
Plan2Scene: Converting Floorplans to 3D Scenes

Madhawa Vidanapathirana Qirui Wu Yasutaka Furukawa Angel X. Chang Manolis Savva

Simon Fraser University

Abstract

We address the task of converting a floorplan and a set

of associated photos of a residence into a textured 3D mesh

model, a task which we call Plan2Scene. Our system 1) lifts

a floorplan image to a 3D mesh model; 2) synthesizes sur-

face textures based on the input photos; and 3) infers tex-

tures for unobserved surfaces using a graph neural network

architecture. To train and evaluate our system we create

indoor surface texture datasets, and augment a dataset of

floorplans and photos from prior work with rectified surface

crops and additional annotations. Our approach handles

the challenge of producing tileable textures for dominant

surfaces such as floors, walls, and ceilings from a sparse

set of unaligned photos that only partially cover the resi-

dence. Qualitative and quantitative evaluations show that

our system produces realistic 3D interior models, outper-

forming baseline approaches on a suite of texture quality

metrics and as measured by a holistic user study.

1. Introduction

Digital 3D scene representations of interiors are key to

emerging application areas such as AI assistants, online

product marketing, and augmented reality. Private resi-

dences are predominantly designed with CAD software.

However, texture-mapped 3D scene models of the built

interiors are rarely available. Despite recent progress in

indoor reconstruction techniques and depth-sensing hard-

ware, the state-of-the-art in room layout inference and

photogrammetry-based 3D modeling is still far from reli-

able and practical for non-expert users.

This paper explores a novel path for 3D interior digitiza-

tion by utilizing a residential floorplan and a sparse set of

photos without camera pose as input, which are prevalent

in online real estate listings. More precisely, we present

the Plan2Scene task: conversion of a residential floorplan

and photos of a residence to a textured 3D scene model (see

Figure 1). In the context of this task, we focus on textur-

ing of architectural surfaces. This task is challenging due to

1) the lack of camera poses for the photos; 2) the challenge

of photometric calibration under varying lighting conditions

Plan2Scene

Bedroom
Bathroom

Bedroom

Bathroom

Kitchen

Corridor,
Entrance

Reception

Input Output

Figure 1: Our system addresses the Plan2Scene task by con-

verting a floorplan and set of photos to a textured 3D mesh.

and 3) limited photo coverage, leaving many surfaces unob-

served. The Plan2Scene task allows us to articulate these

challenges for residential interiors and to identify suitable

texture appropriateness metrics.

Our key idea is to model the architectural surfaces and

identify appropriate textures for each surface. We treat

photos as sparse and partial observations of surface tex-

tures and formulate a texture inference task, instead of rely-

ing on exact camera poses and texture-mapping as in prior

work [21]. Textures for observed surfaces are generated us-

ing an encoder-decoder architecture. Unobserved surfaces

(i.e., surfaces for which a photo is not available) are handled

by a graph neural network (GNN) that propagates informa-

tion while learning inter/intra-room consistency.

The paper also makes three dataset contributions. First,

we extend an existing database of floorplans and photos

(Rent3D) [21] by annotating more room boundaries, assign-

ing more photos to the rooms, and annotating object-icons

indicated on the floorplans. We also curate two datasets of

textures of common indoor substances (e.g., ‘painted walls’,

‘tiles’, ‘carpets’) from various online sources for training

our texture synthesis method.

Through qualitative and quantitative evaluations using a

suite of metrics characterizing texture appropriateness and

quality, and a user study, we demonstrate that the proposed

approach outperforms baselines including rectified image

patch texturing, and direct texture retrieval. We release all

our code, data, and pretrained models to the community.1

1https://3dlg-hcvc.github.io/plan2scene/

10733

2. Related work

Room layout estimation and 3D reconstruction. A long

line of work exists on coarse 3D layout estimation from in-

door perspective images or panoramas: Sun et al. [26], Yang

et al. [30], Zhang et al. [32, 33], Zou et al. [36]. In contrast

to our task, these methods 1) generate coarse geometry for

a room as a set of planes 2) process only a single image and

a single room instead of an entire residence; and 3) simply

project image pixels onto the layout planes without separat-

ing objects from architectural surfaces. There is also a rich

literature of house-scale 3D reconstruction and modeling

methods. Different methods take as input a set of RGB im-

ages [4, 9], RGBD videos [12, 35], RGBD panoramas [23],

dense point clouds [29] or partial reconstructions [19]. In

contrast, our input is a floorplan and a sparse set of RGB

images without precise camera pose partially covering the

interior, which is the typical data available on real estate

websites and we produce as output a 3D textured mesh for

the entire residence.

Texture synthesis. There is a rich literature of work on

exemplar-based texture synthesis. We refer readers to the

survey by Akl et al. [2]. Recent work has adapted neu-

ral networks architectures for this task, allowing the use

of embeddings to represent textures [16, 25]. Chen et al.

