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Abstract

Self-attention has the promise of improving computer vi-

sion systems due to parameter-independent scaling of recep-

tive fields and content-dependent interactions, in contrast to

parameter-dependent scaling and content-independent inter-

actions of convolutions. Self-attention models have recently

been shown to have encouraging improvements on accuracy-

parameter trade-offs compared to baseline convolutional

models such as ResNet-50. In this work, we develop self-

attention models that can outperform not just the canonical

baseline models, but even the high-performing convolutional

models. We propose two extensions to self-attention that,

in conjunction with a more efficient implementation of self-

attention, improve the speed, memory usage, and accuracy

of these models. We leverage these improvements to develop

a new self-attention model family, HaloNets, which reach

state-of-the-art accuracies on the parameter-limited setting

of the ImageNet classification benchmark. In preliminary

transfer learning experiments, we find that HaloNet models

outperform much larger models and have better inference

performance. On harder tasks such as object detection and

instance segmentation, our simple local self-attention and

convolutional hybrids show improvements over very strong

baselines. These results mark another step in demonstrating

the efficacy of self-attention models on settings traditionally

dominated by convolutions. 1

1. Introduction

Vision and natural language processing (NLP) systems

divide the landscape of computational primitives. While

self-attention is the primary workhorse in NLP, convolutions

1Please refer to https://arxiv.org/abs/2103.12731 for a longer version.

are ubiquitous in nearly all vision models. Convolutions em-

body the principle of local processing, to learn local spatial

features such as edges and texture that are abundant in im-

ages. On the other hand, the Transformer [53] showed that

self-attention is an effective and computationally efficient

mechanism for capturing global interactions between words

in a sentence. Self-attention has several properties that make

it a good fit for vision: (a) content-based interactions as

opposed to content-independent interactions of convolution;

(b) parameter-independent scaling of receptive field size

as opposed to parameter-dependent scaling of convolution;

(c) empirical ability to capture long-range dependencies for

use in larger images; (d) flexibility to handle and integrate

multiple types of data that appear in vision, such as pix-

els [55, 2, 40, 62], point clouds [59], sequence conditioning

information [58], and graphs [29]. Self-attention may also

be regarded as an adaptive nonlinearity paralleling a long

history of techniques in computer vision, such as bilateral

filtering [36] and non-local means [3].

Several recent papers [2, 39, 10, 62, 46] have attempted

using self-attention primitives to improve image classifica-

tion accuracy over the strong and commonly used ResNet

backbones [14, 15]. Among them, the Stand-Alone Self-

Attention (SASA) [39] is a fully self-attentive model that

replaces every spatial convolution with local self-attention,

which improves the performance of ResNet backbones

while having fewer parameters and floating point opera-

tions. While conceptually promising, these models lag be-

hind state-of-the-art convolutional models in image classifi-

cation. State-of-the-art convolutional models [51, 63, 38] use

a variety of scaling techniques to achieve strong performance

across a range of computation and parameter regimes.

In this work, we aim to develop and understand tech-

niques for scaling local self-attention models to outperform

some of the best convolutional models. Scaling self-attention
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models presents a unique set of challenges. For example,

convolutions have been very efficiently mapped to matrix

accelerators such as TPUs and GPUs that drive most deep

learning workloads, but fast implementations of local 2D

self-attention do not currently exist. To bridge this gap, we

introduce a non-centered version of local attention that effi-

ciently maps to existing hardware with haloing. While our

formulation breaks translational equivariance, it improves

both throughput and accuracies over the centered local self-

attention used in SASA. We also introduce a strided attention

downsampling operation for multi-scale feature extraction.

We leverage these techniques to develop a new local self-

attention model family, HaloNet, which achieves state-of-

the-art performance across different parameter regimes. The

largest HaloNet achieves 84.9% top-1 accuracy on the Im-

ageNet [43] classification benchmark (Section 4.1). We

perform a detailed study to uncover how self-attention and

convolutional models scale differently. Our self-attention

layers also show promising results on harder tasks such as

object detection and instance segmentation (Section 4.5) us-

ing the Mask R-CNN framework on the COCO benchmark.

