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Abstract

Perspective-n-Point-and-Line (PnPL) algorithms aim at

fast, accurate, and robust camera localization with respect

to a 3D model from 2D-3D feature correspondences, being

a major part of modern robotic and AR/VR systems. Current

point-based pose estimation methods use only 2D feature

detection uncertainties, and the line-based methods do not

take uncertainties into account. In our setup, both 3D co-

ordinates and 2D projections of the features are considered

uncertain. We propose PnP(L) solvers based on EPnP [20]

and DLS [14] for the uncertainty-aware pose estimation.

We also modify motion-only bundle adjustment to take 3D

uncertainties into account. We perform exhaustive syn-

thetic and real experiments on two different visual odometry

datasets. The new PnP(L) methods outperform the state-

of-the-art on real data in isolation, showing an increase in

mean translation accuracy by 18% on a representative sub-

set of KITTI, while the new uncertain refinement improves

pose accuracy for most of the solvers, e.g. decreasing mean

translation error for the EPnP by 16% compared to the

standard refinement on the same dataset. The code is avail-

able at https://alexandervakhitov.github.io/uncertain-pnp/.

1. Introduction

Camera localization using sparse feature correspon-

dences is a major part of augmented or virtual reality and

robotic systems. The Perspective-n-Point(-and-Line), or

PnP(L), methods can be successfully used to estimate the

pose of a calibrated camera from sparse feature correspon-

dences. Line features can increase localization accuracy

in man-made self-similar environments which lack surfaces

with distinctive textures [36, 43, 15, 29], motivating the use

of PnP(L) methods [41].

While vision-based localization with respect to an au-
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PCI2019-103386 and Marı́a de Maeztu Seal of Excellence MDM-2016-
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Figure 1. We propose globally convergent PnP(L) solvers leverag-

ing a complete set of 2D and 3D uncertainties for camera pose es-

timation. A 3D scene model with sparse features is reconstructed

from images with known poses (right cameras), and we need to

find a pose of a camera on the left. The point has 2D detection un-

certainty (blue ellipsoid), and 3D model uncertainty (red ellipsoid

in the scene).

tomatically reconstructed map of sparse features is an im-

portant part of current robotic and AR/VR systems, com-

monly used PnP methods treat the features as absolutely

accurate [47, 14, 20, 16]. The more recent 2D covariance-

aware methods relax this assumption [40, 6], but only for

the feature detections, still assuming perfect accuracy of the

3D feature coordinates.

In maps reconstructed with structure-from-motion, 3D

feature coordinate accuracy can vary. Stereo triangula-

tion errors grow quadratically with respect to the object-to-

sensor distance, so the accuracy in estimating point depth

can vary in several orders of magnitude, while the line

stereo triangulation accuracy depends on the angle between

the line direction and the baseline. Nevertheless, to the best

of our knowledge, no prior method for PnP(L) was designed

to take both 3D and 2D uncertainties into account.

We propose to integrate the feature uncertainty into the

PnP(L) methods, see Fig. 1, which is our main contribu-

tion. We build on the classical DLS [14] and EPnP [20]
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methods. Additionally, we propose a modification to the

standard nonlinear refinement, which is normally used after

the PnP(L) solver, to take 3D uncertainties into account. An

exhaustive evaluation on synthetic data and on the two real

indoor and outdoor datasets demonstrates that new PnP(L)

methods are significantly more accurate than state-of-the-

art, both in isolation and in a complete pipeline, e.g. the

proposed DLSU method reduces the mean translation error

on KITTI by 18%, see Section 4. The proposed uncertain

pose refinement can improve the pose accuracy by up to

16% in exchange of an extra 5-10% of the computational

time. In a synthetic setting with noise in 2D feature detec-

tions, the new methods have the same accuracy as the most

accurate 2D uncertainty-aware methods [6, 40]. The code

is available at https://alexandervakhitov.github.io/uncertain-

pnp/.

2. Related work

We start with discussing how proposed methods relate

to known PnP methods for arbitrary number of correspon-

dences n, PnPL and 2D covariance-aware methods.

Perspective-n-point. Geometric gold standard cost [13]

for pose estimation for arbitrary n is highly non-convex, and

direct pose solvers rely on simplified algebraic costs. Early

methods [28, 22, 35, 31, 8, 4, 1] were slow and inaccurate.