[6] generate tileable textures from text descriptions. Other

work has focused on inferring SVBRDF models from a sin-

gle image [15, 18] or from multi-illumination images [24].

We adopt an approach inspired by recent work that utilizes

a compact texture embedding [10] as we rely on embedding

propagation to generate textures for unobserved surfaces.

3D scene generation from photo and floorplan data. Our

Plan2Scene task is closely related to the work of Izadinia

et al. [13] on IM2CAD and Liu et al. [21] on Rent3D.

IM2CAD infers a 3D room layout as well as 3D object

placements from a single image. Objects and walls are

colored using the medoid of each color channel in the in-

put RGB image, making it impossible to represent common

material types such as wood, tile, or carpet. Furthermore,

the approach only handles surfaces and objects visible in a

single input image. In contrast, our approach generates tex-

tured materials for both observed and unobserved surfaces.

We also handle multi-room interiors. Rent3D has a simi-

lar problem formulation as us, taking a floorplan and set of

photos as input and producing a coarse 3D mesh. However,

it focuses on estimating the camera pose for each image and

directly projecting pixels onto the mesh as an appearance

model. This results in unrealistic rooms with sofas, beds

and other objects projected onto surfaces (see Figure 2).

3. Plan2Scene Task

The Plan2Scene task involves several steps (see Fig-

ure 3). Here, we provide an overview of these steps.

(a) Rent3D (b) Plan2Scene

Figure 2: Comparison of (a) output from Liu et al. [21] to

(b) our output. We produce textured 3D meshes of the res-

idence that do not exhibit distortions due to direct warping

of photos onto walls, and that cover all surfaces.

Overview. Floorplans are usually available as raster im-

ages, requiring vectorization. Raster-to-vector floorplan

conversion is the focus of prior work [20], so we assume

a vector floorplan as input. We use ‘floorplan’ to mean a

vector floorplan from here on. We convert the floorplan to

3D geometry and place fixed 3D objects (e.g., doors, win-

dows, toilets) in the floorplan using a rule-based approach

that retrieves objects from ShapeNet [5] (see supplement for

details). In this work, we focus on computing textures for

architectural surfaces in each room, including both surfaces

observed in photos and entirely unobserved surfaces.

Input and output assumptions. The input is a floorplan

and a set of photos taken inside a residence, with photos

assigned to rooms. The set of photos are taken from a

subset of the rooms. Some rooms do not have any pho-

tos, and some surfaces in a room may not be visible in

a photo. Room type information and correspondence be-

tween photos and rooms is commonly available for photos

on real-estate websites, so we assume this information in

our input. The floorplan specifies walls and openings (i.e.,

doors and windows) as line segments, provides a category

for each room (e.g., bedroom), and contains structurally

fixed objects (e.g., toilets), each of which is given a posi-

tion. The output is a 3D mesh of the house with textures

for all architectural surfaces in each room. As a simplifying

assumption, we only represent three surface types in each

room: ‘floor’, ‘wall’, and ‘ceiling’, indicated by s ∈ [1, 3]
and assign the same texture for all surfaces of the same

type in a room. Thus, given the set of rooms of a house

R = {1, 2, . . . , r, . . . , |R|} where r is a room index, we

uniquely identify a surface through (r, s). Each texture is

an RGB image assigned to surface s of room r, so the com-

plete output texture set is Yr,s ∈ R
3×H×W .

A good texture set is tileable (i.e. does not exhibit seams

or look unnecessarily repetitive when tiled), matches the

color, pattern, and substance of the input photo surfaces,

while correcting artifacts due to illumination conditions and

imaging noise in the input.

10734

Vectorization 3D Geometry
Construction

Photo
Assignment Texture Generation Texture Propagation

Input Output

Object Placement

Figure 3: In the Plan2Scene task we produce a textured 3D mesh of a residence from a floorplan and set of photos. This pro-

cess involves several steps: floorplan vectorization, 3D geometry construction, object placement, photo assignment, texture

generation, and texture propagation. In this paper, we use simple solutions for earlier steps (blue), and focus primarily on the

last two steps (orange).

Figure 4: Selected textures from curated textures dataset.

4. Data

In this section we describe the datasets used in our ex-

periments: a dataset of floorplans and photos based on

Rent3D [21] that we call Rent3D++, and two curated

datasets of textures that we respectively use for training our

texture synthesis approach and for establishing a texture re-

trieval baseline.

Rent3D++ floorplan and photos dataset. The Rent3D

dataset consists of floorplans and photos from 215 apart-

ments. However, we found that: i) some rooms were unan-

notated; ii) not all portals (windows, doors, room-room

openings) are annotated and; iii) some photos were not

assigned to rooms. We correct these issues through re-

annotation, and extend the dataset by:

• Fixing incorrectly categorized rooms and adding wall

outlines and categories from missing rooms.