Finally, we end with a discussion of current limitations and

ideas for future work in applying self-attention to vision.

2. Models and Methods

Although our models use self-attention instead of convo-

lutions for capturing spatial interactions between pixels, they

adopt some important architectural features of modern convo-

lutional neural networks (CNNs). Like CNNs, we compute

multi-scale feature hierarchies [31] which enable detecting

objects at multiple sizes in tasks such as localization and

instance segmentation. For this, we develop a strided self-

attention layer, a natural extension of strided convolutions

(Section 2.2). To deal with the computational cost in larger

resolutions where global attention is infeasible, we follow the

fairly general principle of local processing, which is at the

heart of convolutions and natural perceptual systems [22, 23],

and use spatially restricted forms of self-attention. However,

unlike the model of [39], that also use local self-attention,

we abstain from enforcing translation equivariance in lieu

of better hardware utilization, which improves the speed-

accuracy tradeoff (Section 2.2). Also note that while we use

local attention, our receptive fields per pixel are quite large

(up to 18 × 18) and we show in Section 4.2.2 that larger

receptive fields help with larger images. In the remainder

of this section, we will motivate self-attention for vision

tasks and describe how we relax translational equivariance

to efficiently map local self-attention to hardware.

2.1. Self­attention can generate spatially varying
convolutional filters

Self-attention has been viewed as a method to directly

capture relationships between distant pixels [39, 19, 54]. It

has also been interpreted as a specific instantiation of the

classic technique of non-local means [3, 55]. The perspective

that we discuss in this section is one that views self-attention

as generating spatially varying filters, in contrast to the reuse

of the same filter across every spatial location in standard

convolutions [12]. To observe this, we write self-attention

and convolution as specific instances of a general spatial

pooling function. Given an input x ∈ RH×W×cin , where

H is the height, W is the width, and cin is the number of

input channels, we define a local 2D pooling function that

computes an output at location (i, j), yij ∈ Rcout as

yij =
∑

a,b∈N (i,j)

f(i, j, a, b)xab,

where f(i, j, a, b) is a function that returns a weight ma-

trix W ∈ Rcin×cout at every location in a 2D window

N (i, j) of size k × k centered at (i, j). Note that later in

this section, we introduce non-centered windows for self-

attention, but we use centering here for ease of explana-

tion. This computation is repeated for every pixel (i, j). For

a convolution, f(i, j, a, b) returns a different linear trans-

formation for each relative distance in neighborhood, and

these weights are shared across all (i, j). Weight sharing

significantly reduces parameters and encourages learning

features that repeat spatially. In dot-product relative self-

attention [44, 39, 2] (eqs. (2) and (3)), every pixel in the

neighborhood shares the same linear transformation which

is multiplied by a scalar probability that is a function of both

content-content and content-geometry interactions resulting

in weights that can vary spatially. As an example, for a ball

and an orange at two different locations in an image, pixels

inside the ball and the orange are likely to generate different

p
ij
a−i,b−j because of the different content around them, such

as color or texture.

f(i, j, a, b)conv = Wa−i,b−j (1)

f(i, j, a, b)self−att = softmaxab

(

(WQxij)
⊤WKxab+

(WQxij)
⊤ra−i,b−j

)

WV

(2)

= p
ij
a−i,b−jWv (3)

For self-attention, WQ, WK , and WV are learned linear

transformations that are shared across all spatial locations,

and respectively produce queries, keys, and values when used

to transform x. Spatial geometry is captured by ra−i,b−j ,

which is a learned relative position based embedding. The

(WQxij)
⊤WKxab component captures the content-content

interaction between the query pixel and a key pixel in the

window. The (WQxij)
⊤ra−i,b−j component is the content-

geometry interaction that captures the relationship between

the query and the relative position of the key pixel [44]. Note
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Figure 1. HaloNet local self-attention architecture: The different stages of blocked local attention for a [4, 4, c] image, block size

b = 2, and halo h = 1. The image is first blocked into non-overlapping [2, 2, c] images from which the queries are computed. The

subsequent haloing step then extracts a [4, 4, c] memory around each of the blocks which linearly transform to keys and values. The spatial

dimensions after attention are the same as the queries.
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Figure 2. The attention downsampling layer subsamples the queries

but keeps the neighborhood the same as the the stride=1 case.

that this formulation preserves translational equivariance.

