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Abstract

Spatial-temporal, channel-wise, and motion patterns are

three complementary and crucial types of information for

video action recognition. Conventional 2D CNNs are com-

putationally cheap but cannot catch temporal relationships;

3D CNNs can achieve good performance but are computa-

tionally intensive. In this work, we tackle this dilemma by

designing a generic and effective module that can be em-

bedded into 2D CNNs. To this end, we propose a spAtio-

temporal, Channel and moTion excitatION (ACTION)

module consisting of three paths: Spatio-Temporal Excita-

tion (STE) path, Channel Excitation (CE) path, and Motion

Excitation (ME) path. The STE path employs one chan-

nel 3D convolution to characterize spatio-temporal repre-

sentation. The CE path adaptively recalibrates channel-

wise feature responses by explicitly modeling interdepen-

dencies between channels in terms of the temporal aspect.

The ME path calculates feature-level temporal differences,

which is then utilized to excite motion-sensitive channels.

We equip 2D CNNs with the proposed ACTION module to

form a simple yet effective ACTION-Net with very limited

extra computational cost. ACTION-Net is demonstrated by

consistently outperforming 2D CNN counterparts on three

backbones (i.e., ResNet-50, MobileNet V2 and BNIncep-

tion) employing three datasets (i.e., Something-Something

V2, Jester, and EgoGesture). Code is provided at https:

//github.com/V-Sense/ACTION-Net.

1. Introduction

Video understanding has attracted an increasing amount

of interest, since it is a crucial step towards real-world

applications, such as Virtual Reality/Augmented Reality

(VR/AR) and video-sharing social networking services.

For instance, millions of videos are uploaded to Tik-

Tok, Douyin, and Xigua Video to be processed everyday,

wherein video understanding acts a pivotal part. However,
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the explosive growth in this video streaming gives rise to

challenges on performing video understanding at high ac-

curacy and low computation cost.

Action recognition, a fundamental problem in video un-

derstanding, has been a growing demand in video-related

applications, such as content moderation (i.e., recognize

content in videos that break terms of service) and content

recommendations (i.e., videos are ranked by most liked and

recommended to similar customers). The complex actions

in videos are normally temporal-dependent, which do not

only contain spatial information within each frame but also

include temporal information over a duration. For example,

symmetric action pairs (‘opening a box’, ‘closing a box’),

(‘rotate fists clockwise’, ‘rotate fists counterclockwise’)

contain similar features in spatial domains, but the tem-

poral information is completely reversed. Traditional hu-

man action recognition is more scene-related [36, 18, 15],

wherein actions are not as temporal-dependent e.g., ‘apply

eye makeup’, ‘walking’, ‘running’. With how rapid technol-

ogy is developing, like VR, which requires employing ges-

tures to interact with environments, temporal-related action

recognition has recently become a focus for research.

The mainstreams of existing methods are 3D CNN-

based frameworks and 2D CNN-based frameworks. 3D

CNNs have been shown to be effective in terms of spatio-

temporal modeling [39, 4, 37], but spatio-temporal mod-

eling is unable to capture adequate information contained

in videos. The two-stream architecture was proposed to

take spatio-temporal information and optical flow into ac-

count [35, 3, 33], which boosted performance significantly

compared to the one-stream architecture. However, compu-

tation on optical flow is very expensive, which poses chal-

lenges on real-world applications. 3D CNNs suffer from

problems including overfitting and slow convergence [8].

With more large-scale datasets being released, such as Ki-

netics [3], Moments in Time [29] and ActivityNet [2], opti-

mizing 3D CNNs becomes much easier and more popular.

However, heavy computations inherent in 3D CNN-based

frameworks contribute to slow inferences, which would

limit their deployment on real-world applications, such as

VR that relies on online video recognition. Current 2D
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Figure 1: Visualization for significant features extracted by TSN, TSM and our ACTION-Net for the action ‘Rotate fists counterclockwise’.

Features extracted by each method are visualized by using CAM [48]. Compared to TSN and TSM, it can be noticed that ACTION-Net

is able to extract features that are related to movements in an action especially for highlighted frames i.e., 4th and 5th columns. More

examples can be referred to Supplementary Materials.