• Expanding the room category set {reception,
bedroom, kitchen, bathroom, outdoor}
by adding another 7 common room types: {closet,
entrance, corridor, staircase,

balcony, terrace, unknown}.

• Annotating all windows, doors and other wall open-

ings, and associating them with corresponding rooms.

• Define a 60/20/20% (129/43/43 houses) training,

validation, test split (cf. original 100/30/85 house

split) given more samples to training and validation.

• Extract rectified surface crops from architectural sur-

faces seen in photos (floors, walls, ceilings).

Plane Detection

Input Surface Mask
Segmentation

Ceiling

Floor

Walls

Rectified Crop
Sampling

Crop Extraction

Semantic
Segmentation

Room

Reference
Crop

Crop Surface
Assignment

Wall

Ceiling
Ceiling

Floor

Wall

Room Medoid
Selection

Rectify

Rectify

Rectify

Rectify Floor

Figure 5: Surface crop extraction approach. We extract rec-

tified surface patches from photos for conditioning texture

generation and for use as a reference in our evaluation.

Surface crop extraction. To facilitate texture generation,

we extract a set of rectified surface crops for all architec-

tural surfaces observed in photos. These are square patches

which we use to condition the generation of textures and

also as ‘reference crops’ for evaluation. Figure 5 shows

the approach we adopt. We first segment floor, ceiling,

and wall surfaces using a semantic segmentation model

(HRNet-v2 [27] trained on ADE20K [34]). We then use

the approach of Yu et al. [31] to estimate normals and depth

for the surface planes (10 largest wall masks, one mask for

floor and one for ceiling) and rectify the surface masks us-

ing the rectification implementation by Bell et al. [3] and

a predefined constant camera field of view. Rectified sur-

faces are upscaled by a factor of 3 to sample up to 10 ran-

dom 256 × 256 crops (max 1000 attempts to obtain com-

plete crop, per crop). The crops are resized to 128 × 128
and assigned to the corresponding room surface. We treat

the medoid crop2 from each surface as a reference crop for

evaluation purposes. The medoid is less likely to be affected

by shadows, reflections and specular highlights, while also

being representative of the surface.

2By projecting the crops into the 3 × H × W RGB vector space and

selecting the crop closest to the mean vector.

10735

Reference photo Surface crop tiling

Texture retrieval Texture synthesis

Figure 6: Three approaches to creating textures: i) direct

surface crop tiling, ii) retrieval of best matching texture, and

iii) texture synthesis conditioned on surface crop. Directly

using the crop creates obvious tiling artifacts. Texture re-

trieval cannot precisely match the surface. Texture synthe-

sis can better match the surface with fewer visible artifacts.

Stationary textures dataset. We curated 516 texture exem-

plars for four substance types: ‘wood’, ‘plaster’, ‘carpet’

and ‘tile’ from various online texture libraries3. Figure 4

shows examples from each texture substance type. We di-

vide this dataset into a training and validation split of 452
and 64 textures respectively. We train our texture synthesis

model using crops extracted from these textures so that we

can generate stationary textures that can be seam-corrected

to tile without artifacts.

Substance-mapped textures dataset. We also curated a

broader dataset of tileable (seamless and stationary) tex-

tures from ArchiveTextures4 for our retrieval-based textur-

ing baseline. It consists of 146 textures from substances

such as ‘carpet’, ‘concrete’, ‘granite’, ‘metal’, ‘painted’,

‘plastic’, ‘tiles’ and ‘wood’. See the supplement for ex-

amples. These textures are seamless and scaled so that they

can be directly tiled as textures on our 3D geometry. Images

in this dataset roughly correspond in size to a cropped patch

from the stationary textures dataset.

5. Approach

Here, we focus on the texture generation and propagation

stages in Plan2Scene. See the supplement for implementa-

tion details of the other stages.

We consider three families of approaches for texture gen-

eration: i) direct crop; ii) retrieval; and iii) synthesis. The

first and simplest approach is to directly use the extracted

rectified crop from the input surface. Unfortunately, this

can result in obvious seams and repeating artifacts when

3https://www.textures.com/, https://www.pexels.

com/, https://www.sketchuptextureclub.com/, https:

//www.freepik.com/, https://3djungle.net/
4https://archivetextures.net/

tiling the texture. The second approach retrieves a texture

that best represents the surface from a dataset. It can attain

high quality output but is limited by the size and diversity

of the texture dataset, and may not match the input surface

well. The third approach generates textures conditioned on

the input surface and can potentially achieve high quality

output that also matches the input surface. Figure 6 illus-

trates these three approaches.