If an object translates in an image, for any pixel within the

object, the content around it stays the same, generating the

same p
ij
a−i,b−j , thereby producing the same output after self-

attention. To increase expressivity, multi-headed attention

[53] is used, which repeats this computation multiple times

in parallel with different parameters, analogous to group

convolutions [27, 57].

In the SASA model of [39], the local window N (i, j) is a

k × k window centered around (i, j), just like a convolution.

The size of this local window k is an important setting to

leverage in self-attention. Unlike dense convolutions, k can

grow without significantly increasing the number of param-

eters. Since the projection parameters (WQ, WK , WV ) are

independent of k, the only parameters that increase with k is

ra−i,b−j . However, ra−i,b−j constitutes a trivial fraction of

the parameters compared to the projection parameters 2 , so

increasing k does not not impact the number of parameters

of the layer significantly. In contrast, the number of param-

eters in a convolution layer scale quadratically with k (e.g.,

a 5× 5 convolution has 25
9 times the parameters of a 3× 3

2For a window size as large as 63, and 16 dimensions per attention

head, ra−i,b−j would add only 63 ∗ 16 = 1008 parameters per layer

because ra−i,b−j are shared among heads. In contrast, if the dimensions

of the attention layer were 512, WQ, WK , WV would contribute 786432

parameters. We show details in the appendix.

convolution). On the other hand, the computational cost of

self-attention grows quadratically with k, preventing the use

of very large values for k.

2.2. Improving the speed­memory tradeoff by re­
laxing translational equivariance

Global self-attention, in which all locations attend to

each other, is too expensive for most image scales due to

the quadratic computation cost with respect to k. Thus,

multi-scale visual backbones need to use local attention to

limit the size of k. We follow the intuitive form of local

attention developed in [39], which tries to mimic the square

neighborhoods used by convolutions. This form of local

attention requires extracting local 2D grids around each

pixel. Unfortunately, while deep learning libraries auto-

matically handle neighborhood gathering for convolutions,

no such neighborhood gathering function exists for local

self-attention (or any general local function). Thus, imple-

menting local self-attention requires explicitly gathering the

local neighborhoods before the actual self-attention opera-

tion can be performed. While the implementation of this

local neighborhood gathering function might initially appear

to be a relatively minor implementation detail, in practice, it

must actually be carefully designed to reduce memory usage

while avoiding unnecessary extra computation. An unop-

timized implementation can prevent self-attention models

from scaling up due to either out-of-memory errors or exces-

sive slowness. The following discussion frames the design

considerations of this neighborhood gathering function.

A straightforward approach would gather k × k sized

windows separately around each pixel. As summarized in

Table 1 (Row 1), this method blows up the memory used by

a factor of k2 due to replicating the pixel contents for each of
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Method
Neighborhood

Memory

Receptive

Field

FLOPs

Per Pixel

Global HWc HW ×HW 4(HW )2c
Per pixel windows HWk2c k × k 4k2c

SASA [39] HW
b2

(b+ 2h)2c k × k, where h = ⌊k
2 ⌋ 4(b+ 2h)2c

Blocked local (ours) HW
b2

(b+ 2h)2c (b+ 2h)× (b+ 2h) 4(b+ 2h)2c

Table 1. Scaling behavior of self-attention mechanisms. f is the

number of heads, b is the size of the block, c is the total number of

channels, and h is the size of the halo

the k2 neighborhoods it participates in. This solution quickly

leads to out-of-memory errors. Global attention (Row 4) is

at the other end of the spectrum, where all pixels share

the same neighborhood, lowering memory at the expense

of considerably more FLOPs 3. This solution slows down

models significantly, while also imposing memory problems

due the massize size of the attention matrix. A solution that

lies in-between these two extremes should trade-off memory

and compute appropriately, with the recognition that a small

amount of waste is required.

