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Abstract

To date, most existing self-supervised learning methods

are designed and optimized for image classification. These

pre-trained models can be sub-optimal for dense prediction

tasks due to the discrepancy between image-level predic-

tion and pixel-level prediction. To fill this gap, we aim to

design an effective, dense self-supervised learning method

that directly works at the level of pixels (or local features)

by taking into account the correspondence between local

features. We present dense contrastive learning (DenseCL),

which implements self-supervised learning by optimizing a

pairwise contrastive (dis)similarity loss at the pixel level

between two views of input images.

Compared to the baseline method MoCo-v2, our method

introduces negligible computation overhead (only <1%

slower), but demonstrates consistently superior perfor-

mance when transferring to downstream dense prediction

tasks including object detection, semantic segmentation and

instance segmentation; and outperforms the state-of-the-art

methods by a large margin. Specifically, over the strong

MoCo-v2 baseline, our method achieves significant im-

provements of 2.0% AP on PASCAL VOC object detection,

1.1% AP on COCO object detection, 0.9% AP on COCO in-

stance segmentation, 3.0% mIoU on PASCAL VOC seman-

tic segmentation and 1.8% mIoU on Cityscapes semantic

segmentation.

Code and models are available at: https://git.io/

DenseCL

1. Introduction

Pre-training has become a well-established paradigm

in many computer vision tasks. In a typical pre-training

paradigm, models are first pre-trained on large-scale

datasets and then fine-tuned on target tasks with less train-

ing data. Specifically, the supervised ImageNet pre-training

has been dominant for years, where the models are pre-

trained to solve image classification and transferred to

downstream tasks. However, there is a gap between im-
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Figure 1 – Comparisons of pre-trained models by fine-tuning

on object detection and semantic segmentation datasets. ‘Sup.

IN’ denotes the supervised pre-training on ImageNet. ‘COCO’

and ‘ImageNet’ indicate the pre-training models trained on

COCO and ImageNet respectively. (a): The object detec-

tion results of a Faster R-CNN detector fine-tuned on VOC

trainval07+12 for 24k iterations and evaluated on VOC

test2007; (b): The semantic segmentation results of an FCN

model fine-tuned on VOC train aug2012 for 20k iterations

and evaluated on val2012. The results are averaged over 5

independent trials.

age classification pre-training and target dense prediction

tasks, such as object detection [9, 25] and semantic segmen-

tation [5]. The former focuses on assigning a category to an

input image, while the latter needs to perform dense classi-

fication or regression over the whole image. For example,

semantic segmentation aims to assign a category for each

pixel, and object detection aims to predict the categories

and bounding boxes for all object instances of interest. A

straightforward solution would be to pre-train on dense pre-

diction tasks directly. However, these tasks’ annotation is

notoriously time-consuming compared to the image-level

labeling, making it hard to collect data at a massive scale

to pre-train a universal feature representation.

Recently, unsupervised visual pre-training has attracted

much research attention, which aims to learn a proper vi-

sual representation from a large set of unlabeled images. A

few methods [17, 2, 3, 14] show the effectiveness in down-

stream tasks, which achieve comparable or better results

compared to supervised ImageNet pre-training. However,

the gap between image classification pre-training and target
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dense prediction tasks still exists. First, almost all recent

self-supervised learning methods formulate the learning as

image-level prediction using global features. They all can

be thought of as classifying each image into its own version,

i.e., instance discrimination [41]. Moreover, existing ap-

proaches are usually evaluated and optimized on the image

classification benchmark. Nevertheless, better image clas-

sification does not guarantee more accurate object detec-

tion, as shown in [18]. Thus, self-supervised learning that

is customized for dense prediction tasks is on demand. As

for unsupervised pre-training, dense annotation is no longer

needed. A clear approach would be pre-training as a dense

prediction task directly, thus removing the gap between pre-

training and target dense prediction tasks.

Inspired by the supervised dense prediction tasks,

e.g., semantic segmentation, which performs dense per-

pixel classification, we propose dense contrastive learn-

ing (DenseCL) for self-supervised visual pre-training.