Starting from [24] fast direct solvers were developed [21,

14, 16, 47]. EPnP [24] was the first to provide fast

and accurate pose estimate solving a least-squares sys-

tem with nonlinear constraints. EPnP was developed fur-

ther in [20, 7, 6, 41]: [20] proposed adaptive PCA-based

choice of control points and a fast iterative refinement step,

[7] designed an EPPnP method for robust pose estimation

in presence outliers. Structure-from-motion [34], visual

SLAM [25], object pose estimation [38] rely on EPnP due

to its robustness and fast computational time. A proposed

solver EPnPU is a derivative of EPnP, providing better ac-

curacy when feature uncertainty information is available.

Groebner basis solvers for polynomial systems are more

accurate but are computationally more demanding [14, 48,

47, 16, 12]. The DLS method [14] is fast enough for real-

time use and has higher accuracy compared to the EPnP,

while the most accurate method OPnP [47] is significantly

slower. DLS minimizes the object space error and uses the

Cayley parameterization, and has a singularity which can be

avoided [27]. In this work, we build on the DLS and take

feature uncertainties into account, however relying on the

OPnP-like algebraic cost instead of the object space error.

PnPL methods. An early DLT method [13] as well as an

algorithm [4] can compute camera pose from n line cor-

respondences, but have inferior accuracy compared to new

polynomial solver-based approaches [23, 30, 45, 18, 49].

Extending EPnP or OPnP to PnPL [41, 42] is practical
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Figure 2. Schematic representation of the PnPL(U) problem, see

text.

since a PnPL method uses all available mixed correspon-

dences at once. In this work, we propose EPnPLU/DLSLU

methods, which take line uncertainty into account in order

to improve the pose estimates.

PnP with uncertainty. Features are detected with vary-

ing uncertainty, and 2D uncertainty-aware PnP meth-

ods [6, 40] use it to improve the estimated pose accu-

racy. CEPPnP [6] builds on EPPnP and inherits the base

method’s low computational complexity. MLPnP [40]

is more accurate and computationally demanding than

CEPPnP, because it combines both a linear solver and a

refinement into one method. Both CEPPnP and MLPnP

use only 2D feature detection uncertainty and work only for

points.

In contrast, the approach we present in this paper is more

accurate due to the use of both 2D and 3D feature uncer-

tainty and works for a mixed set of line and point corre-

spondences.

3. Method

We start with formulating the problem, and then proceed

to introduce the uncertainty-aware pose solvers and the non-

linear refinement method. We conclude the section with de-

scribing the approach for obtaining the feature covariances.

We denote matrices, vectors and scalars with capital, bold

and italic letters, e.g. R, x, γ, and x(i) denotes the i-th com-

ponent of x.

3.1. PnP(L) with Uncertainty

We are given a set of np 3D points {xi}
np

i=1 and nl 3D

line segments defined by their endpoints {pi}
nl

i=1, {qi}
nl

i=1.

Points and line segment endpoints are corrupted by zero-

mean Gaussian noises with covariances Σxi
, Σpi

and Σqi
.

The point projections {ui}
np

i=1 are corrupted with zero-

mean Gaussian noises with covariances Σui
. The line seg-

ments projections {li}
nl

i=1 are represented as normalized

line coefficients, so ‖l
(1:2)
i ‖ = 1. We model the line seg-

ment detection uncertainty as a zero-mean Gaussian added

to the distance between the line and any point on the image
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plane, with a variance σ2
l,i, see Fig. 2. We consider a camera

with known intrinsics, assuming that the camera calibration

matrix K is an identity matrix.

Our problem is to estimate a rotation matrix R and a

translation vector t aligning the camera coordinate frame

with the world frame. We assume knowledge of an estimate

of the average scene depth d̄, and we consider also the case

when there is a rough initial hypothesis R̂, t̂ available.

3.2. Uncertainty for Pose Estimation Solvers

In this section, we derive methods for uncertainty-aware

pose estimation. We find the uncertainties for the algebraic

feature projection residuals and incorporate them into the

pose solvers in the form of the residual covariances. We

start with point features, then move to lines.

Point residuals. Let us parameterize a point in the camera

coordinate frame as x̂(θ,x) = Rx + t, where θ encodes

the camera parameters R, t. The algebraic point residual is

based on perspective point projection:

rpt(θ,x,u) = x̂(1:2)(θ,x)− ux̂(3)(θ,x), (1)

where u is the projected point.