A compromise solution can be achieved by leveraging

the idea that neighboring pixels share most of their neigh-

borhood. For example, two pixels that are right next to each

other share k × (k − 1) pixels of their neighborhoods. Thus

a local neighborhood for a block of pixels can be extracted

once together, instead of extracting separate neighborhoods

per pixel. The FLOPs can be controlled by varying the

number of pixels that form a block. We name this strategy

blocked local self-attention. The two extremes discussed

above are a special case of blocked local self-attention.

Global attention corresponds to setting the block size to

be the entire spatial extent, while the per-pixel extraction

corresponds to setting the block size to be 1.

Figure 1 depicts the different steps involved in executing

blocked local self-attention for an image with height H = 4,

width W = 4, and c channels with stride 1. Blocking chops

up the image into a H
b
, W

b
tensor of non-overlapping (b, b)

blocks. Each block behaves as a group of query pixels and a

haloing operation combines a band of h pixels around them

(with padding at boundaries) to obtain the corresponding

shared neighborhood block of shape (H
b
, W

b
, b + 2h, b +

2h, c) from which the keys and values are computed. H
b
×W

b

attention operations then run in parallel for each of the query

blocks and their corresponding neighborhoods, illustrated

with different colors in Figure 1. SASA [39] used the same

blocking strategy4, setting h = ⌊k
2 ⌋ and uses attention masks

to emulate pixel-centered neighborhood windows of size

k × k. Our approach For example, to achieve a 7× 7 pixel

3To illustrate this, on a 128× 128 resolution with 64 channels, global

self-attention would incur about 28 times more FLOPs than a 3× 3 convo-

lution with 64 input and output channels
4Code for both SASA and HaloNet will be made available, along with

the checkpoints for HaloNet

centered window, [39] set h = 3. The use of attention masks

gives the operation translational equivariance, since each

pixel only looks at a square window around it.

However, the downside of using attention masks is that

it wastes computation that must happen regardless due to

the implementation of this algorithm. If attention masks are

not used, the receptive field increases without any additional

computation, as shown in Table 1 (Rows 2 and 3). However,

pixel-level translational equivariance is lost because the non-

square receptive fields means that the output of a pixel is

dependent on which block it falls into. Take for example

a pixel at the left edge of its block, which sees additional

pixels that are to the right of its square receptive field. If

the entire image is shifted one pixel to the right, the pixel

now falls into right edge of a neighboring block, and now

sees additional pixels that are to the left of its square recep-

tive field. Thus the output of the pixel is dependent on its

position in a block, which can change if the image shifts.

Another perspective is that blocked local self-attention is

only translational equivariant to shifts of size b. While pixel-

level translational equivariance is considered important for

achieving good performance[61], we find that empirically,

using a non-masked block local self-attention actually im-

proves the accuracy of the model (see Section 4.3). We

suspect that the image shifting and cropping perturbations

in common data augmentation strategies reduce the reliance

on such inductive biases. Thus we adopt unmasked blocked

local self-attention because it improves accuracy without

sacrificing performance.

Another difference with SASA is our implementation

of downsampling. We replace attention followed by post-

attention strided average pooling by a single strided attention

layer that subsamples queries similar to strided convolutions,

as shown in Figure 2. Note that we use the same neighbor-

hood as is extracted in the stride 1 case (Figure 1). This

change does not impact accuracy while also reducing the

FLOPs 4× in the downsampling layers. We also implement

some important algorithmic optimizations that improve our

throughput primarily by avoiding reshapes and data format-

ting operations. In interest of space, we list them in the Ap-

pendix D. Taken together, the speedups produced by these

improvements are significant as seen in Figure 3, with up

to 2× improvements in step time. These improvements can

be leveraged to train large self-attention models that were

previously too expensive. We leave additional optimizations,

such as fused operations and better pipelining of memory

accesses with computation, to future work.

Note that in the deeper layers of multiscale architectures,

smaller spatial dimensions and larger channels would shift

the compute calculus in favor of global attention. The mod-

els we introduce in Section 4, also take advantage of this,

typically using local attention in the higher resolutions and

global attention when the image resolutions are the smallest.
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Figure 3. Optimizations improve performance. The improve-

ments here are a result of reducing FLOPs with our attention down-

sampling and improved local self-attention algorithms that avoid

reshapes and data formatting. In some cases, we halve the training

step time computed on TPU v3.

