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Abstract

In this paper, we delve into semi-supervised object detec-

tion where unlabeled images are leveraged to break through

the upper bound of fully-supervised object detection. Pre-

vious semi-supervised methods based on pseudo labels are

severely degenerated by noise and prone to overfit to noisy

labels, thus are deficient in learning different unlabeled

knowledge well. To address this issue, we propose a data-

uncertainty guided multi-phase learning method for semi-

supervised object detection. We comprehensively consider

divergent types of unlabeled images according to their dif-

ficulty levels, utilize them in different phases, and ensemble

models from different phases together to generate ultimate

results. Image uncertainty guided easy data selection and

region uncertainty guided RoI Re-weighting are involved in

multi-phase learning and enable the detector to concentrate

on more certain knowledge. Through extensive experiments

on PASCAL VOC and MS COCO, we demonstrate that our

method behaves extraordinarily compared to baseline ap-

proaches and outperforms them by a large margin, more

than 3% on VOC and 2% on COCO.

1. Introduction

With the success of Convolutional Neural Networks

(CNNs) [19, 22], object detection methods have been pro-

moted rapidly in recent years. Plenty of object detection

models [12, 11, 36, 34, 27] achieve superior performance

on benchmark datasets [10, 26]. However, these models

are heavily dependent on a large amount of fully-supervised

data with complete category and bounding box annotations,

which are labor-intensive to collect [20].

To address the preceding problems, semi-supervised ob-

ject detection (SSOD) [37] receives much attention recently.

It exploits a large amount of unlabeled data to boost the

performance of fully-supervised object detection, especially

when only limited labeled data are available. Currently,

many SSOD methods [33] are established on pseudo labels
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Figure 1: Frameworks for previous pseudo-label based

one-phase training (a) and our multi-phase method (b).

Image-level uncertainty based selection and region-level

uncertainty based re-weighting guide our multi-phase learn-

ing for handling noise in pseudo labels.

[23] and adopt the one-phase learning scheme in Fig. 1a.

With a pre-trained fully-supervised model on labeled im-

ages, pseudo annotations of unlabeled images are obtained.

These pseudo labels are treated as groundtruth of unlabeled

data and are integrated with annotations of labeled data to

train the SSOD model.

Despite that the one-phase learning is somewhat effec-

tive for SSOD, it is insufficient for knowledge excavation to

exploit the unlabeled data only once. The reason lies in the

fact that noise is inherently attached to pseudo annotations.

Deep learning based models have the potential to fit any

training annotation, even the incorrect ones. When pseudo

annotations are noisy with some false information, detec-

tion models are also able to ”learn” to fit them. This fitting

ability to incorrect annotations surpasses the representative
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learning for correct ones. We call this phenomenon as la-

bel noise overfitting problem, which is also corroborated in

previous studies [1, 50, 28]. As a result, SSOD models with

one-phase learning tend to fit the difficult data with more

noise, while neglecting the easy data with high confidence.

The negative impacts of label noise overfitting are

mainly two-fold. On the one hand, at image level, difficult

images with much noise preponderate during training, mak-

ing the detector inflexible to employ unlabeled data with

different difficulty levels. On the other hand, at region level,

regions overlapped heavily with existing objects but lacking

pseudo annotations incorporate much more noisy informa-

tion and dominate the training, contributing extensive incor-

rect gradient messages to SSOD training.

To tackle this, we describe the noisy labeled data with

uncertainty and propose a data-uncertainty guided multi-

phase learning for SSOD. At image level, we introduce the

uncertainty to guide the image selection for different phases

of training. In practice, we perform SSOD training on easy

unlabeled images with low uncertainty first, then continue

with difficult unlabeled images with high uncertainty. Dur-

ing this process, we collect more than one model which ex-

perts in images with different difficulty levels separately.