CNN-based frameworks [14, 35, 41, 47, 22, 20] enjoy

lightweight and fast inferences. These approaches oper-

ated on a sequence of short snippets (known as segments)

sparsely sampled from the entire video and were initially in-

troduced in TSN [41]. Original 2D CNNs lack the ability of

temporal modeling, which causes losing essential sequen-

tial information in some actions e.g., ‘opening a box’ vs

‘closing a box’. TSM [22] introduced temporal information

to 2D CNN-based frameworks by shifting a part of chan-

nels on the temporal axis, which significantly improved the

baseline for 2D CNN-based frameworks. However, TSM

still lacks explicit temporal modeling for an action, such

as motion information. Recent works [19, 13, 21, 24, 25]

introduced embedded modules into 2D CNNs in terms of

ResNet architecture [9], which possessed the capability for

motion modeling. In order to capture multi-type informa-

tion contained by videos, previous works normally oper-

ated on input-level frames. For instance, SlowFast net-

works sampled raw videos at multiple rates to character-

ize slow and fast actions; two-stream networks utilized pre-

computed optical flow for reasoning motion information.

This kind of approaches commonly require multi-branch

networks, which need expensive computations.

Inspired by the aforementioned observation, we pro-

pose a new plug-and-play and lightweight spAtio-temporal,

Channel and moTion excitatION (ACTION) module to ef-

fectively process the multi-type information on the feature

level inside a single network by adopting multipath exci-

tation. The combination of spatio-temporal features and

motion features can be understood similarly as the two-

stream architecture [35], but we model the motion inside

the network based on the feature level rather than generat-

ing another type of input (e.g., optical flow [11]) for train-

ing the network, which significantly reduces computations.

Inspired by SENet, the channel-wise features are extracted

based on the temporal domain to characterize the channel

interdependencies for the network. Correspondingly, a neu-

ral architecture equipped with such a module is dubbed

ACTION-Net. ACTION comprises three components for

extracting aforementioned features (1) Spatio-Temporal Ex-

citation (STE), (2) Channel Excitation (CE) and (3) Motion

Excitation (ME). Figure 1 visualizes features characterized

by TSN, TSM, and ACTION-Net for the action ‘rotate fists

counterclockwise’. It can be observed that both TSN and

TSM focus on recognizing objects (two fists) independently

instead of reasoning an action. Compared to TSN and TSM,

our proposed ACTION-Net better characterizes an action

by representing feature maps that cover the two fists, espe-

cially for the highlighted 4th and 5th columns. In a nutshell,

our contributions are three-fold:

• We propose an ACTION module that works in a plug-

and-play manner, which is able to extract appropriate

spatio-temporal patterns, channel-wise features, and

motion information to recognize actions.
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• A simple yet effective neural architecture referred to

ACTION-Net. We test it on three backbones (ResNet-

50 [9], BNIception [12] and MobileNet V2 [31]).

• We conducted extensive experiments and shown our

superior performances on three datasets Something-

Something V2 [7], Jester [27] and EgoGesture [46].

2. Related Works

In this section, we discuss related works by taking

2D and 3D CNN-based frameworks into account, wherein

SENet [10] and TEA [21] inspired us to propose the

ACTION-Net.

2.1. 3D CNN­based Framework

The 3D CNN-based framework has a spatio-temporal

modeling capability, which enhances model performance

for video action recognition [39, 8, 39]. I3D [3] inflated the

ImageNet pre-trained 2D kernels to 3D kernels for captur-

ing spatio-temporal information. To better represent motion

patterns, I3D utilized pre-computed optical flow together

with RGB (also known as the two-stream architecture).

SlowFast networks [5] were proposed to handle inconsis-

tent speeds of actions in videos e.g., running and walking,

which involved a slow branch and a fast branch to model

slow actions and fast actions, respectively. Although 3D

CNN-based approaches have achieved exciting results on

several benchmark datasets, they contain massive parame-

ters. In this case, various problems are caused, such as eas-

ily overfitting [8] and difficulty in converging [40], which

pose challenges including ineffective inferences for online

streaming videos in real-world applications. Although re-

cent works [30, 40] have demonstrated that 3D convolution

can be factorized to lessen computations to some extent, the

computation is still much more of a burden when compared

to 2D CNN-based frameworks.