Output

Resolution
Layers

s
4
×

s
4

7× 7 conv stride 2, 64

3× 3 max pool stride 2

s
4
×

s
4







1× 1, 64
attention(b, h), 64 · rv

1× 1, 64 · rb







× 3

s
8
×

s
8







1× 1, 128
attention(b, h), 128 · rv

1× 1, 128 · rb







× 3

s
16

×
s
16







1× 1, 256
attention(b, h), 256 · rv

1× 1, 256 · rb







× l3

s
32

×
s
32







1× 1, 512
attention(b, h), 512 · rv

1× 1, 512 · rb







× 3

s
32

×
s
32

1× 1, df

1× 1
global average pooling

fc, 1000

Table 2. HaloNet model family specification.

2.3. HaloNet

Using the implementation of local 2D self-attention with

haloing detailed above, we propose a new model, HaloNet

that matches state-of-the-art convolutional models on the

parameter-accuracy trade-off curve. We leverage the struc-

ture of ResNets [14] that stack multiple residual bottleneck

blocks together (see Table 2). HaloNet uses a few minor

modifications from ResNets: (a) adding a final 1× 1 convo-

lution before the global average pooling for larger models,

following EfficientNet [51], (b) modifying the bottleneck

block width factor, which is traditionally fixed at 4, (c) mod-

ifying the output width multiplier of the spatial operation,

which is traditionally fixed at 1, (d) changing the number

of blocks in the third stage from 4 to 3 for computational

reasons because attention is more expensive in the higher

resolution layers. We also fix the number of heads for each

of the four stages to (4, 8, 8, 8) because heads are more ex-

pensive at higher resolutions. To summarize, the scaling

dimensions in HaloNet are: image size s, query block size b,

halo size h, attention output width multiplier rv , bottleneck

output width multiplier rb, number of bottleneck blocks in

the third group l3, and final 1× 1 conv width df . Our atten-

tion neighborhoods range from 14 × 14 (b = 8, h = 3) to

18× 18 (b = 14, h = 2).

Since the ResNet structure was initially designed for con-

volutions, we suspect that designing architectures specifi-

cally for attention may improve HaloNet. In our work we

maintained homogeneity across all layers of model for hyper-

parameters such as the block (b) and halo (h) sizes. We also

hope that using automated architecture search methods [51]

to optimize these hyperparameters for specific accelerators

will lead to better local attention architectures. In our work,

we train with comparable image sizes as EfficientNet models

to determine if attention models can scale to larger images.

3. Related Work

We directly build on top of the approach of [39], who

compute attention on local regions in order to build a fully

self-attentional vision model for classification and object

detection. Different forms of attention for pure self-attention

vision models have also been proposed [19, 62], which are

orthogonal and complementary to the focus on scaling in

this work. In addition to attention over the spatial extent

that we focus on, components that perform attention over

channels have also been used to augment convolutional mod-

els [20, 30]. In recent and concurrent work, Vision Trans-

former [10] show that applying transformers on projections

of non-overlapping image patches can achieve accuracies

comparable to SOTA when pre-trained on very large (JFT-

300M [48]) and medium sized (ImageNet-21k [9]) classi-

fication datasets. However, their models do not adopt a

multiscale architecture and our focus in this work is training

on ImageNet [43] from scratch. In Section C.3, we conduct

transfer experiments and compare with ViT and BiT [26].

Generally, the performance of computational primitives

tend to improve over time due to algorithmic changes to the

primitive and better software implementations. Convolutions

have improved over the last decade through changes in (a)

the computation of the primitive [4, 25, 34, 52, 56, 28]; (b)

the software implementation [5]; (c) the structure of the prim-

itive itself, through for example, grouped convolution [57]

and depthwise separable convolution [45]. Attention is in the

beginning phases of this performance improvement trajec-

tory, and given its importance in sequence modeling [53], it
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Figure 4. HaloNets can match EfficientNets on the accuracy vs.

parameter trade-off. The accuracies for EfficientNets B5 and B7

were obtained using RandAugment. For a discussion on training

speed, please see Section E.

will likely see sustained effort to enhance performance. Lo-

cal attention could also receive performance improvements

if it is adopted more widely to combat the general problem

of processing large inputs. Our work introduces blocked

local attention to efficiently process immediate neighbors.