They cooperatively specialize all unlabeled images so we

aggregate them together to complement each other for in-

ference. At region level, we measure the uncertainty of

background regions based on their similarity and overlaps

with each other. We further conduct RoI re-weighting by

the guidance of region uncertainty degrees and involve it

in the multi-phase training. This RoI re-weighting strategy

reduces weights for uncertain regions and forces detection

models to pay more attention to certain regions.

Our main contributions can be summarized as follows:

• We propose an uncertainty guided multi-phase SSOD

learning method. With image-uncertainty based selec-

tion, we alleviate attention imbalance on different dif-

ficulty levels of data and are capable of fitting all unla-

beled images well.

• We introduce a region-uncertainty based RoI re-

weighting strategy to guide multi-phase learning and

assist the detector in focusing on more certain regions.

• On the PASCAL VOC and MS COCO dataset, our

method reaches 78.6% and 42.3%, which exceeds the

state-of-the-art by 2.4%, 2.2%, respectively.

2. Related Work

Object detection is one of the most important tasks in

computer vision. It aims to detect objects from an im-

age, predict correct classification categories, and assign ac-

curate bounding boxes. It is generally divided into two-

stage detection methods and one-stage methods. Two-stage

detectors [12, 11, 36, 8, 13] usually produce region pro-

posals then perform classification and regression on these

proposals, while one-stage detectors [34, 27, 35] gener-

ate bounding boxes prediction and region classification di-

rectly. Fully-supervised object detection (FSOD) develops

rapidly recently [25, 38, 5, 51] and achieves outstanding

results in benchmark datasets [10, 26]. However, FSOD

requires instance-level annotated datasets that are expen-

sive to obtain. Weakly-supervised object detection (WSOD)

[4, 41, 9, 52, 43] is thus studied as it only needs image-level

annotations. However, WSOD fails to achieve a satisfying

result compared to fully-supervised object detection meth-

ods, which stimulates the demand for SSOD.

Semi-supervised learning trains models with both la-

beled and unlabeled data. Many works for semi-supervised

learning appears in recent years, such as consistency regu-

larization based methods [21, 29, 42, 30, 24], self-training

[49, 6, 32], label propagation [53, 2], data augmentation

[47, 3], or entropy regularization [18]. Although semi-

supervised learning develops rapidly, it usually targets at

classification or semantic segmentation problems rather

than detection. Object detection is in nature much more dif-

ficult so off-the-shell semi-supervised methods can hardly

be directly applied to object detection.

Semi-supervised object detection (SSOD) aims to train

a detector with both instance-level annotated data and unla-

beled data. For example, [15] utilizes unlabeled data to ex-

pand the number of categories that the detector recognizes,

and [54] studies the effect of self-training and pre-training.

Different from them, we mainly utilize unlabeled images to

boost the performance of FSOD. Current SSOD methods

are generally divided into two groups. The first is based

on pseudo labels [45, 44, 33]. They usually perform SSOD

training only once and are susceptiable to the label noise

overfitting problem. The second is to borrow ideas from

semi-supervised classification methods and use consistency

regularization [16, 17]. But they are more suitable for one-

stage detectors and behave poorly in two-stage models. Our

approach is established on pseudo labels.

3. Method

3.1. Label Noise Overfitting Problem

For pseudo label based SSOD, pseudo labels are re-

garded as groundtruth annotations of unlabeled images for

training the detector. Label noise inherently exists in these

pseudo labels and brings about the uncertainty for SSOD

training. We observe that deep learning detection models

are susceptible to overfit to noisy labels, which damages the

SSOD training. For further verification, we implement self-

training SSOD twice with VOC 2007 trainval as labeled set

and VOC 2012 trainval as unlabeled set. The performance

such as mAP versus training phases is plotted in Fig. 2a.

From the empirical analysis we can see that the mAP
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Figure 2: Illustration of the label noise overfitting prob-

lem for detection models. The data sequence is: super-

vised model - semi-supervised model from the first phase -

semi-supervised model from the second phase.

on VOC07 test improves after the first SSOD phase be-

cause of the utility of extra unlabeled data, but it declines

on VOC12 trainval. As a consequence, the quality of gener-

ated pseudo labels descends, causing worse test mAP in the

second phase. This demonstrates that during SSOD train-

ing, the generalization ability of the model on testing data is

strengthened while its ability on training data is weakened.