2.2. 2D CNN­based Framework

TSN [41] was the first proposed framework that ap-

plied 2D CNNs for video action recognition, which intro-

duced the concept of ‘segment’ to process videos i.e., ex-

tract short snippets over a long video sequence with a uni-

form sparse sampling scheme. However, the direct use of

2D CNNs lacks temporal modeling for video sequences.

TSM [22] firstly introduced temporal modeling to 2D CNN-

based frameworks, in which a shift operation for a part of

channels was embedded into 2D CNNs. However, TSM

lacks explicit temporal modeling for actions such as differ-

ences among neighbouring frames. Recently, several works

have proposed modules to be embedded into 2D CNNs.

These modules are able to model the motion and tempo-

ral information. For instance, MFNet [19], TEINet [24]

and TEA [21], which introduced this type of modules,

were demonstrated to be effective on the ResNet architec-

ture. STM [13] proposed a block for modeling the spatio-

temporal and motion information instead of the ordinary

residual block. GSM [38] leverages group spatial gating

to control interactions in spatial-temporal decomposition.

2.3. SENet and Beyond

Hu et al. [10] introduced a SENet architecture. A

squeeze-and-excitation (SE) block was proposed to be em-

bedded into 2D CNNs. In this case, the learning of channel-

wise features regarding image recognition tasks was en-

hanced by explicitly modeling channel interdependencies.

To tackle this, the SE block utilized two fully connected

(FC) layers in a squeeze-and-unsqueeze manner then ap-

plied a Sigmoid activation for exciting essential channel-

wise features. However, it processes each image indepen-

dently without considering critical information such as tem-

poral properties for videos. To tackle this issue, TEA [21]

introduces motion excitation (ME) and multiple temporal

aggregation (MTA) in tandem to capture short- and long-

range temporal evolution. It should be noted that MTA is

specifically designed for Res2Net [6], which means TEA

can only be embedded into Res2Net. Inspired by these two

previous works, we first propose STE and CE modules be-

yond the SE module by addressing the spatio-temporal per-

spective and channel interdependencies in temporal dimen-

sion. The ACTION module is then constructed by assem-

bling STE, CE and ME in a parallel manner, in which case,

multi-type information in videos can be activated.

3. Design of ACTION

In this section, we are going to introduce technical de-

tails for our proposed ACTION-Net together with ACTION

module. As the ACTION module consists of three sub-

modules i.e., Spatio-Temporal Excitation (STE), Channel

Excitation (CE) and Motion Excitation (ME), we firstly in-

troduce these three sub-modules respectively and then give

an overview on how to integrate them to an ACTION mod-

ule. Notations used in this section are: N (batch size), T

(number of segments), C (channels), H (height), W (width)

and r (channel reduce ratio). It should be noticed that all

tensors outside the ACTION module are 4D i.e., (N×T, C,

H, W). We first reshape the input 4D tensor to 5D tensor

(N, T, C, H, W) before feeding to the ACTION in order to

enable the operation on specific dimension inside the AC-

TION. The 5D output tensor is then reshaped to 4D before

being fed to the next 2D convolutional block.

3.1. Spatio­Temporal Excitation (STE)

STE is efficiently designed for exciting spatio-temporal

information by utilizing 3D convolution. To achieve

this, STE generates a spatio-temporal mask M ∈

R
N×T×1×H×W that is used for element-wise multiplying
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the input X ∈ R
N×T×C×H×W across all channels. As il-

lustrated in Fig. 2(a), given an input X ∈ R
N×T×C×H×W ,

we first average the input tensor across channels in order

to get a global spatio-temporal tensor F ∈ R
N×T×1×H×W

with respect to the channel axis. Then we reshape F to

F∗ ∈ R
N×1×T×H×W to be fed to a 3D convolutional layer

K with kernel size 3× 3× 3, which can be formulated as

F∗

o = K ∗ F∗ (1)

We finally reshape F∗

o back to Fo ∈ R
N×T×1×H×W and

feed it to a Sigmoid activation in order to get the mask M ∈

R
N×T×1×H×W , which can be represented as

M = δ(Fo) (2)

The final output can be interpreted as

Y = X+X⊙M (3)

Compared to the conventional 3D convolutional operation,

STE is much more computationally efficient as the in-

put feature F∗ is averaged across channels. Each chan-

nel of the input tensor X can perceive the importance of

spatio-temporal information from a refined feature excita-

tion δ(Fo).