5.1. Overview

There are three components to our approach: neural

embedding-based tileable texture synthesis, texture synthe-

sis for observed surfaces, and texture propagation to unob-

served surfaces. As the basis to our texture synthesis ap-

proach, we enhance an embedding based texture synthesis

model [10] so that given an input crop, we can embed it

to a latent code and synthesize a tileable texture (of finite

resolution) from the latent code (Section 5.2). Using our

tileable neural texture synthesis network, we can then take

rectified surface crops for observed surfaces and synthesize

an appropriate texture (Section 5.3). As the photos may not

cover all surfaces (roughly 60% are unobserved), we create

a graph using the room as nodes, and connectivity between

the rooms as edges. We encode the room type and the tex-

ture embeddings of the 3 surface types (‘wall’, ‘floor’, ‘ceil-

ing’) for the room, and use a graph neural network (GNN) to

propagate embeddings to unobserved surfaces. We can then

synthesize texture for all unobserved surfaces using these

propagated texture embeddings (Section 5.4).

5.2. Learning an embedding for tileable textures

We extend recent work on neural textures synthesis [10]

to address our problem setting. To condition our texture

on the input surface, we compute a texture embedding
~t = E(I) for each surface crop I using an encoder E. Then,

given an embedding ~t, we decode a texture Y = D(~t) for

each surface. As this output is not guaranteed to be seam-

less, we post-process the texture to make it seamless.

Henzler et al. [10]’s original approach accepts a 128 ×
128 input, which it encodes to an 8-dimensional embed-

ding. This embedding is combined with a random noise

vector to sample an infinite 2D or 3D texture. A weakness

of this approach is that a separate model is trained for each

substance. Moreover, the approach has difficulty disentan-

gling color, pattern, and substance, especially for surfaces

with a variety of colors (e.g., tiles, and painted walls which

are common in our setting).

We extend this approach in several ways to address these

limitations (see Figure 7). To separate color from texture

pattern, we separate into median color and offset and con-

vert both to the HSV color space to obtain the median HSV

color and offset from the median ∆HSV. A differentiable

HSV to RGB conversion layer allows gradient back propa-

10736

To HSV

Median Color
+ To HSV

−

Wood

ΔHSV To RGB+ΔHSV

Substance
Classifier

Input Output

VGG Statistics Loss

Neural Texture
Synthesis

HSV HSV

Cross Entropy Loss

Wood

Figure 7: Our texture synthesis architecture employs an

encoder-decoder network inspired by recent work [10],

adding modules to compute ∆ HSV (blue) and a substance

classifier (green). Components that are only used during

training have dashed outlines.

gation at training time. To allow the use of a single model

across different substances, we also introduce a substance

classification branch. The substance classification branch

is trained using a cross-entropy loss over the substance cat-

egory (‘wood’, ‘plaster’, ‘carpet’, and ‘tile’), encouraging

a structured latent space based on substance type which is

used for texture propagation. This setup is used to train

an embedding for ∆HSV using the sum of the VGG statis-

tics loss from Henzler et al. [10] and the cross-entropy loss

above. We convert the median color to RGB and concate-

nate it with the learned embedding into a final texture em-

bedding ~t ∈ R
8+3 which we use for synthesis of observed

surfaces and propagation for unobserved surfaces.

To ensure that the generated texture has stationary statis-

tics (e.g. there are no sharp gradient changes across the im-

age), we train on crops from our stationary textures dataset.

We use random crops from the textures to match inference

time when we will be taking random crops from the in-

put surfaces. We do not train directly on the crops from

Rent3D as that produces outputs that are unsuitable for use

as tileable textures. In early experiments, we observed

training directly on surface crops tends to produce non-

stationary textures with ‘blob’ artifacts caused by light gra-

dients, shadows and specular highlights. Finally, we post-

process the generated texture with the Embark Studios Tex-

ture Synthesis Library5 to ensure that they are seamless and

exhibit no seams when tiled (see supplement for example).

5.3. Texture synthesis for observed surfaces

Now that we can embed a single image crop I to a vector
~t = E(I), let us consider how we can synthesize textures

for observed surfaces. Note that for a given surface, we

may have multiple crops {Ii}. From these crops {Ii}, we

compute a single representative surface texture embedding
~t∗ for each surface.

A naive approach is to use the mean crop embedding of

5https : / / github . com / EmbarkStudios / texture -

synthesis

Surface
Crop

Surface
Crop

Surface
Crop

Synthesized
Texture

Synthesized
Texture

Synthesized
Texture

35.8 119.10.8

Figure 8: We employ a VGG statistics-based textureness

score to characterize the appropriateness of a surface crop as

conditioning input for texture generation. The textureness

scores are indicated on the arrows (lower is better).