This phenomenon derives from noisy pseudo labels. Dur-

ing SSOD training, noisy pseudo labels deliver uncertain

supervised signals to the detectors, which attracts excessive

attention. SSOD models attempt to follow this incorrect

information, thus fitting to noisy labels and amplifying the

noise. We refer to this as the label noise overfitting problem.

At image level, for an unlabeled image with pseudo la-

bels, it consists of some correct knowledge that can im-

prove the performance and some incorrect noise that hurts

the training. If the correct knowledge is more, this image

will benefit the model. We call this kind of image an easy

one and vice versa. We propose that the recall of pseudo

labels reflects the correct information it contains and 1-

precision is a metric of noise. With this metric, we evaluate

previous models on easy or difficult images from VOC07

test separately. From Fig. 2b, we observe that although

the SSOD model’s prediction on the test set is more pre-

cise, it deteriorates on easy images. Higher mAP on test

set mainly comes from difficult images, suggesting that the

model over-focuses on difficult images with more noise and

ignores easy images, a consequence of the label noise over-

fitting problem. Therefore, this model is deficient in utiliz-

ing unlabeled images adequately.

At region level, even for an easy image defined above

where pseudo annotations are relatively clean, some objects

within it may still lack pseudo annotations. In this circum-

stance, some positive regions are labeled as background cat-

egory during training. The detector’s classification module

reveals that these regions are similar to some existing ob-

Algorithm 1 The overall procedure for multi-phase SSOD

learning.

Require:

The number of training phases, N
Training:

Train a FSOD model with all labeled data.

Set the initial easy data fraction: k = 1/N
for i = 1; i <= N ; i++ do

1. Predict on unlabeled data with all current models.

2. Take the intersection for all current pseudo labels.

3. Select top k easy images from unlabeled images.

4. Train a SSOD model with labeled and easy unlabeled

data.

5. k = k + 1/N
end for

Testing:

Ensemble testing results from all models to generate ul-

timate results.

jects but they are not highly overlapped with any positive in-

stances. This contradiction leads to the uncertainty of these

regions. These noisy regions usually hold a large loss value

thus are dominant over other regions during training, which

negatively affects the performance.

3.2. Multi­Phase Learning

Current SSOD methods usually utilize unlabeled images

once. Because of the label noise overfitting problem, diffi-

cult images with more noise are attached with higher impor-

tance and easy images are relatively discounted. One-phase

learning generating a single SSOD model is hard to alle-

viate this problem. Because no matter how advanced the

initial supervised detector is, pseudo labels of difficult im-

ages always accommodate more noise and dominate during

the training. We thus leverage more than one model for easy

or difficult data separately. Specifically, we choose easy un-

labeled images to conduct SSOD first. In this training pro-

cess, most of the data are relatively easy so the model will

fit high-confident easy data well. Difficult images are added

to train other subsequent detection models, and those mod-

els progressively concentrate on difficult images. Finally,

we obtain a series of models that excel in different diffi-

culty levels of images, and all of them together can fit all

unlabeled data. During inference, we consider all models to

fully exploit different abilities of divergent models. We use

weighted boxes fusion [39] to ensemble detection results

from all models. In this way, different types of information

are utilized comprehensively.

For beginning models, they are trained with easy images

thus are less affected by the label noise overfitting problem.

With stronger generalization ability and milder overfitting

to noisy labels, their predictions on the unlabeled training

set are more convincing. Their generated pseudo labels can
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Figure 3: The diagram of uncertainty guided multi-phase learning. Multi-phase self-training is designed for unlabeled

images flow in SSOD. Image uncertainty estimation and region uncertainty estimation guide the multi-phase SSOD learning.

be provided for later training without performance reduc-

tion appearing in previous self-training methods. The above

training ultimately forms a multi-phase procedure.