By our assumptions x and u are corrupted with addi-

tive zero-mean Gaussian noises with covariances Σx, Σu:

x̂(θ,x) = Ex̂ + ξ and u = Eu + ζ, where ξ, ζ are zero-

mean Gaussian noise vectors. The covariance of x̂(θ,x)
is:

Σx̂ = RΣxR
T =

[

S w

wT γ

]

. (2)

Substituting into (1), we obtain

rpt = E{x̂(1:2) − ux̂(3)}+ ξ(1:2) − uξ(3) − ζx̂(3) − ξ(3)ζ,
(3)

omitting the function arguments for clarity. By expressing

the covariance of (3) as Erpt(rpt)T , using the independence

of ξ and ζ we obtain the residual covariance:

Σrpt = S+ γuuT + (x̂(3))2Σu − (uwT +wuT ). (4)

To compute Σrpt , we need to know R and x̂(3). If we ap-

proximate the model point covariance Σx ≈ σ2
I, where

I denotes the identity, then Σx̂ ≈ σ2
I as well, as fol-

lows from (2). If we have a rough pose hypothesis R̂, t̂,

we can use it instead to approximate Σrpt . We propose

the new solvers in two modifications. In the first case, the

solver uses the average scene depth estimate d̄ to approx-

imate the point depths, and an isotropic approximation to

3D point covariance (see Section 3.6 below), we dub these

solvers EPnPU and DLSU. In the second case, the solver

uses the pose hypothesis, typically available as an output

of the RANSAC loop, to approximate the point depths and

compute the 3D point covariance estimates; we denote these

methods DLSU*, EPnPU*.

Line residuals. We are given the normalized 2D line seg-

ment coefficients l as well as the segment 3D endpoints

p,q, and consider the algebraic line residual following [41]:

rln(θ,p,q, l) =

[

lT p̂(θ,p)
lT q̂(θ,q)

]

, (5)

where p̂(θ,p), q̂(θ,q) are the 3D endpoints in the camera

coordinate frame, ln stands for ’line’. Let us decompose

the endpoint p̂(θ,p) = Ep̂(θ,p) + ηp, where ηp has the

covariance Σp̂ = RΣpR
T . Under our model for the line de-

tection noise, the noise-corrupted signed line-point distance

is lTyh = E{lT }yh + νy, where νy is a zero-mean Gaus-

sian with variance σ2
l , yh is an arbitrary image point, in

homogeneous coordinates. If yh is a projection of a point

y = λyyh with depth λy, then lTy = E{lTy} + λyνy .

Therefore,

lT p̂(θ,p) = E{lT p̂(θ,p)}+ λpνp + lTi ηPi
, (6)

where νPi
is the line detection noise. The variance is

E(lT p̂− ElT p̂)2 = λ2
pσ

2
l + lTΣp̂l, (7)

where we omit the function arguments for brewity. Under

our model, the noise in p, q and the line detection noises

are assumed independent. We acknowledge that this is a

simplification, however it speeds up the computations, and

works in practice, as we show in the experiments. More-

over, other works, e.g. [29], rely on such a model as well,

while in the offline setting one could follow [10] in using

more advanced noise models for the lines. The covariance

for the line residual is

Σrln = σ2
l diag(λ2

p, λ
2
q) + diag(lTΣp̂l, l

TΣq̂l). (8)

In order to compute the covariance we need R and the point

depths λp, λq. For EPnPLU and DLSLU, we approximate

the point depths with d̄ given in the problem formulation

and the covariances Σ
P̂i

, Σ
Q̂i

as isotropic, for EPnPLU*

and DLSLU* we use a pose hypothesis R̂, t̂ to compute

these values.

So far we obtained a general form of residual covariances

for point and line features under our noise model. Next we

show, how to use it in the PnP(L) solvers.

3.3. EPnP with Uncertainty

We generalize the EPnP [20] and EPnPL [41] to leverage

2D and 3D uncertainties in pose prediction. EPnP starts

with computing an SE3-invariant barycentric representation

α of a point x:

x = Cα, (9)

where C = [c1, . . . , c4] is a matrix of the four specifi-

cally chosen control points in the world coordinate frame.
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[20] proposed to choose the first point c1 as a mean of xi

and c2, c3 and c4 as the maximum variance directions com-

puted using principal component analysis (PCA). Prelim-

inary experiments show, that when 3D noise is added to

x, the accuracy of the PCA version degrades. This moti-

vated us to modify the control points choice to use the 3D

uncertainties. We can get a straightworward theoretically

solid PCA generalization under isotropic approximation of

3D point covariances Σx ≈ σ2
xI, where σ2

x = 1
3 trace(Σx).

