)
x = G(z; ✓G)
compute V(x), S(x), L(x), r✓SL(x)
✓S = ✓S � ⌘r✓SL(x)

end

update remaining query budget Q

end

Generator. The generator model G is used to synthesize

images that maximize the disagreement between S and V .

The loss function used for G is the same as for S except

that the goal is to maximize it. From this setting emerges an

adversarial game in which S and G compete to respectively

maximize and minimize the same function. In other words,

the student is trained to match the victim’s predictions and

the generator is trained to generate difficult examples for the

student. The adversarial game can be written as:

min
S

max
G

Ez∼N (0,1) [L(V(G(z)),S(G(z)))] (3)

As shown in Figure 2, computing the gradient of L with re-

gard to ✓G requires gradients of V . As we only have access

to V as a black-box, gradient approximation techniques are

required. These techniques are discussed in Section 4.3.

Algorithm. Each iteration alternates training the genera-

tor G and student S . To finely tune the balance between G
and S training, each of these training phases is repeated nG

and nS times, respectively, before moving on to the next

epoch. While setting nG higher allows G to train faster

and to produce more difficult examples for S , it can also

be wasteful if S does not see enough examples. The trade-

off between nG and nS is an additional hyperparameter that

needs tuning. The additional hyperparameters m and ✏ are

related to gradient approximation (see Section 4.3).

4.2. Loss function

Here we discuss different loss functions to measure the

disagreement between V and S . These losses are commonly
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used in the knowledge distillation literature given the simi-

larity with the model extraction task [9, 14]. The choice of

the loss function is key to the outcome of the attack since

gradients computed through S and V can easily impede the

convergence of optimizers, e.g., if they vanish because the

wrong loss function is used.

Kullback–Leibler (KL) Divergence Most prior work in

model distillation optimized over the KL divergence be-

tween the student and the teacher [9, 18, 22]. As a result,

KL divergence between the outputs of S and V is a natural

candidate for the loss function to train the student network.

For a probability distribution over K classes indexed by i,

the KL divergence loss for a single image x is defined as:

LKL(x) =

K
X

i=1

Vi(x) log

✓

Vi(x)

Si(x)

◆

(4)

However, as the student model matches more closely the

victim model, the KL divergence loss tends to suffer from

vanishing gradients [14]. Hypothesis 1 suggests that LKL

can make it difficult to achieve convergence while training

G (refer to Appendix D for justification). Specifically, back-

propagating such vanishing gradients through the generator

can harm its learning. We confirm this through empirical

evaluation as well in Section 6.1.

Hypothesis 1. The gradients of the KL divergence loss with

respect to the image x should be small compared to the gra-

dients of the `1 norm loss when S converges to V:

krxLKL(x)k ⌧
S→V

krxL`1(x)k

The `1 norm loss. To prevent gradients from vanishing,

we use the `1 norm loss (L`1 ) computed with the victim

and student logits vi and si where i 2 {1...K} and K is

the number of classes. This was previously found by Fang

et al. to prevent gradients from vanishing in knowledge dis-

tillation [14]. Even though L`1 is not differentiable every-

where, it does not suffer from the vanishing gradients issue

and yields better results in practice (see Sec. 6.1). Lastly,

the probabilities output by V need to be transformed into

logits to be used in L`1 . We describe how to perform logit

approximation in Appendix B, and evaluate in Sec. 6.3.

L`1(x) =

K
X

i=1

|vi � si| (5)

4.3. Gradient Approximation

Because only black-box access is provided for V , the op-

timizer aims at maximizing a function for which it only has

an evaluation oracle. Yet, in order to train G, gradients of

the loss with regards to G’s parameters r✓GL must be com-

puted. Thus, we approximate gradients by interacting with

the oracle: we maximize L with zeroth-order optimization.

4.3.1 Images as a Proxy

The number of parameters in G is typically large (millions

of parameters) and it would be very query-expensive for a

zeroth-order optimizer to get accurate gradient estimations

on this large space. Instead, one can approximate gradients

with regards to the input images x, and then back-propagate

this gradient through G [20]. This way the dimensionality of

gradients being approximated is much smaller, which yields

more accurate zeroth-order approximations.

Additionally the oracle might only accept images that lie

within a pre-defined input domain, for example [�1, 1]d.

To force G to respect this constraint, we use a hyperbolic

tangent activation at the end of the generator architecture.