For a particular training phase, it is more appropriate to

synthesize all models from previous phases for creating new

pseudo labels, rather than just depend on the latest model.

We consider the intersection of pseudo labels from all previ-

ous models. Intersection operation improves the precision

and further reduces the uncertainty of pseudo labels. Af-

ter the intersection, all models reach a consensus on each

pseudo annotation, resulting in higher self-confidence and

certainty. The overall process is in Algorithm 1.

3.3. Uncertainty Guided Training

3.3.1 Image Uncertainty Guided Selection

To proceed with our method, we need to select easy im-

ages from the unlabeled dataset. Since annotations of un-

labeled images are inaccessible, the above recall/precision

metric for discriminating whether an image is easy is un-

available. We need an alternative metric that should guar-

antee that the detection model is more certain about easy

images than difficult ones. Now that we have detected ob-

jects (i.e. pseudo labels) {(bbmn, smn)}
M

m=1 of Image Im,

where bbmn denotes the bounding box and smn is the corre-

sponding confidence score, smn is a reasonable and simple

representation of how certain the model is about the specific

object. The average of all bounding boxes’ scores inside an

image measures the certainty degree of all annotations. This

corresponds with the image’s difficulty, just as follows:

sm =

M∑

m=1

smn/M (1)

The above formulation provides a description of image

uncertainty. It selects images that detectors are more certain

about and enables that detection models are certain about

each annotation in pseudo labels. Images with a small sm
are regarded as difficult ones and are filtered out in the first

several phases. This selection strategy based on image un-

certainty guides the detector on more certain images to mit-

igate the label noise overfitting problem.

3.3.2 Region Uncertainty Guided RoI Re-weighting

With the above training framework, we exclude diffi-

cult images in the initial phases and integrate pseudo la-

bels from different models by intersection. SSOD is hence

able to avoid uncertain images with more noise, especially

in the initial phases. But the detector is still distracted by

noisy regions with missing annotation problems. To allevi-

ate this, we introduce our uncertainty based re-weighting

strategy. Details are shown in Fig. 4. Concretely, we

illustrate region-level uncertainty and re-weight for RoIs

with their uncertainty guided during training. The strategy

discovers uncertain regions and reduces their gradients by

down-weighting to facilitate more accurate and certain re-

gions standing out.

According to [46], background RoIs which are hardly

overlapped with all positive instances are more likely to be

miss-annotated. Based on it, we adopt Intersection over

Union (IoU) as one of the metrics for uncertainty measure-

ment. Overlap based weights are computed as follows:

wi = a+ (1− a)e−be−c·IoUi

(2)

where a, b, c are pre-defined parameters, IoUi is the maxi-

mum IoU between the negative RoIi and all positive RoIs.

wi is the reduced weight for RoIi.

If a region is attributed with high similarity with some

current objects but is not pseudo-labeled, we can claim that

it is uncertain. Besides of IoU, the similarity between dif-
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Figure 4: The pipeline of uncertainty based re-weighting.

Similarity, IoUs and IoFs among different objects are calcu-

lated for weights, and IoFs are treated as groundtruth labels

for similarity learning.

ferent RoIs should be a necessary description of uncertainty.

We apply the cosine distance to calculate the similarity be-

tween different RoIs. Let fi denote the feature of RoIi. The

distance (i.e. dissimilarity) dij between RoIi and RoIj is:

dij =
|fT

i fj |

‖fi‖‖fj‖
(3)

We notice that there are many small RoIs inside a large

RoI after RPN. These small RoIs are usually highly simi-

lar to the large one, but they are not uncertain because their

categories should be background, not other positive ones.

Intersection over foreground (IoF) can quantify this phe-

nomenon. We combine both cosine distance and IoF for

ultimate similarity based uncertainty description:

Di = 1−max
j

dij(1− IoFij) (4)

The ultimate uncertainty based weights are as follows:

wi = (a+ (1− a)e−be−c1·IoUi

)e−be−c2Di

(5)

where a, b, c1, c2 are pre-defined parameters.