In particular, classical PCA solves a following problem to

obtain the j-th principal direction:

∑

i

(zT x̃i)
2 → max

z
s.t. ‖z‖ = 1, (10)

where x̃i are the centered points with subtracted projections

on the first j − 1 components, and z is the sought princi-

pal direction. The covariance is cov(zT x̃) = zT x̃x̃T z =
zTΣx̃z = σ2

x using the fact that ‖z‖ = 1. Then, we modify

the problem as

∑

i

σ−2
x,i(z

T x̃i)
2 → max

z
s.t. ‖z‖ = 1, (11)

see more details in the supp. mat.

The camera pose in EPnPL is represented through the

control points in the camera coordinate frame, so θEPnP =
Ĉ = [ĉ1, . . . , ĉ4], and ĉi = Rci + t. The camera frame

point is x̂(θEPnP ,x) = Ĉα(x). EPnP(L) uses the alge-

braic residuals for lines and points (1, 5), solving a problem

‖Mvec(Ĉ)‖2 → min
Ĉ

, (12)

where vec(·) denotes a vectorized matrix. The solution is

given by an eigendecomposition of a 12 × 12 matrix M
T
M.

The method then looks for Ĉ in the subspace of the eigen-

vectors of MT M with smallest eigenvalues.

The proposed EPnP(L)U method follows the same strat-

egy, constructing the uncertainty-augmented matrix MU . In

the previous section we noted, that to estimate the covari-

ances of the point and line algebraic residuals (1, 5) we

need to know R and t. However, approximating the point

covariances by isotropic covariance matrices as Σx ≈ σ2
xI,

Σp ≈ σ2
pI, Σq ≈ σ2

qI, where σ2
·
= 1

3 trace(Σ
·
), we get rid

of the dependency on R in the residuals. By replacing the

point depth with the approximate scene depth d̄, we com-

pute the point (1) and line (5) residuals as

ΣEPnP
rpt = σ2

xI+ d̄2Σu + σ2
xuu

T . (13)

ΣEPnP
rln = σ2

l d̄
2
I+ ‖l‖2diag(σ2

p, σ
2
q). (14)

We also consider a case when a rough pose hypothesis is

given. In this case, we still use the isotropic approxima-

tion of uncertainties, but use the pose to compute estimates

of the depths of points. The method proceeds as the basis

version. Next we describe our DLS-based approach.

3.4. DLS with Uncertainty

The DLS method [14] employs Cayley rotation param-

eterization to solve a least-squares polynomial system of

the algebraic residuals for the point correspondences with

the Groebner basis techniques. It relies on so-called ob-

ject space error PnP, when one minimizes the distance be-

tween the backprojection ray of the point detection and the

3D point. However, we decided to use the algebraic resid-

ual (1), which allows for faster computations and results in

a method with similar accuracy, see supp.mat. for the com-

parison. DLS performs eigendecomposition of a 27 × 27
matrix. We keep the Cayley parameterization of DLS, but

reformulate the equations, and generate the new solver of

the same dimension using the generator of [19].

The DLS uses the following parameterization of a point

in camera coordinates: x̂(θ,x) = R(s)x + t, so θDLS =
[sT , t]T , where s ∈ R

3 is a vector of the Cayley rotation

parameters:

R(s) =
1

1 + ‖s‖2
(

(1− ssT )I+ 2[s]x + 2ssT
)

, (15)

[s]x denotes a cross product matrix. We use the residuals

for lines and points (5,1) with the camera parameterization

θDLS . The residual covariances are obtained as in a case of

EPnP. The point or line residual rk(s, t) can be expressed

using the DLS parameterization as

rk(s, t) = Akvec(R(s)) + Tkt, (16)

and we denote its covariance as Σrk . The cost function of

the method is

1

2

nr
∑

k=1

rTk (s, t)Σ
−1
rk

rk(s, t) → min
s,t

. (17)

We constrain the gradient of the cost by t to be zero,

express t using the remaining unknowns and obtain the cost

that depends only on R(s). Following DLS, we multiply this

cost by (1 + ‖s‖2)2, so it becomes a polynomial of s. We

constrain its gradient by s to be zero and obtain a third order

polynomial system with three unknowns. It is solved using

the generated solver, then t is found using an expression

obtained before, see the details of the derivation in the supp.

mat.

To improve accuracy, we also use an optional non-linear

refinement stage by refining the cost (17) with a Newton

method starting from the output of a solver, computing the

Hessian of the cost analytically.