DenseCL views the self-supervised learning task as a dense

pairwise contrastive learning rather than the global image

classification. First, we introduce a dense projection head

that takes the features from backbone networks as input and

generates dense feature vectors. Our method naturally pre-

serves the spatial information and constructs a dense output

format, compared to the existing global projection head that

applies a global pooling to the backbone features and out-

puts a single, global feature vector for each image. Second,

we define the positive sample of each local feature vector by

extracting the correspondence across views. To construct an

unsupervised objective function, we further design a dense

contrastive loss, which extends the conventional InfoNCE

loss [29] to a dense paradigm. With the above approaches,

we perform contrastive learning densely using a fully con-

volutional network (FCN) [26], similar to target dense pre-

diction tasks.

Our main contributions are thus summarized as follows.

• We propose a new contrastive learning paradigm, i.e.,

dense contrastive learning, which performs dense pair-

wise contrastive learning at the level of pixels (or local

features).

• With the proposed dense contrastive learning, we de-

sign a simple and effective self-supervised learning

method tailored for dense prediction tasks, termed

DenseCL, which fills the gap between self-supervised

pre-training and dense prediction tasks.

• DenseCL significantly outperforms the state-of-the-art

MoCo-v2 [3] when transferring the pre-trained model

to downstream dense prediction tasks, including object

detection (+2.0% AP), instance segmentation (+0.9%
AP) and semantic segmentation (+3.0% mIoU), and

far surpasses the supervised ImageNet pre-training.

1.1. Related Work

Self-supervised pre-training. Generally speaking, the suc-

cess of self-supervised learning [41, 17, 42, 47, 16, 14]

can be attributed to two important aspects namely con-

trastive learning, and pretext tasks. The objective func-

tions used to train visual representations in many methods

are either reconstruction-based loss functions [7, 30, 12], or

contrastive loss that measures the co-occurrence of multi-

ple views [38]. Contrastive learning, holds the key to most

state-of-the-art methods [41, 17, 2, 42], in which the posi-

tive pair is usually formed with two augmented views of the

same image (or other visual patterns), while negative ones

are formed with different images.

A wide range of pretext tasks have been explored to learn

a good representation. These examples include coloriza-

tion [46], context autoencoders [7], inpainting [30], spa-

tial jigsaw puzzles [28] and discriminate orientation [11].

These methods achieved very limited success in computer

vision. The breakthrough approach is SimCLR [2], which

follows an instance discrimination pretext task, similar

to [41], where the features of each instance are pulled away

from those of all other instances in the training set. In-

variances are encoded from low-level image transforma-

tions such as cropping, scaling, and color jittering. Con-

trastive learning and pretext tasks are often combined to

form a representation learning framework. DenseCL be-

longs to the self-supervised pre-training paradigm, and we

naturally make the framework friendly for dense prediction

tasks such as semantic segmentation and object detection.

Pre-training for dense prediction tasks. Pre-training has

enabled surprising results on many dense prediction tasks,

including object detection [34, 32] and semantic segmenta-

tion [26]. These models are usually fine-tuned from Ima-

geNet pre-trained model, which is designed for image-level

recognition tasks. Some previous studies have shown the

gap between ImageNet pre-training and dense prediction

tasks in the context of network architecture [24, 22, 37, 36].

YOLO9000 [33] proposes to joint train the object detec-

tor on both classification and detection data. He et al. [18]

demonstrate that even we pre-train on extremely larger clas-

sification dataset (e.g., Instagram [27], which is 3000×
larger than ImageNet), the transfer improvements on ob-

ject detection are relatively small. Recent works [23, 48]

show that pre-trained models utilizing object detection data

and annotations (e.g. MS COCO [25]) could achieve on par

performance on object detection and semantic segmentation

compared with ImageNet pre-trained model. While the su-

pervised pre-training for dense prediction tasks has been ex-

plored before DenseCL, there are few works on designing

an unsupervised paradigm for dense prediction tasks. Con-

current and independent works [31, 1] also find that con-

trastive learning at the level of local features matters. One of
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Figure 2 – Conceptual illustration of two contrastive learning paradigms for representation learning. We use a pair of query and key

for simpler illustration. The backbone can be any convolutional neural network. (a): The contrastive loss is computed between the

single feature vectors outputted by the global projection head, at the level of global feature; (b): The dense contrastive loss is computed

between the dense feature vectors outputted by the dense projection head, at the level of local feature. For both paradigms, the two

branches can be the same encoder or different ones, e.g., an encoder and its momentum-updated one.

the main differences is that they construct the positive pairs

according to the geometric transformation, which brings the

following issues. 1) Inflexible data augmentation. Need

careful design for each kind of data augmentation to main-

tain the dense matching. 2) Limited application scenarios.