Equation 5 is composed of two items, stemming from

overlap based uncertainty and similarity based uncertainty

separately. The product offers a balance between two differ-

ent uncertainty. This formulation is based on the Gompertz

function, a special form of the logistic function, where b is

a large value. If the region is uncertain (IoUi and Di are

small), its weight is close to 0, and its uncertain gradient

is diminished to prevent from back-propagating through the

network. As the uncertainty degree decreases, the weight

increases rapidly to 1 for normal training.

But noisy knowledge still impairs the above process

since raw RoI features are supervised with noisy labels

in SSOD models. To further avoid noisy missing anno-

tation labels, we embed the feature for similarity with a

fully-connected layer. The purpose is to decrease distances

among the same objects and increase distances among dif-

ferent objects. Considering that a bounding box is highly

similar to boxes inside it, we adopt IoF as a supervised sig-

nal for similarity learning:

yij = I(IoFij > t) or I(IoFji > t) (6)

where I(·) is the indicator function, t is a pre-defined thresh.

We set t to 0.7 in all experiments. Ultimately, the loss func-

tion for learning similarity is defined as

Lsim = yij(1− dij)
2 + (1− yij)d

2
ij (7)

4. Experiments

We evaluate the proposed method for SSOD on PASCAL

VOC [10] and MSCOCO [26]. For VOC, we use VOC 2007

trainval (5,011 images) as the labeled data and VOC 2012

trainval (11,540 images) as the unlabeled data, then evaluate

on VOC 2007 test (4,952 images). For COCO, we refer to a

35k subset of COCO 2014 validation set as co-35, the 80k

training set as co-80 and the union of them as co-115. 120k

unlabeled images from COCO 2017 is called as co-120. We

use two settings for semi-supervised training: 1) co-35 as

labeled set, co-80 as unlabeled set; 2) co-115 as labeled

set, co-120 as unlabeled set, then report the model perfor-

mance on COCO 2014 minival set (5,000 images). All ex-

periments are implemented with PyTorch [31] and MMDe-

tection [7]. Pseudo labels are obtained from the model’s

predictions post-processed by a per-category threshold as

in [33]. Unless otherwise specified, we use ResNet50 [14]

based Faster RCNN [36] for two-phase training. All other

experimental settings are the same as MMDetection.

4.1. Comparison with Existing Methods

PASCAL VOC. We perform the comparative study for

SSOD based on the two-stage detector Faster RCNN and

one-stage detector SSD [27] on VOC dataset. The re-

sults are presented in Tab. 1. For Faster RCNN, we note

that our method significantly outperforms the previous one-

phase SSOD baseline model, which improves the mAP of

the fully-supervised model (FS) on VOC07 from 74.8% to

75.6%. For comparison, our data uncertainty-based multi-

phase learning achieves the mAP of 78.6% and increases

the mAP by 3% compared to the baseline. Compared

to DD [33] which produces more accurate pseudo labels,

the mAP is increased by 2.6% even with relatively low-

quality pseudo labels. The experimental results show that

our method is quite efficacious for SSOD. The less than 3%

gap between our method (78.6%) and the upper bound ob-

tained by fully-supervised learning on VOC0712 (81.2%)

demonstrates the strong ability of our method to learn the

knowledge within unlabeled data.
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Table 1: Semi-supervised Detection Results on PASCAL

VOC 2007 test vs. current SSOD methods and fully-

supervised results trained on VOC07 or VOC0712. (L: la-

beled data, Un: unlabeled data.)

Model Backbone Method L Un mAP

Faster

RCNN
ResNet50

FS VOC07 - 74.8

Baseline VOC07 VOC12 75.6

DD [33] VOC07 VOC12 76.0

ours VOC07 VOC12 78.6

FS VOC0712 - 81.2

SSD300 VGG16

FS VOC07 - 70.2

Baseline VOC07 VOC12 71.8

CSD [16] VOC07 VOC12 72.3

ISD [17] VOC07 VOC12 73.3

ours VOC07 VOC12 74.5

FS VOC0712 - 77.2

Table 2: Semi-supervised detection Results on COCO

minival vs. current SSOD and FSOD results. † denotes

that the performance is obtained by the final model after the

multi-phase learning without ensemble.