Furthermore, zeroth-order gradients approximation meth-

ods usually evaluate the function in the neighborhood of a

given point, which can result in query images slightly out-

side the input domain. To avoid this, we approximate gradi-

ents with regard to the pre-activation images (i.e. just before

the hyperbolic tangent function is applied).

4.3.2 Forward Differences Method

The Forward Differences method approximates gradients

by computing directional derivatives Dui
f(x) of a function

f at a point x along m random directions ui. The direc-

tional derivatives are computed by measuring the variation

of f a small step of size ✏ in the direction ui. They are then

averaged to form an estimator of the gradient rFWDf(x).
In a way, each directional derivative brings some amount of

information about true gradient. The estimator being more

accurate as the number of random directions increases.

rFWDf(x) =
1

m

m
X

i=1

d
f(x+ ✏ui)� f(x)

✏
ui (6)

The main advantage of this method is that the number of

query directions m may be chosen independently of the in-

put space dimensionality, offering a trade-off between query

utilization and gradient accuracy. This makes it an appeal-

ing candidate for DFME [20]. The influence of the number

of query directions m is further described in Section 6.2.

Finite differences, an alternative gradient approximation

method used when crafting adversarial examples [4], re-

quires too many queries per gradient estimate to be viable

for data-free model extraction.

5. Experimental Validation

We evaluate data-free model extraction (DFME) against

victim models trained SVHN and CIFAR-10. We show that

the resulting student models can reach high accuracy (e.g.,

95.2% on SVHN) even when the generator only has access

to inaccurate gradient estimates. Later in Section 6, we per-

form an ablation study and evaluate the impact of each at-
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tack component on the final student model accuracy and on

the query budget Q.

5.1. Datasets and Architectures

We evaluate the effectiveness of the proposed DFME

method on two datasets: SVHN and CIFAR-10. For each

dataset, the victim model architecture is a ResNet-34-8x.

These victim models were trained during 50 epochs for

SVHN and 200 for CIFAR-10 with SGD at an initial learn-

ing rate of 0.1, decayed by a factor of 10 at 50% of training.

We use ResNet-18-8x as the architecture for our student

model. This is inspired by previous works in knowledge

distillation [14] that show how a smaller student is sufficient

to distill the knowledge of a larger teacher. The network

was trained with a batch size of 256 with SGD, with an

initial learning rate of 0.1, a weight-decay of 5.10−4, and a

learning rate scheduler that multiplies the learning rate by a

factor 0.3 at 0.1⇥, 0.3⇥, and 0.5⇥ the total training epochs.

The default query budget Q is 2M for SVHN, and 20M for

CIFAR-10 in our experiments.

The generator used three convolutional layers, inter-

leaved with linear up-sampling layers, batch normalization

layers, and ReLU activations for all layers except the last

one. The final activation function was the hyperbolic tan-

gent function to output values in the range [-1,1] (see Sec-

tion 4.3). It was also trained with a batch size of 256, but

using an Adam optimizer with an initial learning rate of

5.10−4 which is decayed by a factor 0.3 at 10%, 30%, and

50% of the training.

For gradient approximation we sample m = 1 random

directions and a step size ✏ = 10−3.

5.2. Results

We compare the performance of different extraction at-

tacks in Table 1. We measure the ratio between the stu-

dent’s accuracy and the victim’s accuracy on the victim’s

test set. This helps compare the performance of DFME

across different datasets. The student model’s normalized

accuracy is reported for each dataset and extraction method

evaluated—our approach (DFME), our approach with KL

divergence loss (DFME-KL), our approach without logit

correction (Log-Probabilities), and concurrent work [20]

(MAZE). Further, we perform DFME with a range of query

budgets and reported the accuracy in Figure 3.

Without any knowledge of the original training distri-

bution, the proposed DFME method achieved as high as

88.1% (0.92x target) of accuracy with Q = 20M and 89.9%

(0.94x target) with Q = 30M. The accuracy of the extracted

model exceeds that reported in concurrent work which we

refer to as MAZE in our results [20]. However, in our

best-efforts at reproducing their results with the details in

the paper,2 we were unsuccessful in achieving the same re-

2The authors declined to share their code upon request.