It would fail when the geometric transformation between

two views are not available. For example, two images are

sampled from a video clip as the positive pair, which is the

case of learning representation from video stream. By con-

trast, our method is totally decoupled from the data pre-

processing, thus enabling fast and flexible training while

being agnostic about what kind of augmentation is used and

how the images are sampled.

Visual correspondence. The visual correspondence prob-

lem is to compute the pairs of pixels from two images that

result from the same scene [43], and it is crucial for many

applications, including optical flow [8], structure-from-

motion [35], visual SLAM [20], 3D reconstruction [10]

etc. Visual correspondence could be formulated as the prob-

lem of learning feature similarity between matched patches

or points. Recently, a variety of convolutional neural net-

work based approaches are proposed to measure the sim-

ilarity between patches across images, including both su-

pervised [4, 21] and unsupervised ones [45, 15]. Previ-

ous works usually leverage explicit supervision to learn the

correspondence for a specific application. DenseCL learns

general representations that could be shared among multiple

dense prediction tasks.

2. Method

2.1. Background

For self-supervised representation learning, the break-

through approaches are MoCo-v1/v2 [17, 3] and Sim-

CLR [2], which both employ contrastive unsupervised

learning to learn good representations from unlabeled data.

We briefly introduce the state-of-the-art self-supervised

learning framework by abstracting a common paradigm.

Pipeline. Given an unlabeled dataset, an instance discrim-

ination [41] pretext task is followed where the features of

each image in the training set are pulled away from those

of other images. For each image, random ‘views’ are gen-

erated by random data augmentation. Each view is fed into

an encoder for extracting features that encode and represent

the whole view. There are two core components in an en-

coder, i.e., the backbone network and the projection head.

The projection head attaches to the backbone network. The

backbone is the model to be transferred after pre-training,

while the projection head will be thrown away once the pre-

training is completed. For a pair of views, they can be en-

coded by the same encoder [2], or separately by an encoder

and its momentum-updated one [17]. The encoder is trained

by optimizing a pairwise contrastive (dis)similarity loss, as

revisited below. The overall pipeline is illustrated in Fig-

ure 2a.

Loss function. Following the principle of MoCo [17], the

contrastive learning can be considered as a dictionary look-

up task. For each encoded query q, there is a set of encoded

keys {k0, k1, ...}, among which a single positive key k+
matches query q. The encoded query and keys are generated

from different views. For an encoded query q, its positive

key k+ encode different views of the same image, while the

negative keys encode the views of different images. A con-

trastive loss function InfoNCE [29] is employed to pull q
close to k+ while pushing it away from other negative keys:

Lq = − log
exp(q·k+/τ)

exp(q·k+) +
∑

k
−

exp(q·k−/τ)
, (1)

where τ denotes a temperature hyper-parameter as in [41].

2.2. DenseCL Pipeline

We propose a new self-supervised learning frame-

work tailored for dense prediction tasks, termed DenseCL.

DenseCL extends and generalizes the existing framework
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to a dense paradigm. Compared to the existing paradigm

revisited in 2.1, the core differences lie in the encoder and

loss function. Given an input view, the dense feature maps

are extracted by the backbone network, e.g., ResNet [19] or

any other convolutional neural network, and forwarded to

the following projection head. The projection head consists

of two sub-heads in parallel, which are global projection

head and dense projection head respectively. The global

projection head can be instantiated as any of the existing

projection heads such as the ones in [17, 2, 3], which takes

the dense feature maps as input and generates a global fea-

ture vector for each view. For example, the projection head

in [3] consists of a global pooling layer and an MLP which

contains two fully connected layers with a ReLU layer be-

tween them. In contrast, the dense projection head takes the

same input but outputs dense feature vectors.

Specifically, the global pooling layer is removed and

the MLP is replaced by the identical 1×1 convolution

layers [26]. In fact, the dense projection head has the

same number of parameters as the global projection head.

The backbone and two parallel projection heads are end-

to-end trained by optimizing a joint pairwise contrastive

(dis)similarity loss at the levels of both global features and

local features.