3.2. Channel Excitation (CE)

CE is designed similarly to SE block [10] as shown in

Fig. 2(b). The main difference between CE and SE is that

we insert a 1D convolutional layer between two FC layers

to characterize temporal information for channel-wise fea-

tures. Concretely, given an input X ∈ R
N×T×C×H×W ,

we firstly access the global spatial information of the input

feature by spatial average pooling the input, which can be

represented as

F =
1

H ×W

H∑

i=1

W∑

j=1

X[:, :, :, i, j] (4)

where F ∈ R
N×T×C×1×1. We squeeze the number of

channels for F by a scale ratio r (r = 16 in this work),

which can be interpreted as

Fr = K1 ∗ F (5)

where K1 is a 1 × 1 2D convolutional layer and

Fr ∈ R
N×T×

C

r
×1×1. We then reshape Fr to F∗

r ∈

R
N×

C

r
×T×1×1 to enable the temporal reasoning. A 1D

convolutional layer K2 with kernel size 3 is utilized to pro-

cess F∗

r as

F∗

temp = K2 ∗ F
∗

r (6)

where F∗

temp ∈ R
N×

C

r
×T×1×1. F∗

temp is then reshaped to

Ftemp ∈ R
N×T×

C

r
×1×1, which is then unsqueezed by us-

ing a 1× 1 2D convolutional layer K3 and fed to a Sigmoid

3x3x3, 3D Conv

Channel pooling

N, T, 1, H, W

Reshape

N, 1, T, H, W

N, 1 , T, H, W

Sigmoid

Reshape

N, T, 1, H, W

N, T, C, H, W

N, T, 1, H, W

N, T, C, H, W

+

Input

Output

(a)

N, T, C, H, W

Spatial pooling

Reshape

N, T, C, 1, 1

N, T, C/16, 1, 1

1x1, 2D Conv

N, C/16, T

3, 1D Conv

1x1, 2D Conv

N, C/16, T

Reshape

N, T, C/16, 1, 1

Sigmoid

N, T, C, 1, 1

N, T, C, 1, 1

N, T, C, H, W

+

Input

Output

(b)

1x1, 2D Conv

N, C/16, H, W

X(t) X(t+2)X(t+1) ……

N, C/16, H, W N, C/16, H, W

3x3, 2D Conv 3x3, 2D Conv

- -

Concat

N, T, C/16, H, W

N, C/16, H, W

1x1, 2D Conv

Sigmoid

Spatial pooling

N, T, C/16, 1, 1

N, T, C, 1, 1

N, T, C, 1, 1

N, T, C, H, W

Input

+

Output

(c)

Figure 2: ACTION module consists of three sub-modules (a)

Spatio-Temporal Excitation (STE) module, (b) Channel Excitation

(CE) module and (c) Motion Excitation (ME) module.

activation. These are the last two steps to obtain the channel

mask M, which can be formulated respectively

Fo = K3 ∗ Ftemp (7)

M = δ(Fo) (8)

where Fo ∈ R
N×T×C×1×1 and M ∈ R

N×T×C×1×1. Fi-

nally, the output of CE is formulated as the same as in equa-

tion (3) using the new generated mask.

13217



res!

C
la

ss
if

ie
r 

(F
C

)

Class 1

Class 2

Class 3

…

Sampling

Video T Frames

conv 7x7 res" res# res$

Te
m

p
o

ra
l 

A
v
e

ra
g

e

Tx3x224x224 Tx64x56x56 Tx256x56x56 Tx512x28x28 Tx1024x14x14 Tx2048x7x7

T x CLS CLS

Input

Shift

STE CE ME

+

Output

ACTION Module

A
C

T
IO

N

+

C
o

n
v

 1
x
1

C
o

n
v

 3
x
3

C
o

n
v

 1
x
1

ACTION-Net Residual Block 

Figure 3: ACTION-Net architecture for ResNet-50 [9]. The size of output feature map is given for each layer (CLS refers to number

of classes and T refers to number of segments). The input video is firstly split into T segments equally and then one frame from each

segment is randomly sampled [41]. The ACTION module is inserted at the start in each residual block. Performance of different embedded

locations can be referred to Supplementary Materials.