GRU

00Ceiling
Wall
Floor

Linear
Module

Gated Graph
Convolution

Linear
Module

Input Graph
Representation

Output
Embeddings

00Ceiling
Wall
Floor

Figure 9: Our graph representation and GNN architecture

for texture propagation. Nodes correspond to rooms (with

matching colors). Edges indicated by orange lines with

kinks at doors. Here, the GNN computes the three surface

texture embeddings for the blue node and the red node.

all the crops assigned to a surface. This works poorly if

a large fraction of crops are affected by artifacts such as

shadows and reflections, or if the mean crop interpolates

over qualitatively different texture regions. Furthermore,

we want a crop which when embedded will give a good

synthesized texture. Thus, instead of taking the mean, we

can select a representative crop for the surface using a tex-

tureness score [7, 28].

We use the difference of VGG statistics (employed as a

similarity metric by Henzler et al. [10]) between the syn-

thesized texture and the conditioned surface crop as a proxy

for the textureness score. For each crop Ii, we generate an

output texture D(~ti) and then select the surface crop Ik that

has the least L2 difference of VGG Gram Matrices with the

synthesized texture. This textureness score encourages the

selection of a surface crop that can be best represented by

our texture synthesis model (see Figure 8).

5.4. Texture propagation for unobserved surfaces

Approximately 60% of the surfaces in our dataset are

unobserved by any photo. For these surfaces, we cannot di-

rectly compute~t∗ as above since we do not have any surface

crops. We instead use other observed surface embeddings

and the floorplan data (room type and room-door-room con-

nectivity) to propagate a texture embedding. To do this, we

10737

build a room-door-room connectivity graph with rooms as

nodes, and edges between two rooms if they are connected

by a door. We encode the room type and the texture embed-

dings of the three surface types (‘wall’, ‘floor’, ‘ceiling’) for

the room, and use a graph neural network (GNN) to infer the

texture embeddings of all unobserved surfaces.

We construct a room-door-room connectivity graph G =
(V,E) for each floorplan. Each room r is represented by a

node vr. An edge exists between rooms connected by a door

(see Figure 9). Each node vr stores a feature vector xr ∈ R
d

which concatenates the room type λr as a multi-hot encod-

ing (γ-dims) and the floor, wall and ceiling surface texture

embeddings ~t∗r,· each concatenated with a ‘presence cell’

(indicating if the corresponding surface is observed by set-

ting the cell to 1, otherwise zeroing out both the embedding

and the cell.) The overall feature vector is d-dimensional

where d = γ + 3× (11 + 1).
We use a gated graph convolutional architecture based

on Li et al. [17], with additional linear layers (see Figure 9).

To train this GNN, we take each observed surface s of each

room r in the training set as unobserved and treat it as a

prediction target. As data augmentation, we mask addi-

tional surfaces to produce versions of the graph with addi-

tional unobserved surfaces. We use the L1 loss on the target

surface texture embedding ~t∗r,s and train with Adam [14]

(weight decay 0.0001, batch size 32, learning rate 0.0005).

The architecture was implemented using PyTorch Geomet-

ric [8]. See the supplement for the implementation details.

6. Experiments

6.1. Methods

We compare the following methods in our experiments.

Crop: Assign surface reference crop as texture. For unob-

served surfaces, we randomly select a crop with the same

room and surface type (from the house if available, else

from training set, relaxing room type match if necessary).

Retrieve: Retrieve textures in the Substance Mapped

Textures dataset with lowest pixel-wise L1 loss to the ref-

erence crop. For unobserved surfaces, we employ a similar

input selection strategy as Crop.

NaiveSynth: Synthesize textures using Henzler et al.

[10] approach trained on our textures dataset. For observed

surfaces, conditioning input is the mean crop embedding.

For unobserved surfaces, we compute a mean crop embed-

ding considering surface crops assigned to all the surfaces

in the training set, of the same room type and surface type.

Finally, we correct the seams of synthesized texture crops

as before to make them tileable.

Synth: Our improved texture synthesis module for ob-

served surfaces leveraging the textureness score, using

propagation of improved embeddings with our GNN archi-

tecture to handle unobserved surfaces.

6.2. Metrics

Texture synthesis approaches are typically evaluated in

terms of similarity to reference images and output diver-

sity. In our setting, we want to ‘match’ the input surface

crops while correcting artifacts such as shadows, specular

highlights, and making the texture tileable. These criteria

make pixel-wise similarity metrics insufficient, and diver-

sity induced by a random noise vector is inappropriate. We

define a suite of metrics that measure: i) how well a texture

matches properties of the input surface such as color, pat-

tern, and substance type; ii) the tileability of the textures;

and iii) how well the texture set distribution matches the in-

put surface distribution. The following metrics define each

of these axes of output quality against the reference crop for

each surface (or all crops from a surface for FID).

COLOR: L1 distance between histograms of pixel values in

HSL color space (10 bins for hue, 3 bins each for saturation

and lightness), normalized to [0, 1].