2.3. Dense Contrastive Learning

We perform dense contrastive learning by extending the

original contrastive loss function to a dense paradigm. We

define a set of encoded keys {t0, t1, ...} for each encoded

query r. However, here each query no longer represents the

whole view, but encodes a local part of a view. Specifically,

it corresponds to one of the Sh × Sw feature vectors gener-

ated by the dense projection head, where Sh and Sw denote

the spatial size of the generated dense feature maps. Note

that Sh and Sw can be different, but we use Sh = Sw = S
for simpler illustration. Each negative key t− is the pooled

feature vector of a view from a different image. The posi-

tive key t+ is assigned according to the extracted correspon-

dence across views, which is one of the S2 feature vectors

from another view of the same image. For now, let us as-

sume that we can easily find the positive key t+. A discus-

sion is deferred to the next section. The dense contrastive

loss is defined as:

Lr =
1

S2

∑

s

− log
exp(rs·ts+/τ)

exp(rs·ts+) +
∑

ts
−

exp(rs·ts
−
/τ)

, (2)

where rs denotes the sth out of S2 encoded queries.

Overall, the total loss for our DenseCL can be formulated

as:

L = (1− λ)Lq + λLr, (3)

where λ acts as the weight to balance the two terms. λ is set

to 0.5 which is validated by experiments in Section 3.3.

2.4. Dense Correspondence across Views

We extract the dense correspondence between the two

views of the same input image. For each view, the backbone

network extracts feature maps F ∈ R
H×W×K , from which

the dense projection head generates dense feature vectors

Θ ∈ R
Sh×Sw×E . Note that Sh and Sw can be different,

but we use Sh = Sw = S for simpler illustration. The

correspondence is built between the dense feature vectors

from the two views, i.e., Θ1 and Θ2. We match Θ1 and Θ2

using the backbone feature maps F1 and F2. The F1 and F2

are first downsampled to have the spatial shape of S×S by

an adaptive average pooling, and then used to calculate the

cosine similarity matrix ∆ ∈ R
S2

×S2

. The matching rule

is that each feature vector in a view is matched to the most

similar feature vector in another view. Specifically, for all

the S2 feature vectors of Θ1, the correspondence with Θ2 is

obtained by applying an argmax operation to the similarity

matrix ∆ along the last dimension. The matching process

can be formulated as:

ci = argmax
j

sim(fi,f
′

j), (4)

where fi is the ith feature vector of backbone feature maps

F1, and f ′

j is the jth of F2. sim(u,v) denotes the cosine

similarity, calculated by the dot product between ℓ2 nor-

malized u and v, i.e., sim(u,v) = u⊤v/‖u‖‖v‖. The

obtained ci denotes the ith out of S2 matching from Θ1 to

Θ2, which means that ith feature vector of Θ1 matches ci
th

of Θ2. The whole matching process could be efficiently im-

plemented by matrix operations, thus introducing negligible

latency overhead.

For the simplest case where S = 1, the matching de-

generates into the one in global contrastive learning as the

single correspondence naturally exists between two global

feature vectors, which is the case introduced in Section 2.1.

According to the extracted dense correspondence, one

can easily find the positive key t+ for each query r during

the dense contrastive learning introduced in Section 2.3.

Note that without the global contrastive learning term

(i.e., λ = 1), there is a chicken-and-egg issue that good

features will not be learned if incorrect correspondence is

extracted, and the correct correspondence will not be avail-

able if the features are not sufficiently good. In our default

setting where λ = 0.5, no unstable training is observed. Be-

sides setting λ ∈ (0, 1) during the whole training, we intro-

duce two more solutions which can also tackle this problem,

detailed in Section 3.4.

3. Experiments

We adopt MoCo-v2 [3] as our baseline method, as which

shows the state-of-the-art results and outperforms other

methods by a large margin on downstream object detection
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task, as shown in Table 1. It indicates that it should serve

as a very strong baseline on which we can demonstrate the

effectiveness of our approach.

Technical details. We adapt most of the settings from [3].

A ResNet [19] is adopted as the backbone. The follow-

ing global projection head and dense projection head both

have a fixed-dimensional output. The former outputs a sin-

gle 128-D feature vector for each input and the latter out-

puts dense 128-D feature vectors. Each ℓ2 normalized fea-

ture vector represents a query or key. For both the global

and dense contrastive learning, the dictionary size is set to

65536. The momentum is set to 0.999. Shuffling BN [17]

is used during the training. The temperature τ in Equa-

tion (1) and Equation (2) is set to 0.2. The data augmen-

tation pipeline consists of 224× 224-pixel ramdom resized

cropping, random color jittering, random gray-scale conver-

sion, gaussian blurring and random horizontal flip.