Backbone Method L Un AP AP50 AP75

ResNet50

FS co-35 - 31.3 52.0 33.0

DD co-35 co-80 33.1 53.3 35.4

ours co-35 co-80 34.8 55.1 37.2

ours + DD co-35 co-80 35.2 55.7 37.6

FS co-115 - 37.4 58.1 40.4

DD co-115 co-120 37.9 60.1 40.8

PL [40] co-115 co-120 38.4 59.7 41.7

ours co-115 co-120 40.1 60.4 43.7

ours† + DD co-115 co-120 38.9 59.4 42.3

ours + DD co-115 co-120 40.3 61.0 43.9

ResNet101

FS co-115 - 39.4 60.1 43.1

DD co-115 co-120 40.1 62.1 43.5

ours co-115 co-120 42.2 62.5 46.1

ours† + DD co-115 co-120 41.2 61.5 44.9

ours + DD co-115 co-120 42.3 62.7 46.3

For SSD [27], our uncertainty-based multi-phase learn-

ing achieves the mAP of 74.5%, 2.7% higher than the base-

line of one-phase learning, Compared to consistency-based

semi-supervised learning (CSD) [16] and interpolation-

based semi-supervised learning (ISD) [17], the detection

mAP is improved by 2.2% and 1.2% respectively. However,

these two methods behave poorly when combined with two-

stage detectors. In contrast, our method works consistently

well for both two-stage and one-stage detectors.

MS COCO. We conduct the comparative experiments

with Faster RCNN as the base detector on COCO dataset.

The metrics to measure detection accuracy such as AP ,

AP50, AP75 are presented in Tab. 2. Note that our re-

produced DD on co-35/80 performs a little better than the

original paper. For co-35/80 split, the proposed multi-phase

learning based on ResNet50 backbone achieves the AP of

34.8% for SSOD, outperforming DD by 1.7%. Moreover,

we combine our method with DD, achieving the AP of

35.2%. Compared to DD, the achieved AP is increased

by 2.1%, which is extremely prominent for COCO dataset,

Table 3: Ablation Study on PASCAL VOC 2007 test.

(RR: RoI Re-weighting)

Model L Un
Two-

Phase
RR Ensemble mAP

Faster

RCNN

VOC07 - 74.8

VOC07 VOC12 75.6

VOC07 VOC12 X 76.1

VOC07 VOC12 X X 77.4

VOC07 VOC12 X X X 78.6

SSD300

VOC07 - 70.2

VOC07 VOC12 71.8

VOC07 VOC12 X 72.3

VOC07 VOC12 X X 74.5

especially in semi-supervised settings. For co-115/120

split, our method also achieves consistently better than DD

method and the state-of-the-art method on coco-115/120 -

proposal learning (PL) [40]. Even without using ensemble

to excavate knowledge of different difficulty levels, our fi-

nal model still outperforms DD by 1% and PL by 0.5%.

With ResNet101, a much more powerful feature extractor,

the overall AP is further enhanced to 42.3%. The results

validate the efficiency of our proposed multi-phase learning

guided by data uncertainty and its strong ability to transcend

the upper bound of traditional fully-supervised methods.

4.2. Ablation Study

We perform ablation study on PASCAL VOC to an-

alyze the impacts of 1) multi-phase learning (two-phase

concretely), 2) RoI Re-weighting strategy that enables the

model to focus on certain regions, 3) model ensembling dur-

ing inference. The results are in Tab. 3.