Other forms of non-global pixel interaction can also be im-

plemented efficiently [6, 18, 54, 1].

4. Experiments

Each HaloNet model (H0–H7) is designed by succes-

sively growing the values of the hyperparameters defined

in Table 2. In interest of space, we leave the exact configu-

rations of our models to the Appendix C.1. We also leave

the training and evaluation of larger HaloNet models that

compare with larger EfficientNet models for future work.

4.1. HaloNets are competitive with state­of­the­art
convolutional models

We train our HaloNet models on ImageNet [43]

(ILSVRC-2012) benchmark with a batch size of 4096 and

learning rate of 1.6, which is linearly warmed up for 10

epochs and followed by cosine decay [33]. The models are

trained for 350 epochs with Nesterov’s Accelerated Gradi-

ent [35, 49], and regularized with dropout [47], weight decay,

RandAugment [8] and stochastic depth [21].

We find that HaloNets perform at par or slightly better

(Figure 4) than EfficientNet models for the same parame-

ters, outperforming other model families. Our best model,

H7, achieves 84.9% top-1 ImageNet validation accuracy and

74.7% top-1 accuracy on ImageNet V2 [41] (with a -0.5%

gap to the linear fit in [41]). For each of our HaloNet models,

we use image sizes comparable to the corresponding Effi-

cientNet model, training on images sizes up to 600 × 600.

(Table A2). For a comparison of our latencies with Effi-

cientNet, the reader can refer to Section 5. To the best of

our knowledge, these results are the first to show that self-

attention based models for vision perform on par with the

SOTA for image classification when trained on imagenet

from scratch. Note that for all our experiments, we report

accuracies at the end of training and we tune regularization

hyperparameters such as augmentation hyperparameters for

the baselines and HaloNet models.

4.2. Model study 1: comparing self­attention and
convolutions

In the following sections, we will focus on model studies

to distinguish the advantages of self-attention over convo-

lutions for vision and and understand how to best design

self-attention vision architectures. This knowledge is impor-

tant since much of the progress in convolutional networks

comes from improvements in architecture design while keep-

ing the core convolution primitive the same [27, 50, 14]. We

believe our study is the first to explicitly examine the design

of optimal self-attention vision architectures.

For the remainder of the experimental section, we com-

pare with ResNet-50 [15], the canonical vision model, be-

cause many of the components that we ablate have been

well studied for ResNet-50, allowing us to use best practices

for the baseline model. We tune our baseline ResNet-50

implementation to achieve a better accuracy, 77.6%, com-

pared to commonly reported numbers in the literature. For

example, [14] report 76.3%. We then create a new HaloNet

architecture, HaloNet-50, that exactly matches the ResNet-

50 architecture by replacing spatial convolutions with local

self-attention. HaloNet-50 and ResNet-50 have about 18.0
million and 25.5 million parameters respectively. We train

both for 150 epochs on 256 × 256 image size. We share

other training details of the ablation set-up in the appendix

4.2.1 Transfer of convolutional components to self-

attention

Utilizing regularizations and architectural modules beyond

the core primitive is critical for achieving strong results [16].

In this section, we study the effects of these additional com-

ponents on self-attention models. The components we study

were all designed for use in convolutional models, as they

were developed through experimentation (either human or

automated search) on convolutional models. We examine

whether these components can successfully transfer to the

new model family of self-attention networks.

We focus on 4 different components based on the de-

sign of EfficientNet [51], 2 architecture modules and 2

regularizations: Squeeze-and-Excitation (SE) [20], a chan-

nel attention module used after the spatial convolution;

SiLU/Swish-1 [40, 11, 17], an activation function with the

form x·sigmoid(x); RandAugment (RA) [8], a data augmen-

tation scheme that simplifies AutoAugment [7]; and Label
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Smoothing (LS) [50], a smoothing of the label distribution.