Figure 3. Test accuracy wrt query budget, for SVHN and CIFAR10

ported accuracy, and were only able to achieve an accuracy

of 45.6% (0.48x target) at best on the student model. In ad-

dition, MAZE reports that they were unable to learn when

using extremely few directions (such as m = 1) for the gra-

dient approximation with CIFAR10, whereas we find that

weak gradient approximations are beneficial to reduce the

overall query budget of successful attacks.

We observed similar results for the SVHN victim model:

reaching as high as 95.2% (0.99x target) accuracy with only

2M queries. The task for SVHN is much simpler than CI-

FAR10 given that a model with 84% (0.87x target) accu-

racy can be extracted from just random noise. The proposed

method allows one to achieve far higher accuracy.

One limitation of our study is that the reported query

budgets do not include the cost of hyperparameter tuning.

This is an important direction for future work as prelim-

inary experiments suggest that extraction accuracy can be

sensitive to the choice of hyperparameters.

6. Ablation Studies

Our work systematically transitions from a data-free

knowledge distillation paradigm [14, 27] to a data-free

model extraction scenario. The main challenges in this tran-

sition were (1) to surpass the need for true gradients for

training the student; (2) the lack of access to true victim

logits; and (3) the need to restrict the query complexity of

the attacks (to reduce the cost of stealing). With this goal,

we made specific choices with regards to (a) the loss func-

tion; (b) gradient approximation; and (c) logit access. In

this section, we detail the impact of each of these choices to

the final performance of our proposed DFME method.

6.1. Choice of Loss Function

The choice of loss is of paramount importance to a suc-

cessful extraction. In our DFME approach, the choice of

loss involves similar factors to those outlined in research

on GANs: multiple works have discussed the problem of

vanishing gradients as the discriminator becomes strong in

case of GAN training [1, 2]. For our DFME approach, we

minimize the `1 distance between the output logits of the

student and the teacher. We find that this significantly im-

proves convergence and stability over other possible losses,

such as the KL divergence chosen in [20].
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Dataset (budget) Victim accuracy DFME DFME-KL MAZE* [20] Log-Probabilities

CIFAR10 (20M) 95.5% 88.1% (0.92×) 76.7% (0.80×) 45.6% (0.48×) 73.2% (0.77×)

SVHN (2M) 96.2% 95.2% (0.99×) 84.7% (0.88×) 91.1% (0.95×) 94.4% (0.98×)

Table 1. Accuracy and normalized accuracy of data-free model extraction methods. Results for ‘MAZE’ reflect our best-effort reproduction.

Figure 4. Test accuracy as training progresses for `1 and KL diver-

gence losses.

We perform DFME in the same setting to evaluate the

difference between the KL divergence and `1 losses. Be-

low, we draw comparisons based on two metrics: (1) Final

accuracy attained by the student at the end of a fixed num-

ber of queries as well as the learning curves of the student;

and (2) The norm of gradients of the loss with respect to the

input image as the training progresses.

Test Accuracy. The key metric of interest for this com-

parison is the normalized accuracy of the student model at

the end of a designated query budget Q of 20M queries for

CIFAR10 and 2M queries for SVHN. Table 1 shows that

using the `1 loss achieves significantly better test accuracies

compared to the KL divergence loss. For instance, on CI-

FAR10 the accuracy improves from 76.7% to 88.1% when

switching from KL divergence to the `1 loss. We also vi-

sualize a learning curve for CIFAR10 in Figure 4: the KL

divergence objective slows converge and tappers off earlier,

even when the student has yet to plateau.

Gradient Vanishing. The KL divergence loss suffers

from vanishing gradients, as explained in Section 4.2. In

DFME, these gradients are used to update the generator’s

parameters and are thus essential to synthesize queries

which extract more information from the victim. In Fig-

ure 5 we empirically demonstrate that as the student accu-

racy approaches that of the victim model, the gradients of

the KL divergence loss with respect to the input image re-

duce significantly in norm. The same decay is slower and

less significant in case of the `1 loss. We hypothesize that

these vanishing gradients are the cause for degraded accu-

racy when using the KL divergence loss.

Figure 5. Norm of gradients with respect to the input image, for

the KL divergence and `1 norm losses.

m 1 3 5 8 10

No. of Queries 10.04 10.02 16.33 13.80 20.00

Table 2. Minimum queries (in millions) to reach 85% accuracy on

CIFAR10, for different number of gradient approximation steps.