3.1. Experimental Settings

Datasets. The pre-training experiments are conducted on

two large-scale datasets: MS COCO [25] and ImageNet [6].

Only the training sets are used during the pre-training,

which are ∼118k and ∼1.28 million images respectively.

COCO and ImageNet represent two kinds of image data.

The former is more natural and real-world, containing di-

verse scenes in the wild. It is a widely used and challeng-

ing dataset for object-level and pixel-level recognition tasks,

such as object detection and instance segmentation. While

the latter is heavily curated, carefully constructed for image-

level recognition. A clear and quantitative comparison is the

number of objects of interest. For example, COCO has a to-

tal of 123k images and 896k labeled objects, an average of

7.3 objects per image, which is far more than the ImageNet

DET dataset’s 1.1 objects per image.

Pre-training setup. For ImageNet pre-training, we closely

follow MoCo-v2 [3] and use the same training hyper-

parameters. For COCO pre-training including both baseline

and ours, we use an initial learning rate of 0.3 instead of

the original 0.03, as the former shows better performance in

MoCo-v2 baseline when pre-training on COCO. We adopt

SGD as the optimizer and we set its weight decay and mo-

mentum to 0.0001 and 0.9. Each pre-training model is opti-

mized on 8 GPUs with a cosine learning rate decay schedule

and a mini-batch size of 256. We train for 800 epochs for

COCO, which is a total ∼368k iterations. For ImageNet, we

train for 200 epochs, a total of 1 million iterations.

Evaluation protocol. We evaluate the pre-trained mod-

els by fine-tuning on the target dense prediction tasks end-

to-end. Challenging and popular datasets are adopted to

fine-tune mainstream algorithms for different target tasks,

i.e. VOC object detection, COCO object detection, COCO

instance segmentation, VOC semantic segmentation, and

Cityscapes semantic segmentation. When evaluating on ob-

ject detection, we follow the common protocol that fine-

tuning a Faster R-CNN detector (C4-backbone) on the VOC

trainval07+12 set with standard 2x schedule in [40] and

testing on the VOC test2007 set. In addition, we eval-

uate object detection and instance segmentation by fine-

tuning a Mask R-CNN detector (FPN-backbone) with on

COCO train2017 split (∼118k images) with the standard

1× schedule and evaluating on COCO 5k val2017 split.

For semantic segmentation, an FCN model [26] is fine-

tuned on VOC train aug2012 set (10582 images) for 20k

iterations and evaluated on val2012 set. We also evaluate

semantic segmentation on Cityscapes dataset by training an

FCN model on train fine set (2975 images) for 40k it-

erations and test on val set. Detailed settings are in the

supplementary.

3.2. Main Results

PASCAL VOC object detection. In Table 1, we report

the object detection result on PASCAL VOC and compare

it with other state-of-the-art methods. When pre-trained on

COCO, our DenseCL outperforms the MoCo-v2 baseline

by 2% AP. When pre-trained on ImageNet, the MoCo-v2

baseline has already surpassed other state-of-the-art self-

supervised learning methods. And DenseCL still yields

1.7% AP improvements, strongly demonstrating the effec-

tiveness of our method. The gains are consistent over all

three metrics. It should be noted that we achieve much

larger improvements on more stringent AP75 compared to

those on AP50, which indicates DenseCL largely helps

improve the localization accuracy. Compared to the su-

pervised ImageNet pre-training, we achieve the significant

4.5% AP gains.

COCO object detection and segmentation. The object

detection and instance segmentation results on COCO are

reported in Table 2. For object detection, DenseCL outper-

forms MoCo-v2 by 1.1% AP and 0.5% AP when pre-trained

on COCO and ImageNet respectively. The gains are 0.9%

AP and 0.3% AP for instance segmentation. Note that fine-

tuning on COCO with a COCO pre-trained model is not a

typical scenario. But the clear improvements still show the

effectiveness.