The results from adding these components to the baseline

model are in Table 3. Suprisingly, regularizations of the same

strength improve HaloNet accuracies significantly more than

ResNet, despite HaloNet having around 30% fewer parame-

ters than ResNet. When label smoothing and RandAugment

are added, HaloNet improves by 1.3% while ResNet im-

proves by 0.8%. This suggests that self-attention models

may require regularizations that are typical of larger con-

volutional models, perhaps due to the expressivity of self-

attention.

When Squeeze-and-Excitation (SE) and SiLU/Swish-1

are added, ResNet improves by 1.3% while HaloNet only im-

proves by 0.4%. We speculate that HaloNet models benefit

from the gating and multiplicative interactions that comprise

self-attention and do not need explicit gating such as SE.

Further research must be conducted in order to discover ar-

chitecture modules that can consistently improve a variety of

self-attention models. Inspired by these findings, we decided

to use label smoothing, SiLU/Swish-1, and RandAugment

in our HaloNet H0 − H7 models. We also use stochastic

depth for our larger models [21, 51].

Components
HaloNet

Accuracy

Baseline

∆
ResNet

Accuracy

Baseline

∆

Baseline 78.6 0.0 77.6 0.0

+ LS 79.7 1.1 78.1 0.5

+ LS, RA 79.9 1.3 78.4 0.8

+ SE 78.6 0.0 78.6 1.0

+ SE, SiLU/Sw1 79.0 0.4 78.9 1.3

+ LS, SE 79.7 1.1 78.9 1.3

+ LS, SE, SiLU/Sw1 79.9 1.3 79.1 1.5

+ LS, SE, SiLU/Sw1, RA 80.5 1.9 79.5 1.9

Table 3. HaloNet improves more than ResNet with regular-

izations, but does not improve significantly with architectural

modules that strongly benefit ResNet. Starting from a baseline

model, adding label smoothing (LS), RandAugment (RA), Squeeze-

and-Excitation (SE), and SiLU/Swish-1 (SiLU/Sw1).

4.2.2 Increasing image sizes improve accuracies

A beneficial property of self-attention is attention is that the

receptive field size can scale along with image size with-

out significantly impacting the number of parameters (see

Section 2.1). As shown in Figure 6, HaloNet consistently

improves when using larger images. Although we also see

improvements with convolutional models, the accuracy gap

between HaloNets and ResNets is maintained.

4.3. Model study 2: HaloNet architecture study

In this section, we will study the impact of relaxing trans-

lational equivariance and the relationship of neighborhood

window and halo sizes. In the interest of space, a detailed
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Figure 5. Relaxing translational equivariance improves accura-

cies
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Figure 6. The accuracy gap between HaloNet-50 and ResNet-50

is maintained with increasing image sizes. The HaloNet experi-

ments are annotated with block size (b), halo size (h).

study of scaling various components of our models such as

rv , rqk etc can be found in the Appendix B.

Relaxing translational equivariance: In Figure 5, we see

that HaloNet-50 with b = 8, and h = 3 achieves better

accuracies using the same block and halo to achieve 7 ×
7 neighborhoods with attention masks [39] and the gap

widens with more regularizations. This suggests that larger

receptive fields are more important than inductive biases

such as translational equivariance.

Window and halo size: When using the blocked input

format, there are two ways of changing the window size of

attention: changing the query block size or the halo size. For

the same window size w, smaller query blocks and larger

halos require more memory than larger query blocks and

smaller halos, as discussed in section 2.2.

We see in Figure 7 that accuracy consistently improves as

the window size increases. In particular, doubling the win-

dow size from 6× 6 to 12× 12 produces a 1.3% accuracy

gain. These results suggest that increasing window size can

be successfully used to scale models without increasing the
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Conv

Stages

Attention

Stages

Top-1

Acc (%)

Norm.