FREQ: Measures pattern match. Extract periodic compo-

nent of grayscale image in frequency domain [22] and take

L1 difference of azimuthally averaged frequency amplitude

histograms (with DC component set to zero), taking mean

across frequencies.

SUBS: Substance classification error rate. Uses a VGG16-

based network to classify whether texture matches reference

crop’s substance type. See supplement for details.

FID: Fréchet Inception Distance [11]. Measures distribu-

tion similarity between synthesized texture set and all sur-

face crops. Lower is better.

TILE: Measures uniformity of local color averages as a

proxy for tileability. Based on ‘mean prior loss’ [1], and

implemented as Tile(Igray) = ||wf ⊙ F{Igray}||
2 where F

is the Fourier operator, Igray is crop I in grayscale, and wf

is the magnitude spectrum of a Gaussian with σ = 21 (1/6
texture size, as recommended by [1]). Lower is better.

6.3. Quantitative Evaluation

Table 1 shows the overall performance of our method

compared against various baseline approaches. Similarity

metrics for the ‘all’ and ‘unobserved’ surfaces settings are

computed by simulating a further 60% unobserved photos

since we do not have reference crops for truly unobserved

surfaces. Crop does well on similarity metrics by virtue

of directly using the reference crop as a texure. However,

it does not produce tileable textures as seen by the high

TILE metric values. Overall, our Synth outperforms other

baselines on both observed and unobserved surfaces. The

Retrieve approach is quite competitive and even outper-

forms NaiveSynth on many metrics.

The supplement provides additional analyses and abla-

tions showing that these trends hold across a range of unob-

served photo fractions, and quantifying improvements due

10738

Bedroom

ReceptionKitchen

Reception

Reception

Bathroom Kitchen

RetrieveCrop NaiveSynth Synth	(Ours)Input
Bathroom

Bedroom

Reception

ReceptionKitchen

Bathroom

Bedroom, Kitchen

Bedroom, Kitchen

Figure 10: Qualitative comparison of results on test set, with simulated unobserved photos (dashed lines indicate unobserved

photos). Crop produces textures that do not tile well. Retrieve is a competitive baseline, but does not match the input as

well as our Synth approach does.

Table 1: Overall results on test set. Lower values are better. Similarity metrics in the ‘Unobserved’ and ‘All’ columns are

reported by simulating 60% of photos as unobserved. All similarity metrics treat the reference crop as the ground truth (note

that this benefits Crop which uses the reference crop as a texture). We observe that Synth outperforms Retrieve and

NaiveSynth across all metrics, and outperforms all approaches in terms of tileability.

Observed Unobserved All

COLOR FREQ SUBS FID TILE COLOR FREQ SUBS FID TILE COLOR FREQ SUBS FID TILE

Crop 0 0 0 0 38.1 0.768 0.026 0.345 57.2 40.6 0.459 0.016 0.208 35.6 39.5

Retrieve 0.561 0.054 0.473 238.2 17.3 0.751 0.040 0.437 261.5 19.1 0.680 0.046 0.458 243.2 18.3

NaiveSynth 0.694 0.046 0.385 239.3 21.7 0.714 0.044 0.427 245.4 19.8 0.709 0.046 0.404 239.4 20.6

Synth (ours) 0.431 0.035 0.350 196.1 16.4 0.653 0.032 0.393 199.4 18.6 0.591 0.034 0.392 196.2 17.6

10739

to individual components in our approach.

6.4. Qualitative Evaluation

Figure 10 compares full textured 3D house results us-

ing various methods. Crop produces obvious tiling ar-

tifacts such as notable repetitiveness and visible seams.

NaiveSynth does a poor job in capturing the input

appearance, in this case generating red shifted textures.

Retrieve produces high quality textures, but it fails to

match the input as well as our Synth method. For instance

looking at the green shaded bathroom (which is observed)

and the blue shaded bedroom (which is unobserved) in the

first example, cyan room (observed) in the second exam-

ple, yellow room (unobserved) in the third example, and red

room (observed) in the last example, Synth better matches

the appearance of the floor. See the supplement for more

examples.

6.5. User Study

To holistically evaluate the results of our approach

against baselines, we also carry out a user study.

Setup. We randomly sampled 20 houses from the test set

and conducted a forced A-B choice user study. The par-

ticipants were university students who were not involved

with this work. They were asked to choose between two

top-down 3D renderings of a textured house output (with

the ceiling removed), given an input floorplan overlaid with

photos assigned to the rooms. The pair of renderings was

from Synth and one of the three baselines, presented in

random order. Users were instructed to consider the quality

of the textures (i.e. absence of discontinuities and unneces-

sary repetitiveness), and similarity to the surfaces observed

in the photos. As the pairs contrasted the three baselines

against Synth, each user made 20 × 3 = 60 choices in

shuffled order.