One often refines the output of the pose solver with non-

linear minimization of the gold-standard feature reprojec-

tion errors [13]. In the following section we propose a new

formulation of a refinement method in order to take the full

set of feature uncertainties into account.
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3.5. Uncertaintyaware Pose Refinement

When the structure is fixed, to obtain optimal estimates

of the camera pose one uses motion-only bundle adjust-

ment [39], that is formulated as a non-linear least squares-

based log-likelihood maximization. In feature-based pose

estimation, one runs it as a final refinement step, initializing

with the output of a pose solver. A standard 2D covariance-

aware formulation of the motion-only bundle adjustment

cost is:

L(θ) =

np
∑

i=1

‖r̄pti ‖2Σ
r̄
pt
i

+

nl
∑

i=1

‖r̄lni ‖2Σ
r̄
ln
i

→ max
θ

, (18)

where θ is the camera pose, r̄
pt
i , r̄lni are the gold standard

point and line feature residuals, and ‖ · ‖Σ denotes the Ma-

halanobis distance with covariance Σ. The ’gold standard’

residual for a point [13] is

r̄pt(x, R, t) = u− π(Rx+ t), (19)

where the projection function π is defined as π(x̂) :=
1

x̂(3)x
(1:2), and x̂ = Rx + t. A ’gold standard’ residual

for a line is

r̄ln(p,q, R, t) =

[

lTπ(Rp+ t)
lTπ(Rq+ t)

]

. (20)

Visual odometry systems, e.g. [25, 26], use the 2D co-

variance of the feature detection as the residual covariance.

This corresponds to setting Σr̄pt = Σu, Σr̄ln = σ2
l I, and

we will dub this scheme as standard refinement. It is of-

ten implemented based on a fast and efficient Levenberg-

Marquardt method.

In our case, we wish to use the full residual covariance,

including both 2D and 3D uncertainty. For the point resid-

ual it is

Σr̄pt = Σu + J(x̂)RΣxR
T
J
T (x̂), (21)

where J is a Jacobian of π with respect to x̂; for the line

residual the covariance is

Σr̄ln = σ2
l I+ diag

(

lTΣπ

p̂ l, l
TΣπ

q̂ l
)

, (22)

where Σπ

f̂
= J(f̂)RΣfR

T
J
T (f̂), for f̂ = {p̂, q̂}, f =

{p,q}.

The covariances in the form (21, 22) are not constant

with respect to the camera pose. They cannot be used in a

classical Gauss-Newton scheme.The cost (18) can be mini-

mized using non-linear minimization, defining a full uncer-

tain refinement method.

However, the full uncertain refinement has a downside

of being computationally inefficient compared to a stan-

dard refinement. Therefore, we propose a technique re-

sembling Iterative Reweighted Least Squares, in which we

make Gauss-Newton iterations, but update the estimate of

the covariances (21, 22) on each step. We call it (itera-

tive) uncertain refinement. This technique results in similar

accuracy to the full uncertain refinement, but in terms of

computational efficiency is comparable to the standard re-

finement, as we show in the experiments section below. In

the following section, we explain our approach to obtaining

the point and line uncertainties.

3.6. Obtaining the Uncertainties

The 2D feature uncertainties can be obtained from a fea-

ture detector, e.g. for a multiscale pyramidal detector with

a scale step of κ we estimate Σu = σ2
oI, σ

2
l = σ2

o , where

σo = κo−1ǫ, and o is a level of the image pyramid to which

the feature belongs, ǫ is the feature detection accuracy.

Uncertainty for the 3D point can be estimated after the

triangulation following a standard error propagation tech-

nique, e.g. [13], Chapter 5. While there exists a single nat-

ural 3D point parameterization, the situation with line fea-

tures is less clear. The line covariance formulation depends

on the representation used for line triangulation, and there

are several known parameterizations of lines,see [5, 46, 29].

As long as we represent a line in 3D through the endpoints

of some 3D line segment, we require a method to accu-

rately find these endpoints and their covariances. We re-

construct the endpoints as the unknowns, and for the first

camera we use the point-based reprojection residuals, while

for the other cameras we use the line-based residuals, see

the supp. mat. This way, we can use error propagation to

obtain the line endpoint uncertainties after triangulating the

line.