PASCAL VOC semantic segmentation. We show the

largest improvements on semantic segmentation. As shown

in Table 3, DenseCL yields 3% mIoU gains when pre-

training on COCO and fine-tuning an FCN on VOC seman-

tic segmentation. The COCO pre-trained DenseCL achieves

the same 67.5% mIoU as ImageNet pre-trained MoCo-v2.

Note that compared to 200-epoch ImageNet pre-training,

800-epoch COCO pre-training only uses ∼1/10 images and
∼1/3 iterations. When pre-trained on ImageNet, DenseCL

consistently brings 1.9% mIoU gains. It should be noted

that the ImageNet pre-trained MoCo-v2 shows no trans-

fer superiority compared with the supervised counterpart
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pre-train AP AP50 AP75

random init. 32.8 59.0 31.6

super. IN 54.2 81.6 59.8

MoCo-v2 CC 54.7 81.0 60.6

DenseCL CC 56.7 81.7 63.0

SimCLR IN [2] 51.5 79.4 55.6

BYOL IN [14] 51.9 81.0 56.5

MoCo IN [17] 55.9 81.5 62.6

MoCo-v2 IN [3] 57.0 82.4 63.6

MoCo-v2 IN* 57.0 82.2 63.4

DenseCL IN 58.7 82.8 65.2

Table 1 – Object detection fine-tuned on PASCAL VOC.

‘CC’ and ‘IN’ indicate the pre-training models trained on

COCO and ImageNet respectively. The models pre-trained on

the same dataset are with the same training epochs, i.e., 800

epochs for COCO and 200 epochs for ImageNet. ‘*’ means re-

implementation. The results of other methods are either from

their papers or third-party implementation. All the detectors

are trained on trainval07+12 for 24k iterations and evalu-

ated on test2007. The metrics include the VOC metric AP50

(i.e., IoU threshold is 50%) and COCO-style AP and AP75.

The results are averaged over 5 independent trials.

pre-train APb APb
50

APb
75

APm APm
50

APm
75

random init. 32.8 50.9 35.3 29.9 47.9 32.0

super. IN 39.7 59.5 43.3 35.9 56.6 38.6

MoCo-v2 CC 38.5 58.1 42.1 34.8 55.3 37.3

DenseCL CC 39.6 59.3 43.3 35.7 56.5 38.4

SimCLR IN 38.5 58.0 42.0 34.8 55.2 37.2

BYOL IN 38.4 57.9 41.9 34.9 55.3 37.5

MoCo-v2 IN 39.8 59.8 43.6 36.1 56.9 38.7

DenseCL IN 40.3 59.9 44.3 36.4 57.0 39.2

Table 2 – Object detection and instance segmentation fine-

tuned on COCO. ‘CC’ and ‘IN’ indicate the pre-training mod-

els trained on COCO and ImageNet respectively. All the detec-

tors are trained on train2017 with default 1× schedule and

evaluated on val2017. The metrics include bounding box AP

(APb) and mask AP (APm).

(67.5% vs. 67.7% mIoU). But DenseCL outperforms the su-

pervised pre-training by a large margin, i.e., 1.7% mIoU.

Cityscapes semantic segmentation. Cityscapes is a bench-

mark largely different from the above VOC and COCO. It

focuses on urban street scenes. Nevertheless, in Table 3, we

observe the same performance boost with DenseCL. Even

the COCO pre-trained DenseCL can surpass the supervised

ImageNet pre-trained model by 1.9% mIoU.

3.3. Ablation Study

We conduct extensive ablation experiments to show how

each component contributes to DenseCL. We report abla-

tion studies by pre-training on COCO and fine-tuning on

VOC0712 object detection, as introduced in Section 3.1.

All the detection results are averaged over 5 independent

pre-train mIoU

random init. 40.7

super. IN 67.7

MoCo-v2 CC 64.5

DenseCL CC 67.5

SimCLR IN 64.3

BYOL IN 63.3

MoCo-v2 IN 67.5

DenseCL IN 69.4

(a) PASCAL VOC

pre-train mIoU

random init. 63.5

super. IN 73.7

MoCo-v2 CC 73.8

DenseCL CC 75.6

SimCLR IN 73.1

BYOL IN 71.6

MoCo-v2 IN 74.5

DenseCL IN 75.7

(b) Cityscapes

Table 3 – Semantic segmentation on PASCAL VOC and

Cityscapes. ‘CC’ and ‘IN’ indicate the pre-training models

trained on COCO and ImageNet respectively. The metric is the

commonly used mean IoU (mIoU). Results are averaged over

5 independent trials.

trials. We also provide results of VOC2007 SVM Classifi-

cation, following [13, 44] which train linear SVMs on the

VOC train2007 split using the features extracted from the

frozen backbone and evaluate on the test2007 split.