Results. A total of 18 users participated the study. Our

Synth results were preferred relative to the baselines about

70% of the time (69.4% against Retrieve, 66.9% against

Crop and 72.8% against NaiveSynth). See the supple-

ment for additional analysis of the user study results.

6.6. Failure cases and limitations

Figure 11 shows two failure cases. In the first case, a

wooden floor is textured entirely as a white carpet. Here,

the semantic segmentation we use included the carpet mat

in the floor mask, which led to a crop from the carpet being

used for floor texture synthesis. In the second case, the walls

exhibit a blue tint due to the illumination and color balance

of the input photo. Our crop selection helps mitigate local-

ized illumination anomalies, but it does not correct photo-

wide color shifts, or otherwise handle the general problem

of accounting for illumination. The floor here is also light

cyan due to poor crop selection caused by a severe specular

Rectify

(a) Semantic Mask Failure (b) Illumination Failure

Figure 11: Example failure cases. Selected crops shown in

blue outline. In the first case, a semantic segmentation issue

leads to a carpet crop being used for the wooden floor. In

the second case, a blue color shift in the photos and strong

specular highlights cause poor crop selection.

highlight (crop shown in popup is entirely solid color and is

likely interpreted as a plastered surface).

7. Conclusion

We presented the Plan2Scene task: conversion of a floor-

plan and set of sparse photos to a textured 3D mesh. We fo-

cused on the texture generation stages in this task, defining

a suite of texture quality metrics, and proposing a texture

synthesis approach with GNN-based propagation to unob-

served surfaces. Our experiments show that our approach

leads to higher quality textures compared to simpler base-

lines. Several stages of the task were simplified and are

open for future investigation, including improved genera-

tion of regular patterns such as tiles. We believe conver-

sion of floorplan and photo data to textured 3D scenes is a

promising avenue for creating large volumes of 3D interi-

ors, and will enable future work relying on large-scale 3D

interior datasets.

Acknowledgements. We thank all the participants in

our user study: Akshit Sharma, Andy Wang, Hanxiao

Jiang, Hao Hao, Jiaqi Tan, Julia Read, Kevin Joseph, Leon

Kochiev, Liyang Zhou, Mayur Mallya, Reza Asad, Richard

Pan, Roya Javadi, Sachini Herath, Saghar Irandoust, Sebas-

tian Dille, Sepideh Sarajian, Sepidehsadat Hosseini, Shiv-

ansh Patel, Supriya Gadi Patil, Vishal Batvia, Weijie Lin,

Weilian Song, Yasaman Etesam, Yongsen Mao, Yuzhen

Mao. This research was enabled in part by support provided

by WestGrid and Compute Canada. QW is supported by a

VSP USRA, AXC by a Canada CIFAR AI Chair, MS by a

Canada Research Chair and NSERC Discovery Grant.

10740

References

[1] Miika Aittala, Timo Aila, and Jaakko Lehtinen. Reflectance

modeling by neural texture synthesis. ACM Trans. Graph.,

35(4), 2016.

[2] Adib Akl, Charles Yaacoub, Marc Donias, Jean-Pierre

Da Costa, and Christian Germain. A survey of exemplar-

based texture synthesis methods. Computer Vision and Im-

age Understanding, 172:12–24, 2018.

[3] Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala.

OpenSurfaces: A richly annotated catalog of surface appear-

ance. ACM Trans. on Graphics (SIGGRAPH), 32(4), 2013.

[4] Ricardo Cabral and Yasutaka Furukawa. Piecewise pla-

nar and compact floorplan reconstruction from images. In

CVPR, pages 628–635, 2014.

[5] Angel X. Chang, Thomas A. Funkhouser, Leonidas J.

Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo Li, Silvio

Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong

Xiao, Li Yi, and Fisher Yu. ShapeNet: An information-rich

3D model repository. ArXiv, abs/1512.03012, 2015.

[6] Qi Chen, Qi Wu, Rui Tang, Yuhan Wang, Shuai Wang, and

Mingkui Tan. Intelligent home 3D: Automatic 3D-house

design from linguistic descriptions only. In CVPR, pages

12622–12631, 2020.

[7] Dengxin Dai, Hayko Riemenschneider, and L. Gool. The

synthesizability of texture examples. In CVPR, pages 3027–

3034, 2014.

[8] Matthias Fey and Jan Eric Lenssen. Fast graph represen-

tation learning with PyTorch geometric. arXiv preprint

arXiv:1903.02428, 2019.

[9] Yasutaka Furukawa, Brian Curless, Steven M Seitz, and

Richard Szeliski. Reconstructing building interiors from im-

ages. In CVPR, pages 80–87, 2009.

[10] Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Learn-

ing a neural 3D texture space from 2D exemplars. In CVPR,

2019.

[11] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. GANs trained by

a two time-scale update rule converge to a local Nash equi-

librium. In NeurIPS, 2017.