3.3. Motion Excitation (ME)

ME has been explored by [13, 21] previously, which

aims to model motion information based on the feature

level instead of the pixel level. Different from previous

work [13, 21] that proposed a whole block for extracting

motion, we use the ME in parallel with two modules men-

tioned in previous two sections. As illustrated in Fig. 2(c),

the motion information is modeled by adjacent frames. We

adopt the same squeeze and unsqueeze strategy as used in

the CE sub-module by using two 1×1 2D convolutional lay-

ers, which can be referred to equation (5) and equation (7)

respectively. Given the feature Fr ∈ R
N×T×

C

r
×H×W pro-

cessed by the squeeze operation, motion feature is modeled

following the similar operation presented in [13, 21], which

can be represented as

Fm = K ∗ Fr[:, t+ 1, :, :, :]− Fr[:, t, :, :, :] (9)

where K is a 3 × 3 2D convolutional layer and Fm ∈

R
N×1×

C

r
×H×W . The motion feature is then concatenated

to each other according to the temporal dimension and 0 is

padded to the last element i.e., FM = [Fm(1), . . . ,Fm(t−

1), 0],FM ∈ R
N×T×

C

r
×H×W . The FM is then pro-

cessed by spatial average pooling same as in equation (4).

The feature output Fo ∈ R
N×T×C×1×1 and the mask

M ∈ R
N×T×C×1×1 can then be achieved similarly as in

CE through equation (7) and equation (8) respectively.

3.4. ACTION­Net

The overall ACTION module takes the element-wise ad-

dition of three excited features generated by STE, CE and

ME respectively (see ACTION module block in Fig. 3). By

doing this, the output of the ACTION module can perceive

information from a spatio-temporal perspective, channel in-

terdependencies and motion. Figure 3 shows the ACTION-

Net architecture for ResNet-50, wherein the ACTION mod-

ule is inserted at the beginning in each residual block. It

does not require any modification for original components

in the block. Details of ACTION-Net architectures for Mo-

bileNet V2 and BNInception can be referred to Supplemen-

tary Materials.

4. Experiments

We first show that ACTION-Net is able to consistently

improve the performance for 2D CNNs compared to pre-

vious two fundamental works TSN [41] and TSM [22] on

three datasets i.e., EgoGesture [46], Something-Something

V2 [7] and Jester [27]. We then perform extensive exper-

iments for comparing ACTION-Net with state-of-the-arts

on these three datasets. Abundant ablation studies are con-

ducted to analyze the efficacy for each excitation path in

ACTION-Net. Finally, we further compare ACTION-Net

with TSM on three backbones i.e., ResNet-50, MobileNet

V2 and BNInception by considering performance and effi-

ciency (η).

4.1. Datasets

We evaluated the performance for the proposed

ACTION-Net on three large-scale and widely used ac-

tion recognition datasets i.e., Something-Something V2 [7],

Jester [27] and EgoGesture [46]. The Something-

Something V2 dataset [19, 24, 44, 49] is a large col-

lection of humans performing actions with everyday ob-

jects. It includes 174 categories with 168,913 training

videos, 24,777 validation videos and 27,157 testing videos.

Jester [13, 16, 45, 28, 17] is a third-person view gesture

dataset, which has a potential usage for human computer

interaction. It has 27 categories with 118,562 training

videos, 14,787 validation videos and 14,743 testing videos.

EgoGesture [16, 43, 33, 32, 1, 34] is a large-scale dataset

for egocentric hand gesture recognition recorded by a head-

mounted camera, which is designed for VR/AR use cases.

It involves 83 classes of gestures with 14,416 training sam-
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ples, 4,768 validation samples and 4,977 testing samples.

4.2. Implementation Details

Training. We conducted our experiments on video action

recognition tasks by following the same strategy mentioned

in TSN [41]. Given an input video, we firstly divided it into

T segments of equal duration. Then we randomly selected

one frame from each segment to obtain a clip with T frames.

The size of the shorter side of these frames is fixed to 256

and corner cropping and scale-jittering were ultilized for

data augmentation. Each cropped frame was finally resized

to 224 × 224, which was used for training the model. The

input fed to the model is of the size N ×T ×3×224×224,

in which N is the batch size, T is the number of segments.