For Faster RCNN, two-phase training is 0.5% higher

than one-phase training. This improvement reveals that our

method alleviates the label noise overfitting problem that

causes performance deterioration. RoI re-weighting further

produces a 1.5% mAP gain, which confirms the ability of

re-weighting to force the detector into more certain regions

and reduce the missing annotation noise effect. Results en-

sembling finally boosts the mAP with 1.2% improvement.

According to previous studies [48], model ensembling per-

forms poorly when ensembled models are similar to each

other. The significant promotion brought by ensembling

in our method thereby indicates that models from different

phases master in images with different difficulty levels.

For SSD, since RoI re-weighting cannot be applied to

one-stage detectors, the mAP gain is a little lower. It is also

noticeable that ensembling contributes more to the SSD de-

tector, resulting in 2.2% mAP improvement. This is be-

cause one-stage detectors are usually uncompetitive in per-

formance compared to two-stage detectors and could hardly

excavate sufficient information. Models possess more ran-

dom elements thus benefit more from ensembling.

• RoI Re-weighting Analysis. We further study the effect

of RoI re-weighting. We compare our method with baseline
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Table 4: Effect of RoI Re-weighting on SSOD compared

with Baseline and Soft Sampling. 0 ∼ 2 is the ensemble

result of model from phase 0 (FS model) to phase 2.

Phase Baseline Soft Sampling RoI Re-weighting

0 (FS Model) 74.8 74.8 74.8

1 75.9 76.2 76.6

2 76.1 76.6 77.4

0 ∼ 2 77.8 78.1 78.6

Figure 5: Illustrative examples for RoI Re-weighting.

The left column is pseudo labels with missing annotations,

and the right column is the heatmap for region uncertainty

after RR. Blue regions are more uncertain for the detector.

Before RR, all regions have the same weight of 1.0, while

after RR, uncertain regions are assigned with lower weights.

and overlap based soft sampling [46]. The results are listed

in Tab. 4. For a raw Faster RCNN, mAP increases from

74.8% to 75.9% in the first phase but almost remains un-

changed in the second phase. This is because Faster RCNN

is easily misguided by noisy labels. For the first phase, unla-

beled images are easy and pseudo labels are relatively clean.

In such a situation, Faster RCNN can obtain a satisfying re-

sult. But in the second phase, difficult noisy unlabeled im-

ages participate in training so the performance is seriously

affected. Soft sampling mitigates the missing annotation

problem to some extent. But it regards region-level uncer-

tainty metric just as a function of overlaps, which is insuf-

ficient. Take images in Fig. 5 for example. For the first

one, the horse in the right is not labeled and for the second

one, the tiny plane in the middle is missed. The common

is that almost all background RoIs share little overlaps with

positive instances and are down-weighted to the same value

with just overlap based metric. For our method based on

both similarity and overlaps metric, as shown in the right

column in Fig. 5, uncertain regions with missing annotation

problems are successfully detected (blue regions) and their

weights are further reduced. As a result, uncertain gradient

Table 5: Detection results from different models. 0 ∼ 2
indicates the ensemble result of model from phase 0 (fully-

supervised model) to phase 2.

Phase
VOC07

Test

VOC07 Test

(easy)

VOC07 Test

(difficult)

0 (FS Model) 74.8 86.2 59.1

1 76.6 86.7 62.7

2 77.4 86.4 63.8

1 ∼ 2 78.3 87.3 65.4

0 ∼ 2 78.6 87.3 66.2

information is depressed and our model is able to focus on

more certain regions. Then the final model is more robust,

especially in the second phase.

• Model Divergence Analysis. We evaluate the models

from multiple phases on easy or difficult images from the

test set like section 3.1. From Tab. 5, we observe that the

model from the first phase performs best for easy images,

which indicates that the model trained with just easy unla-

beled data fixates on certain knowledge. The model from

the second phase has the best generalization ability since

it learns with the largest amount of data. But it performs

worse on easy data due to the label noise overfitting prob-

lem that makes the model attach great importance to diffi-

cult data and overlook easy data. This experiment verifies

that models from different phases are experienced on data

of different difficulty levels. Since these two models tar-

get at easy and difficult images separately, they are comple-

mentary to each other and ensembling them brings about a

large improvement. We also notice that these two models

are already able to fit all certain information thus adding

the FS model does not boost performance on easy images.