If we have an arbitrary positive semi-definite covariance

Σx of a 3D point, an isotropic approximation for it would

be σ2
xI, where σ2

x = 1
3 trace(Σx). This approximation is

optimal in the Frobenius norm sense: ‖Σx − σ2
xI‖

2
F =

∑3
i=1(ρ

2
i − σ2

x)
2, where ρ2i are the singular values of Σx.

We have described the new methods and now continue

with evaluating them in a synthetic and real settings.

4. Experiments

We compare the proposed uncertainty-aware pose

solvers to competitive pose estimation methods, in isola-

tion and combined with a standard or uncertain refinement,

see Section 3.5. We use asterisk ∗ to denote the methods

receiving pose hypothesis. We compare against EPnP [20],

DLS [14], 2D covariance-aware methods CEPPnP [6] and

MLPnP [40], the state-of-the-art PnP method OPnP [47] in

case of points, and EPnPL and OPnPL [41] in case of points

and lines mixture.We use RANSAC [9] with P3P [17] to es-

timate inliers before feeding them into the solvers, while

also comparing against the P3P baseline which does not

use any PnP pose solver. After the solvers, we optionally

run inlier filtering using the obtained pose, followed by a

motion-only bundle adjustment, inspired by the localization
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Figure 3. Pose errors in synthetic experiments. Point-based pose estimation, increasing the number of points in case of 2D noise (Top) and

2D+3D noise (Center), left legend. Bottom: increasing the number of lines and points in case of 2D+3D noise, right legend. We report

mean and median rotation and translation errors. Asterisk denotes rough pose hypothesis input. In case of 2D noise the new approaches

reach the state-of-the-art accuracy, in case of 3D noise they outperform the published methods. In case of the line features, the new

solvers outperform the published EPnPL and OPnPL as well as the proposed uncertainty aware point-only methods. The access to a pose

hypothesis does not result in better accuracy.

modules of ORB-SLAM2 [26] or COLMAP [34]. We use

MATLAB implementations of the methods, run our exper-

iments on a laptop with Core i7 1.3 GHz with with 16Gb

RAM.

4.1. Synthetic experiments

In the synthetic setting we compare the proposed pose

estimation methods EPnP(L)U and DLS(L)U against the

baselines in isolation, as well as the proposed uncertain re-

finement against the standard refinement, as defined in Sec-

tion 3.5.

Metrics. We evaluate the results in terms of the absolute

rotation error erot = |acos(0.5(trace(RTtrueR)−1))| in degrees

and relative translation error etrans = ‖ttrue − t‖/‖ttrue‖ ×
100, in %, where Rtrue, ttrue is the true pose and R, t is the

estimated one.

Data generation. We assume a virtual calibrated cam-

era with an image size of 640 × 480 pix., a focal length

of 800 and a principal point in the image center. 3D

points and endpoints of 3D line segments are generated in

the box [−2, 2]× [−2, 2]× [4, 8] defined in camera coordi-

nates. 3D-to-2D correspondences are then defined by pro-

jecting the 3D points under the random rotation matrix and

translation vector. We move the 3D line endpoints randomly

along the line by a randomly generated Gaussian shift with

a standard deviation equal to 10% of the 3D line length,

see [41].

We add noise of varying magnitude to the 2D point or

line endpoint projections, as well as to the 3D points or

line endpoints, splitting npt points into 10 subsets with an

equal number of points in order to introduce differences in

the noise magnitude. Each subset is corrupted by Gaussian

noise with an increasing value of standard deviation, from

σ = 0.05 to σ = 0.5. We consider anisotropic covari-

ances, which are computed by randomly picking a rotation

and a triplet {σ, σ1, σ2}, where σ1, σ2 are random values

chosen within the interval (0, σ]. The covariance axes are

scaled and rotated according to a triplet of standard devia-

tions and the rotation value, respectively. We perform ex-

actly the same addition of noise to the 3D endpoints of line
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Points Points + 2D Uncertainty Points + Full Uncertainty, Proposed

P3P [17] EPnP [20] DLS [14] OPnP [47] CEPPnP [6] MLPnP [40] EPnPU* EPnPU DLSU* DLSU

erot etrans erot etrans erot etrans erot etrans erot etrans erot etrans erot etrans erot etrans erot etrans erot etrans