The models were trained on a NVIDIA DGX station with

four Tesla V100 GPUs. We adopted SGD as optimizer with

a momentum of 0.9 and a weight decay of 5× 10−4. Batch

size was set as N = 64 when T = 8 and N = 48 when

T = 16. Network weights were initialized using Ima-

geNet pretrained weights. For Something-Something V2,

we started with a learning rate of 0.01 and reduced it by a

factor of 10 at 30, 40, 45 epochs and stopped at 50 epochs.

For Jester dataset, we started with a learning rate of 0.01

and reduced it by a factor of 10 at 10, 20, 25 epochs and

stopped at 30 epochs. For EgoGesture dataset, we started

with a learning rate of 0.01 and reduced it by a factor of 10

at 5, 10, 15 epochs and stopped at 25 epochs.

Inference. We utilized the three-crop strategy following

[13, 42, 5] for inference. We firstly scaled the shorter side

to 256 for each frame and took three crops of 256×256 from

scaled frames. We randomly sampled from the full-length

video for 10 times. The final prediction was the averaged

Softmax score for all clips.

4.3. Improving Performance of 2D CNNs

We compare ACTION-Net to two fundamental 2D CNN

counterparts TSN and TSM. As illustrated in Table 1,

ACTION-Net consistently outperforms these two 2D CNN

counterparts on all three datasets. It is worth nothing that

TSN does not contain any component that is able to model

the temporal information. By employing a temporal shift

operation to a part of channels, TSM introduces some tem-

poral information to the network, which significantly im-

proves the 2D CNN baseline compared to TSN. However,

TSM still lacks explicit temporal modeling. By adding

the ACTION module to TSN, ACTION-Net takes spatio-

temporal modeling, channel interdependencies modeling

and motion modeling into account. It can be noticed that the

Top-1 accuracy of ACTION-Net is improved by 2%, 3.8%

and 2.7% compared to TSM with respect to EgoGesture,

Something-Something V2 and Jester datasets.

Table 1: ACTION-Net consistently outperforms 2D counterparts

on three representative datasets. All methods use ResNet-50 as

backbone and 8 frames input for the fair comparison.

Dataset Model Top-1 △Top-1 Top-5 △Top-5

EgoGesture*

TSN 83.1 - 97.3 -

TSM 92.1 + 9.0 98.3 + 1.0

ACTION-Net 94.2 + 11.1 98.7 + 1.4

SomethingV2

TSN 27.8 - 57.6 -

TSM 58.7 + 30.9 84.8 + 27.2

ACTION-Net 62.5 + 34.7 87.3 + 29.7

Jester

TSN 81.0 - 99.0 -

TSM 94.4 + 13.4 99.7 + 0.7

ACTION-Net 97.1 + 16.1 99.8 + 0.8

* We re-implement TSN and TSM using the official public

code in [22].

4.4. Comparisons with the State­of­the­Art

We compare our approach with the state-of-the-art on

Something-Something V2, Jester and EgoGesture, which is

summarized in Table 2. We mainly compare our approach

with 2D CNN counterparts as 3D CNN-based frameworks

are more favored in scene-related datasets e.g., Kinet-

ics [30, 5]. The superiority of ACTION-Net on Jester

and EgoGesture is quite impressive. It is clear that even

ACTION-Net with 8 RGB frames as input achieves the

state-of-the-art performance compared to other methods,

which confirms the remarkable ability of ACTION-Net for

integrating useful information from three excitation paths.

In terms of Something-Something V2, ACTION-Net also

achieves competitive results compared to STM and TEA.

It should be noted that both STM and TEA are specifically

designed for ResNet and Res2Net respectively, while our

ACTION enjoys being flexibly equipped by other architec-

tures i.e., MobileNet V2 and BNInception.

4.5. Ablation Study

In this section, we investigate the design of our

ACTION-Net with respect to (1) efficacy of each excita-

tion and (2) impact of the number of ACTION modules

in ACTION-Net regarding the ResNet-50 architecture. We

carry out ablation experiments using 8 frames as the input

on the EgoGesture dataset for inspecting these two aspects.

Efficacy of Three Excitations. To validate the contribu-

tion of each excitation sub-module, we compare the perfor-

mance for each individual module and the combination of

all sub-modules (ACTION-Net) in Table 3. We also pro-

vide visualization results in Supplementary Materials. Re-

sults show that each excitation module is able to improve

the performance for 2D CNN baselines provided by TSN

and TSM with limited added computational cost. Con-
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Table 2: Comparisons with the state-of-the-arts on Something-Something V2, Jester and EgoGesture datasets.