Figure 6. Accuracy of the model during training for different num-

ber of gradient approximation steps, m.

Model MTL (±2.3e-6) MC (±2.3e-6) LP (±1.3)

Resnet-34-8x -1.24e-5 1.24e-5 4.98

Densenet 121 5.53e-7 1.88e-6 3.88

VGG 16 1.97e-5 1.97e-5 3.93

Table 3. Mean of true logits (MTL) for 3 victim architectures;

reconstruction error (MAE) between approximate and true logits

when using mean correction (MC) and log-probabilities (LP).

6.2. Gradient Approximation

Recall that the `1 loss cannot be back-propagated

through the victim since the adversary only has access to

it as a black-box. Recent work on data-free model distil-

lation [14] has claimed that the gradient information from

the teacher is ‘indispensable at the beginning of adversarial

training’ because the student alone can not provide useful
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signal to the generator when randomly initialized. Below

we consider: (1) the quality of approximation required; and

(2) the overall impact on query complexity. In particular, we

compare two approaches for improving the training of our

DFME generator: using an increased number of queries to

compute more accurate gradient estimates or training gen-

erator for longer using poorer gradient estimates.

Number of gradient approximation steps. When gradi-

ents used to update the generator are approximated with the

forward differences method, a larger number of random di-

rections m allows one to compute more accurate gradients.

However, in a model extraction setting, each additional gra-

dient approximation step comes at the cost of increased

query complexity. In practice, with a fixed query budget

Q, changing the number of random directions directly im-

pacts the proportion of queries used to train each network.

This ratio of queries r used to train the student is given by:

r =
nS

nS + (m+ 1)nG

(7)

In our setting (i.e. nG = 1, nS = 5) choosing m equal to

1 or 10 respectively results in 71% and 31% of the query

budget being used to directly train the student, while the

remainder is spent to get better gradient estimates to train

the generator. Despite using a majority of queries to train

the generator, the setting with m = 10 achieves comparable

accuracy. In Table 2, we observe how choosing lower values

of m achieves 85% test accuracy in much fewer queries.

Amortizing the cost. We hypothesize that since early in

the training the discriminator (or student) provides only lit-

tle signal, it is beneficial for the generator to initially rely

on weak signals of gradient approximation. Effectively, this

helps amortize the cost of gradient approximation over mul-

tiple epochs, and effectively pushes the expense to a later

stage when the discriminator (or student) provides stronger

signal. Figure 6 shows that relative to the query budget uti-

lization, different values of m perform similarly.

This also suggests a hybrid strategy where the adver-

sary first extracts a (somewhat poor) student model through

distillation from a surrogate dataset. Indeed, we show in

Section 3 that surrogate datasets drawn from a different

distribution (than the victim model’s training data) enable

distillation-based model extraction—albeit to a lower accu-

racy than in-distribution surrogate datasets. This poor initial

student can then be improved by synthesizing queries with

the data-free model extraction’s generator to bring the stu-

dent model closer to the victim model’s performance.

Case m = 1. In the extreme case where the number of

gradient approximation steps for forward differences (m) is

set to 1, the approximated gradient is colinear to the random

direction sampled for the approximation, but always points

in the direction that helps maximize the loss (i.e. its projec-

tion onto the true gradient is positive). The cosine similarity

with the true gradient is, thus, very small. To validate this

effect, we additionally experiment with m = 1 where the

approximate gradient was randomly flipped to the wrong di-

rection with half probability. As hypothesized, the student

accuracy did not improve beyond 20% in our experiments

on CIFAR10. This suggests that computing gradients that

are extremely inaccurate makes it possible to train the stu-

dent as long as these gradients are in the correct direction.

6.3. Impact of Logits Correction

A model extraction attack should be applicable to the na-

ture of predictions offered by MLaaS APIs. Most APIs pro-

vide per-class probability distribution rather than the true

logits, since probabilities are more easily interpreted by the

end user. To perform model extraction successfully we thus

need to recover the logits from the victim’s prediction prob-

abilities. We show that is is possible to do so and recover

approximate logits whose Mean Average Error (MAE) with

the true logits is low, on three different victim architecture.

The MAE reported in Table 3 are negligible compared to

true logits which take values in the order of magnitude of 1.