KITTI [11], sequences 00-02

N 8.6 35.2 4.5 24.0 5.5 18.1 7.8 277.6 8.2 49.5 5.8 27.2 4.2 22.2 5.1 23.9 5.6 32.2 6.0 14.9

S 5.1 14.4 4.0 12.8 5.0 12.2 7.2 242.2 5.3 20.6 5.3 14.4 3.7 12.6 3.9 13.1 5.1 25.5 5.1 12.1

U 5.0 14.0 3.5 13.2 5.0 12.9 7.6 325.5 5.1 17.4 6.3 35.3 3.3 10.6 3.5 13.4 5.0 12.6 5.0 10.9

TUM [37], ’freiburg1’ sequences

N 15.7 3.3 9.5 1.5 9.3 1.4 10.0 1.5 10.0 1.7 10.0 1.6 9.3 1.3 9.4 1.4 9.3 1.3 9.1 1.2

S 9.2 1.2 9.0 1.2 9.0 1.2 9.7 1.3 9.4 1.3 9.2 1.2 9.0 1.2 9.0 1.2 9.0 1.2 9.0 1.2

U 9.1 1.2 9.0 1.2 9.0 1.2 10.3 1.3 9.2 1.2 9.6 2.0 9.0 1.1 9.0 1.2 9.0 1.1 9.0 1.1

Table 1. Motion estimation from 2D-3D point correspondences on KITTI [11] TUM [37] in terms of mean absolute rotation erot

(in 0.1×deg.) and translation etrans (in cm.) errors. We compare proposed full uncertainty-aware methods against point-based

PnP and 2D uncertainty-aware methods in isolation (N), with standard (S) and proposed uncertain (U) refinement. Methods with

’*’ receive a pose from RANSAC, best for the dataset is in bold italic, best for each protocol (N,S or U) is in bold. The new

methods outperform the baselines in most metrics,e.g. DLSU in isolation improves etrans on KITTI by 3 cm (18%) compared to

the best performing baseline DLS. Uncertain (U) is mostly better than standard (S) for the proposed methods, e.g. etrans by 2 cm

(16%) for EPnPU* on KITTI.

segments. We add noise with different variance to the point

and line endpoint projections using the same mechanism in-

creasing the standard deviation from σ = 1 to σ = 10.

We perform 400 simulation trials. The experiment set-

tings are consistent with [47, 7, 6, 41]. We evaluate the

pose solvers in isolation in a point-only and a point+line set-

ting, providing the methods marked by ’*’ a pose hypothe-

sis computed from a randomly chosen subset of three points

using P3P [17]. We change npt = 10 to 110, in two differ-

ent setups: introducing noise to the projected 2D features

and introducing noise also to the 3D points or endpoints. In

the case of experiments with lines and points, we generate

nl = npt line correspondences in addition to points.

Results. Fig. 3 summarizes the results of the experi-

ments. In the 2D noise experiment for points (top row),

the proposed methods perform similarly with 2D methods,

however for npt < 30 the MLPnP delivers slightly better

results, probably due to additional reprojection error refine-

ment step used in this method and not used in the other ones.

When we use both 3D and 2D noise for the points (cen-

tral row), the proposed methods are the most accurate, fol-

lowed by the classical PnP solvers, and the 2D covariance-

based methods. In point+line experiment, the new methods

clearly outperform the baselines. Fig. 4 shows an analysis in

terms of computational cost. The fastest are EPnPU, EPnP,

CEPPnP, MLPnP, followed by DLSU, DLS and OPnP.

In Fig. 5, we compare the proposed uncertain refine-

ment against the standard method for point features, see

Section 3.5. For the inlier filtering, we use a threshold

τ2 = 62 for the covariance-weighted squared residuals (19)

corresponding to the standard or the uncertain refinement.

The data is generated as in the experiment with 3D and 2D

noise. We consider EPnP, MLPnP and EPnPU*. The un-

certain refinement is beneficial for all considered solvers;

the margin between different pose solvers after refinement

decreases, but remains, because the more accurate pose
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Figure 4. Runtime (ms). Methods based on points (left) or points

and lines (right). See Fig. 3 for the legends.
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Figure 5. Comparison of methods with standard(+SRef) or uncer-

tain(+URef) refinement, in a 2D + 3D noise setup as in Fig. 3, cen-

tral row. Uncertain refinement improves accuracy, the uncertainty-

aware EPnPU* is slightly better than the other methods.

solvers can provide a better set of inliers for the final refine-

ment step; see additional results on timing and comparison

against the full uncertain refinement in the supp. mat.

Summarizing, the new methods outperform baselines in

a synthetic setting. In the next section, we show that the

same holds for the real scenarios.