Method Backbone Plug-and-play Pretrain Frame
Something V2 Jester EgoGesture

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

C3D + RSTTM [46] - Scratch 16 - - - - 89.3 -

C3D [16] ResNext-101 Kinetics 16 - - 95.9 - 90.9 -

TRN Multiscale [22] BNInception ImageNet 8 48.8 77.6 95.3 - - -

MFNet-C50 [19]

ResNet-50

ImageNet 7 - - 96.1 99.7 - -

TSN [22] X Kinetics
8 27.8 57.6 81.0 99.0 83.1 98.3

16 30.0 60.5 82.3 99.2 - -

TSM [13] X Kinetics
8 58.7 84.8 94.4 99.7 92.1 98.3

16 61.2 86.9 95.3 99.8 - -

GST [26] ImageNet
8 61.6 87.2 - - - -

16 62.6 87.9 - - - -

bLVNet-TAM [24] ImageNet 32 61.7 88.1 - - - -

CPNet [23] ImageNet 24 57.7 84.0 - - - -

TEINet [24] X ImageNet
8 62.7 - - - - -

16 63.0 - - - - -

STM [13] ImageNet
8 62.3 88.8 96.6 99.9 - -

16 64.2 89.8 96.7 99.9 - -

TEA [21] ImageNet
8 - - 96.5 99.8 92.3 98.3

16 64.5 89.8 96.7 99.8 92.5 98.5

8 62.5 87.3 97.1 99.8 94.2 98.7
ACTION-Net1 X ImageNet

16 64.0 89.3 97.1 99.9 94.4 98.8

1 ACTION is inserted into each residual block in this experiment.

Table 3: Accuracy and model complexity on EgoGesture dataset. Three excitation

types are compared to TSM and TSN. All methods use ResNet-50 as backbone and

8 frames input for fair comparison. The least FLOPs/△FLOPs/Param. and the best

performance for ACTION-Net and sub-modules are highlighted as bold.

Method FLOPs △FLOPs Param. Top-1

TSN 33G - 23.68M 83.1

TSM 33G - 23.68M 92.1

Ours

STE 33.1G +0.1G (+0.3%) 23.9M 93.8

CE 33.16G +0.16G (+0.5%) 26.08M 93.8

ME 34.69G +1.69G (+5.1%) 25.9M 93.9

ACTION-Net 34.75G +1.75G (+5.3%) 28.08M 94.2

Table 4: Ablation study of having AC-

TION included or not in each residual

block stage regarding ResNet-50 back-

bone on EgoGesture dataset by using 8

frames input. More ACTION engaged

yields better performance.

Stage Top-1 Top-5

res2 92.3 98.2

res2,3 92.9 98.5

res2,3,4 93.1 98.5

res2,3,4,5 94.2 98.7

Table 5: ACTION-Net generalizes well across backbones and datasets (TSM is used as a baseline). Accuracy and model complexity on

three backbones using Something-Something V2, Jester and EgoGesture with 8 frames as input. The most significant improvements on

accuracy and the least extra FLOPs are highlighted as bold.

Backbone Method FLOPs Param. Something V2 Jester EgoGesture

ResNet-50
TSM 33G 23.68M 58.7 94.4 92.1

ACTION-Net 34.75G (+5.3%) 28.08M 62.5 (+3.8) 97.1 (+2.7) 94.2 (+2.1)

BNIception
TSM 16.39G 10.36M 53.5 94.6 92.3

ACTION-Net 16.94G (+3.4%) 11.59M 56.7 (+3.2) 96.6 (+2.0) 93.2 (+0.9)

MobileNet V2
TSM 2.55G 2.33M 54.9 95.0 92.4

ACTION-Net 2.57G (+0.8%) 2.36M 58.5 (+3.6) 96.7 (+1.7) 93.5 (+1.1)

cretely, STE and CE both add negligible extra computation compared to TSM by averaging channels globally and av-
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MobileNet V2 𝜂 = 0.71%