Train

Time

- 1, 2, 3, 4 84.9 1.9

1 2, 3, 4 84.6 1.4

1, 2 3, 4 84.7 1.0

1, 2, 3 4 83.8 0.5

Table 4. Replacing attention layers with convolutions in stages

1 and 2 exhibit the best speed vs. accuracy tradeoff. All the

models had about 67 million parameters and the train and inference

times are normalized to the corresponding times for EfficientNet

B7. Please see Figure A1 for a detailed comparison of step times.

number of parameters, potentially beneficial for production

environments. Furthermore, for a fixed window size, the

choice of query block size does not impact results, enabling

the usage of larger query block sizes to reduce memory. Fig-

ure 7 also shows that eschewing haloing for non-overlapping

attention, can lower accuracy significantly unless the blocks

are quite large. For example using a block size of 4 and a

halo of 1 results in better accuracy than using a block size of

8 with 0 halo, despite a smaller neighborhood size.

4.4. Convolution­Attention hybrids improve the
speed­accuracy tradeoff

In our final set of ablations, we replace self-attention

with convolutions to understand where attention layers are

currently most beneficial. In Table 4, we show results for

replacing attention layers with convolutions with squeeze-

and-excitation modules in each of the stages of our best

performing model (HaloNet H7). Having convolutions in all

stages except the last yields the fastest model albeit with a

significant loss in top-1 accuracy (1%). Splitting the alloca-

tion between convolutions (in stages 1–2) and attention (in

stages 3–4) minimally detriments predictive accuracy while

significantly improving training and inference step times.

We leave a detailed study of improved hybrid models for

future work.

Model AP
bb

AP
mk Speed

(ms)

R50 baseline in lit 42.1 37.7 409

R50 + SE (our baseline) 44.5 (+2.4) 39.6 (+1.9) 446

R50 + SE + Local Att (b = 8) 45.2 (++0.7) 40.3 (++0.7) 540

R50 + SE + Local Att (b = 32) 45.4 (++0.9) 40.5 (++0.9) 613

R101 + SE (our baseline) 45.9 (+3.8) 40.6 (+2.9) 740

R101 + SE + Local Att (b = 8) 46.8 (++0.9) 41.2 (++0.6) 799

Table 5. Accuracies on object detection and instance segmen-

tation. bb (bounding box) refers to detection, and mk (mask) refers

to segmentation. Speed is measured as the milliseconds taken by

only the backbone (and not the FPN) for a batch size of 32 on 2
TPUv3 cores. Please find detailed accuracies in Table A4.

4 6 8 10 12 14 16
Attention Neighborhood Size

74

76

78

80

To
p-

1 
A

cc
ur

ac
y 

(%
)

(8,0)

(4,0)

(8,1)(4,1)
(8,2)(4,2) (8,3)(4,3) (8,4)(4,4)

(16,0)

Neigborhood Size vs. Accuracy

Figure 7. Increasing window sizes improves accuracy up to a

point. The experiments in the graph have been annotated with

their block size (b), halo size (h), h = 0 implies attention with

non-overlapping blocks

4.5. Detection and instance segmentation

To understand if our primitives will generalize to struc-

tured prediction tasks on larger images, we conduct initial in-

vestigations with the simple attention-convolutional hybrids

on detection and instance segmentation, using the Mask R-

CNN [13] framework. These hybrids are also faster and

consume less memory than pure attention models, enabling

faster experimental cycles. We provide more training details

in the Appendix C.4.

Our ResNet-50 baseline in row 2 of Table 5, is signifi-

cantly better than what is usually reported in the literature

(row 1). Our attention variants achieve at least 0.7 mAP

gains on bounding box detection and at least 0.6 mAP gains

on instance segmentation on top of our stronger baselines

(denoted by ++ in rows 3, 4 and 6 in Table 5). The gain from

local attention with block size b = 8 closes half of the mAP

gap between the R50 and R101 baselines in detection and

70% of the gap in instance segmentation despite being less

than a third of the gap in terms of wall-clock time. Local

attention with b = 8 and h = 3 also improves on top of the

deep R101 backbone. These models have only three layers

of self-attention, and more layers could alter these results.

We leave the study of detection and instance segmentation

with pure attention models to future work.

5. Conclusion

In this work, we built multiscale self-attention models

that are competitive with the best convolutional models. To

achieve this result, we developed two attention improve-

ments: blocked local attention and attention downsampling.

Overall, our work shows that self-attention can be competi-

tive in regimes traditionally dominated by computer vision.

Future work can push these boundaries further, both in terms

of scale and efficiency.
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