For difficult uncertain features, the FS model is still able to

complement a little and enhance the final mAP.

4.3. Discussion

In previous experiments, we conduct two-phase SSOD

training. In this section, we evaluate our method with more

overall experiments to discuss the effect of learning process.

4.3.1 Two-Phase Learning

According to Algorithm 1, our semi-supervised learn-

ing increases the number of unlabeled images evenly in

different phases. In this section, we perform two-phase

SSOD with a variant amount of easy images for the first

phase, then continue with all unlabeled images for the sec-

ond phase. The results are plotted in Fig. 6. A positive cor-

relation between the rate of easy images and the first phase

mAP is observed when easy images are not too many, be-

cause more available unlabeled data contribute to stronger

generalization ability. The performance attains the high-

est mAP when easy images are about 50%, almost 76.8%

mAP. Then, the performance declines steadily when the per-
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Figure 6: Two-phase SSOD with different amount of

easy data, mAP reaches the peak when the ratio is 50%.

centage of easy images continues to increase, because noise

within pseudo labels increases and label noise overfitting

problem becomes severer as more difficult unlabeled data

are accessible. The ability of the first phase model directly

influences the quality of pseudo labels for the second phase.

Ultimately, the mAP is the highest when easy images are

about a half of total unlabeled images. Above results sug-

gest that in SSOD settings, the volume of unlabeled data

for training needs to be considered carefully. More data do

not necessarily lead to better performance for SSOD.

Why results are the best when easy images are about

50%? We evaluate pseudo labels from VOC and COCO

with recall/precision metric presented in section 3.1 and find

that the fraction of easy images is close to 50% in both VOC

and COCO. Even after data distillation [33], easy data still

occupy approximately 50%. Easy images are those which

contain more correct information than noise and contribute

positively to SSOD training, so we can expect the best per-

formance if all easy data participate in the first phase. For

SSOD settings, the labeled dataset and unlabeled dataset

share the same distribution and their quantity proportion

is moderate. The labeled dataset is a little smaller, but is

enough to train a nice supervised detection model. Images

are also naturally collected. As a result, for an unlabeled

image that the model has not ever seen before, the possibil-

ity that it is easy should be close to 50%. We thus assert

that without any prior knowledge about the dataset, 50% is

a good estimation of easy image proportion and an appro-

priate value for implementation.

4.3.2 More Phases

We extend our method to more phases. Unlabeled data

are evenly divided for different phases since datasets are

naturally distributed. The results are in Fig. 7. For VOC

dataset, the performance improves slightly from two-phase

78.6% to three-phase 78.9%, while four-phase learning

Figure 7: Multiple phases semi-supervised learning on

VOC07 test and COCO minival.

does not produce better mAP. We believe two-phase learn-

ing that generates two semi-supervised models is already

able to describe most unlabeled information adequately -

one for easy certain information and the other for difficult

uncertain information. Since information has been fully en-

coded, we do not need more models, i.e., more phases. For

three-phase learning, the one more model may make up a

little missing information. But when the phases continue

to raise, existing models are already sufficient for all in-

formation and extra models cannot offer more information.

For COCO dataset, although images are more complicated,

two-phase is also sufficient and more phases do not intro-

duce significant improvement. Therefore, we assert that

two-phase learning is a good choice in practice.

5. Conclusion

In this paper, we propose a novel data uncertainty guided

multi-phase learning method for semi-supervised object de-

tection. The multi-phase training method enables the model

to fully utilize all information and uncertainty descriptions

guide the training process to make the detector concentrate

on certain knowledge. We demonstrate the extraordinary

ability of our method to excavate unlabeled knowledge and

achieve state-of-the-art performance. Semi-supervised ob-

ject detection is a challenging problem and we will further

explore how to utilize unlabeled data more efficiently.
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