Therefore, the adversary can use these approximate logits

in lieu of the true logits. In comparison, approximating true

logits with plain log-probabilities resulted in a MAE in the

order of magnitude of the true logits themselves. Using the

log-probabilities with such a large error makes the student

training harder—it did not yield accuracy above 75%.

This method is effective because the mean of the true

logits is nearly 0 (see Table 3). Therefore, subtracting the

mean from the log-probabilities is equivalent to subtracting

the additive constant C(x) itself.

7. Conclusions

In this paper, we demonstrate that data-free model ex-

traction is not only practical but also yields accurate copies

of the victim model. This means that model extraction at-

tacks is a credible threat to the intellectual property of mod-

els released intentionally or not to the public. We believe an

interesting direction for future work is to detect such queries

without decreasing the model’s utility to legitimate users.
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Wasserstein gan, 2017. 6

[3] Jimmy Ba and Rich Caruana. Do deep nets really need to

be deep? In Advances in neural information processing sys-

tems, pages 2654–2662, 2014. 2

[4] Arjun Nitin Bhagoji, Warren He, Bo Li, and Dawn Song.

Practical black-box attacks on deep neural networks using ef-

ficient query mechanisms. In European Conference on Com-

puter Vision, pages 158–174. Springer, 2018. 2, 3, 5, 12

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Sub-

biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-

tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-

hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom

Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,

Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,

Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-

ford, Ilya Sutskever, and Dario Amodei. Language models

are few-shot learners, 2020. 1

[6] V. Chandrasekaran, K. Chaudhuri, I. Giacomelli, S. Jha, and

Songbai Yan. Model extraction and active learning. ArXiv,

abs/1811.02054, 2018. 1

[7] Varun Chandrasekaran, Kamalika Chaudhuri, Irene Gia-

comelli, Somesh Jha, and Songbai Yan. Exploring connec-

tions between active learning and model extraction, 2019. 1

[8] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and

Cho-Jui Hsieh. Zoo: Zeroth order optimization based black-

box attacks to deep neural networks without training substi-

tute models. In Proceedings of the 10th ACM Workshop on

Artificial Intelligence and Security, pages 15–26, 2017. 2, 3,

12

[9] Jang Hyun Cho and Bharath Hariharan. On the efficacy of

knowledge distillation, 2019. 4, 5, 11

[10] Yoojin Choi, Jihwan Choi, Mostafa El-Khamy, and Jungwon

Lee. Data-free network quantization with adversarial knowl-

edge distillation. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Work-

shops, pages 710–711, 2020. 2

[11] Jacson Rodrigues Correia-Silva, Rodrigo F. Berriel, Clau-

dine Badue, Alberto F. de Souza, and Thiago Oliveira-

Santos. Copycat cnn: Stealing knowledge by persuading

confession with random non-labeled data. 2018 Interna-

tional Joint Conference on Neural Networks (IJCNN), Jul

2018. 1

[12] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In 2009 IEEE Conference on Computer Vision and Pattern

Recognition, pages 248–255, 2009. 1

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is

worth 16x16 words: Transformers for image recognition at

scale, 2020. 1

[14] Gongfan Fang, Jie Song, Chengchao Shen, Xinchao Wang,

Da Chen, and Mingli Song. Data-free adversarial distillation.

arXiv preprint arXiv:1912.11006, 2019. 2, 5, 6, 7

[15] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial networks, 2014. 2, 3

[16] Jianping Gou, Baosheng Yu, Stephen John Maybank, and

Dacheng Tao. Knowledge distillation: A survey, 2020. 2

[17] Alon Halevy, Peter Norvig, and Fernando Pereira. The un-

reasonable effectiveness of data. IEEE Intelligent Systems,

24:8–12, 2009. 1

[18] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015. 2, 5, 11

[19] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex

Kurakin, and Nicolas Papernot. High accuracy and high fi-

delity extraction of neural networks. In 29th {USENIX} Se-

curity Symposium ({USENIX} Security 20), 2020. 1

[20] Sanjay Kariyappa, Atul Prakash, and Moinuddin Qureshi.

Maze: Data-free model stealing attack using zeroth-order

gradient estimation, 2020. 2, 5, 6, 7

[21] Alex Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, 2009. 3, 11

[22] Xu Lan, Xiatian Zhu, and Shaogang Gong. Knowledge dis-

tillation by on-the-fly native ensemble, 2018. 5, 11
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