[12] Jingwei Huang, Angela Dai, Leonidas J Guibas, and

Matthias Nießner. 3Dlite: towards commodity 3D scanning

for content creation. SIGGRAPH Asia, 36(6):203–1, 2017.

[13] Hamid Izadinia, Qi Shan, and Steven M Seitz. Im2cad. In

CVPR, pages 5134–5143, 2017.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[15] Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. Model-

ing surface appearance from a single photograph using self-

augmented convolutional neural networks. ACM TOG, 36

(4):1–11, 2017.

[16] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,

and Ming-Hsuan Yang. Diversified texture synthesis with

feed-forward networks. In CVPR, pages 266–274, 2017.

[17] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard

Zemel. Gated graph sequence neural networks. In ICLR,

2016.

[18] Zhengqin Li, Kalyan Sunkavalli, and Manmohan Chan-

draker. Materials for masses: SVBRDF acquisition with a

single mobile phone image. In ECCV, pages 72–87, 2018.

[19] Cheng Lin, Changjian Li, and Wenping Wang. Floorplan-

jigsaw: Jointly estimating scene layout and aligning partial

scans. In ECCV, pages 5674–5683, 2019.

[20] Chen Liu, Jiajun Wu, Pushmeet Kohli, and Yasutaka Fu-

rukawa. Raster-to-vector: Revisiting floorplan transforma-

tion. In ICCV, pages 2214–2222, 2017.

[21] Chenxi Liu, Alex Schwing, Kaustav Kundu, Raquel Urtasun,

and Sanja Fidler. Rent3D: Floor-plan priors for monocular

layout estimation. In CVPR, 2015.

[22] Lionel Moisan. Periodic plus smooth image decomposition.

Journal of Mathematical Imaging and Vision, 39:161–179,

2010.

[23] Claudio Mura, Oliver Mattausch, Alberto Jaspe Villanueva,

Enrico Gobbetti, and Renato Pajarola. Automatic room de-

tection and reconstruction in cluttered indoor environments

with complex room layouts. Computers & Graphics, 44:20–

32, 2014.

[24] Lukas Murmann, Michael Gharbi, Miika Aittala, and Fredo

Durand. A dataset of multi-illumination images in the wild.

In ICCV, pages 4080–4089, 2019.

[25] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo

Strauss, and Andreas Geiger. Texture fields: Learning tex-

ture representations in function space. In ICCV, pages 4530–

4539, 2019.

[26] Cheng Sun, Chi-Wei Hsiao, Min Sun, and Hwann-Tzong

Chen. HorizonNet: Learning room layout with 1D represen-

tation and pano stretch data augmentation. In CVPR, pages

1047–1056, 2019.

[27] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,

Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui

Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao. Deep

high-resolution representation learning for visual recogni-

tion. TPAMI, 2019.

[28] Huisi Wu, Xiaomeng Lyu, and Zhenkun Wen. Automatic

texture exemplar extraction based on global and local tex-

tureness measures. Computational Visual Media, 4:173–184,

2018.

[29] Jianxiong Xiao and Yasutaka Furukawa. Reconstructing the

world’s museums. IJCV, 110(3):243–258, 2014.

[30] Shang-Ta Yang, Fu-En Wang, Chi-Han Peng, Peter Wonka,

Min Sun, and Hung-Kuo Chu. DuLa-Net: A dual-projection

network for estimating room layouts from a single RGB

panorama. In CVPR, pages 3363–3372, 2019.

[31] Zehao Yu, Jia Zheng, Dongze Lian, Zihan Zhou, and

Shenghua Gao. Single-image piece-wise planar 3D recon-

struction via associative embedding. In CVPR, 2019.

[32] Weidong Zhang, Wei Zhang, and Yinda Zhang. GeoLay-

out: Geometry driven room layout estimation based on depth

maps of planes. In ECCV, pages 632–648, 2020.

[33] Yinda Zhang, Shuran Song, Ping Tan, and Jianxiong

Xiao. PanoContext: A whole-room 3D context model for

panoramic scene understanding. In ECCV, pages 668–686.

Springer, 2014.

[34] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela

Barriuso, and Antonio Torralba. Scene parsing through

10741

ADE20K dataset. In CVPR, 2017.

[35] Michael Zollhöfer, Patrick Stotko, Andreas Görlitz, Chris-

tian Theobalt, Matthias Nießner, Reinhard Klein, and An-

dreas Kolb. State of the art on 3D reconstruction with RGB-

D cameras. In Computer Graphics Forum, volume 37, pages

625–652. Wiley Online Library, 2018.

[36] Chuhang Zou, Alex Colburn, Qi Shan, and Derek Hoiem.

LayoutNet: Reconstructing the 3D room layout from a single

RGB image. In CVPR, pages 2051–2059, 2018.

10742