4.2. Real experiments

Data. We use three monocular RGB sequences 00-02

from the KITTI dataset [11] and the first three ’freiburg1’

monocular RGB sequences of the TUM-RGBD dataset [37]

to evaluate the methods. We use KITTI in a monocular

mode, taking a temporal window of two left frames ( three
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Points+Lines Points+Lines+Uncertainty

EPnPL [41] OPnPL [41] DLSLU* EPnPLU*

erot etrans erot etrans erot etrans erot etrans

N 2.5 37.1 10.2 650.1 6.3 18.2 3.4 25.2

S 1.8 20.4 6.8 267.4 5.2 12.2 1.8 9.8

U 1.4 12.1 9.0 497.7 5.2 12.0 1.4 9.3

Table 2. Motion estimation from 2D-3D point and line correspon-

dences on KITTI [11] sequences 00-02. We report the mean ro-

tation errors in 0.1×degrees and translation errors in cm, for the

solvers in isolation (N), after standard (S) and uncertain (U) re-

finement, see Section 3.5. Proposed EPnPLU*, DLSLU* mostly

outperform the baselines OPnPL and EPnPL, e.g. etrans by 23%-

52% (3 - 11 cm.), while EPnPL has the best rotation accuracy in

isolation.

P3P EPnP DLS OPnP
CEP-

PnP

ML-

PnP
EPnPU DLSU

N 3.1 4.6 16.5 10.7 5.0 7.6 6.1 8.0

S 12.1 13.2 25.1 19.5 13.7 16.0 14.7 16.7

U 11.3 12.7 24.5 18.8 13.1 15.2 13.9 16.0

Table 3. Average running time (ms) for the compared methods

on KITTI in isolation (N), with standard (S) or uncertain (U)

refinement.

frames with a pose distance > 2.5cm for TUM) to detect

and describe features, relying on FAST [32] and ORB [33]

for points and EDLines [3] and LBD [44] for lines, OpenCV

implementations. We use an image pyramid with no = 8
levels and a factor κ = 1.2, the detection error ǫ = 1 pix, the

uncertainty is calculated as described in Section 3.6. The

features are matched using standard brute-force approach,

and triangulated using ground-truth camera poses. Trian-

gulation results are refined with Ceres [2], producing also

the 3D feature covariances, see supp. mat. for the detailed

formulation. The next left frame in KITTI (the next RGB

frame in TUM) is used for evaluation. Line detections are

filtered by length (less than 25 pix. removed). We use a

threshold of τ = 5.991 for the covariance-weighted residual

norms in RANSAC. In case of point+line combination, we

generate minimal sets using only points, include the lines

into the motion-only bundle adjustment for the line-aware

solvers.

Protocol and metrics. We compare the methods using

absolute rotation error in deg. and absolute translation error

in cm. If a pose solver fails or produces less than 3 inliers,

we do not use its output, but use the output of RANSAC

instead, following [34, 26].

Results. We evaluate the pose solvers in isolation, see

Table 1, and show a significant increase in accuracy com-

pared to the state-of-the-art, e.g. DLSU on KITTI outper-

forms the closest baseline DLS by 18% in mean transla-

tion. On the TUM sequences, the mean rotation errors of

the proposed methods are similar to the ones of the base-

lines, while there are more significant gains in translation

errors. The proposed uncertain refinement improves accu-
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Figure 6. CDF plots for real experiments on KITTI [11] and

TUM [37], U mode. EPnPU* and DLSU* are the most accurate.

Figure 7. Comparison of inlier sets from EPnPU* (red) and

EPnP (green), blue squares show the true inliers. EPnPU* inlier

sets are more complete.

racy over standard refinement for most of the solvers, e.g.

by 16% in case of EPnP on KITTI, see Table 1 and CDF

error plots in Fig. 6; the running time of the methods is in

Table 3. In the supp. mat. we give additional results, in-

cluding median errors. See Fig. 7 for a visual comparison

of the inlier sets estimated by EPnP and EPnPU*.

In Table 2 we report the mean errors of the points-and-

lines-based pose estimation for the proposed solvers. We

observe an improvement in the translation errors by almost

50% for the solvers in isolation and by 24% after the stan-

dard refinement, compared to the uncertainty-free EPnPL

and OPnPL [41] methods.

5. Conclusions

We have generalized PnP(L) methods to estimate the

camera pose with uncertain 2D feature detections and

3D feature locations and proposed a new pose refinement

scheme. Our methods demonstrate increased accuracy and

robustness both in synthetic and real experiments.
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