BNInception 𝜂 = 3.73%

ResNet-50 𝜂 = 2.65%

(a) EgoGesture

MobileNet V2 𝜂 = 0.46%

BNInception 𝜂 = 1.68%

ResNet-50 𝜂 = 1.96%

(b) Jester

MobileNet V2 𝜂 = 0.22%

BNInception 𝜂 = 1.05%

ResNet-50 𝜂 = 1.40%

(c) Something-something V2

Figure 4: Top-1 accuracy and FLOPs for ACTION-Net and TSM on three backbones i.e., ResNet-50, BNInception and MobileNet V2

using three datasets (from left to right: EgoGesture, Jester and Something-something V2). η is calculated using equation (10) for each

backbone on three datasets. EgoGesture: ResNet-50 η = 2.65%, BNInception η = 3.73%, MobileNet V2 η = 0.71%. Jester: ResNet-50

η = 1.96%, BNInception η = 1.68%, MobileNet V2 η = 0.46%. Something V2: ResNet-50 η = 1.40%, BNInception η = 1.05%,

MobileNet V2 η = 0.22%.

eraging spatial information globally yet they both provide

useful information to the network. ME adds more com-

putation and parameters to the network than the previous

two yet it is acceptable. It captures temporal differences

on the spatial domain among adjacent frames over the time

and achieves better performance compared to STE and CE.

When integrating all these three sub-modules to constitute

the ACTION, it can be seen that the ACTION-Net achieves

the highest accuracy and increases 2.1% Top-1 accuracy to-

gether with increasing 5.3% FLOPs. To better capture the

relation between boosted performance and add-on compu-

tation, we define the efficiency formulated as

η =
△FLOPs

△Top-1
(10)

where both △FLOPs and △Top-1 are in percent, η is the

efficiency that represents how many extra FLOPs in per-

cent are introduced with respect to increasing 1% Top-1

accuracy (smaller indicates more efficient apparently). Ef-

ficiency η for STE, CE, ME and ACTION-Net is 0.18%,

0.29%, 2.83% and 2.52% respectively. It can be noticed

that STE is the most efficient when taking η into account.

Impact of the Number of ACTION Blocks. The architec-

ture of ResNet-50 can be divided into 6 stages i.e., conv1,

res2, res3, res4, res5 and FC. The ACTION module can be

inserted into any residual stage from res2 to res5. We in-

vestigate the impact of the number of residual stages that

contain the ACTION module as shown in Table 4. Results

show that more stages including the ACTION module re-

sults in better performance, which indicates the efficacy for

our proposed approach.

4.6. Analysis of Efficiency and Flexibility

Compared to recent 2D CNN approaches e.g., STM [13]

and TEA [21], our ACTION module enjoys a plug-and-

play manner like TSM, which can be embedded to any 2D

CNN. To validate the efficacy for our proposed approach,

we compare ACTION-Net with TSM on three backbones

i.e., ResNet-50, BNInception and MobileNet V2. We report

FLOPs and Top-1 accuracy for ACTION-Net and TSM re-

spectively. We also report η calculated using equation 10

when replacing TSM with ACTION, which indicates the

penalization of computation when improving the accuracy.

Table 5 demonstrates recognition performance and compu-

tation for ACTION-Net employing three backbones. TSM

is used as a baseline since TSM benefits good performance

and zero extra introduced computational cost compared to

TSN. It can be noticed that ACTION-Net outperforms TSM

consistently regarding the accuracy for all three backbones

yet with limited add-on computational cost. ResNet-50 is

boosted most significantly regarding the performance and

MobileNet V2 holds the least added FLOPs. Figure 4

demonstrates the efficiency η for ACTION-Net based on

TSM on different backbones using three datasets. It can

be noticed that MobileNet V2 achieves the lowest η (the

most efficient) while ResNet-50 achieves the highest η (the

least efficient) for all three datasets, which indicates that

MobileNet V2 benefits mostly from the ACTION module

regarding the efficiency.

5. Conclusion

We target at designing a module to be inserted to 2D

CNN models for video action recognition and introduce a

novel ACTION module that utilizes multipath excitation

for spatio-temporal features, channel-wise features and mo-

tion features. The proposed module could be leveraged

by any 2D CNN to build a new architecture ACTION-Net

for video action recognition. We demonstrate efficacy and

efficiency for ACTION-Net on three large-scale datasets.

We show that ACTION-Net achieves consistently improve-

ments compared to 2D CNN counterparts with limited extra

computations introduced.
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