Loss weight λ. The hyper-parameter λ in Equation (3)

serves as the weight to balance the two contrastive loss

terms, i.e., the global term and the dense term. We report

the results of different λ in Table 4. It shows a trend that

the detection performance improves when we increase the

λ. For the baseline method, i.e., λ = 0, the result is 54.7%

AP. The AP is 56.2% when λ = 0.3, which improves the

baseline by 1.5% AP. Increasing λ from 0.3 to 0.5 brings

another 0.5% AP gains. Although further increasing it to

0.7 still gives minor improvements (0.1% AP) on detection

performance, the classification result drops from 82.9% to

81.0%. Considering the trade-off, we use λ = 0.5 as our

default setting in other experiments. It should be noted that

when λ = 0.9, compared to the MoCo-v2 baseline, the clas-

sification performance rapidly drops (-4.8% mAP) while the

detection performance improves for 0.8% AP. It is in accor-

dance with our intention that DenseCL is specifically de-

signed for dense prediction tasks.

Detection Classification

λ AP AP50 AP75 mAP

0.0 54.7 81.0 60.6 82.6

0.1 55.2 81.4 61.4 82.9

0.3 56.2 81.5 62.6 83.3

0.5 56.7 81.7 63.0 82.9

0.7 56.8 81.9 63.1 81.0

0.9 55.5 80.9 61.3 77.8

1.0* 53.5 79.5 58.8 68.9

Table 4 – Ablation study of weight λ. λ = 0 is the MoCo-v2

baseline. λ = 0.5 shows the best trade-off between detection

and classification. ‘*’ indicates training with warm-up, as dis-

cussed in Section 3.4.
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Detection Classification

strategy AP AP50 AP75 mAP

random 56.0 81.3 62.0 81.7

max-sim Θ 56.0 81.5 62.1 81.8

max-sim F 56.7 81.7 63.0 82.9

Table 5 – Ablation study of matching strategy. To extract

the dense correspondence according to the backbone features

F1 and F2 shows the best results.

Matching strategy. In Table 5, we compare three different

matching strategies used to extract correspondence across

views. 1) ‘random’: the dense feature vectors from two

views are randomly matched; 2) ‘max-sim Θ’: the dense

correspondence is extracted using the dense feature vectors

Θ1 and Θ2 generated by the dense projection head; (3)

‘max-sim F’: the dense correspondence is extracted accord-

ing to the backbone features F1 and F2, as in Equation 4.

The random matching strategy can also achieve 1.3% AP

improvements compared to MoCo-v2, meanwhile the clas-

sification performance drops by 0.9% mAP. It may be be-

cause 1) the dense output format itself helps, and 2) part of

the random matches are somewhat correct. Matching by the

outputs of dense projection head, i.e., Θ1 and Θ2, brings

no clear improvement. The best results are obtained by ex-

tracting the dense correspondence according to the back-

bone features F1 and F2.

Grid size. In the default setting, the adopted ResNet back-

bone outputs features with stride 32. For a 224× 224-pixel

crop, the backbone features F has the spatial size of 7 × 7.

We set the spatial size of the dense feature vectors Θ to

7 × 7 by default, i.e., S = 7. However, S can be flexi-

bly adjusted and F will be pooled to the designated spatial

size by an adaptive average pooling, as introduced in Sec-

tion 2.4. We report the results of using different numbers of

grid in Table 6. For S = 1, it is the same as the MoCo-v2

baseline except for two differences. 1) The parameters of

dense projection head are independent with those of global

projection head. 2) The dense contrastive learning main-

tains an independent dictionary. The results are similar to

those of MoCo-v2 baseline. It indicates that the extra pa-

rameters and dictionary do not bring improvements. The

performance improves as the grid size increases. We use

grid size being 7 as the default setting, as the performance

becomes stable when the S grows beyond 7.

Negative samples. We use the global average pooled fea-

tures as negatives because it’s conceptually simpler. Be-

sides pooling, sampling is an alternative strategy. For keep-

ing the same number of negatives, one can randomly sam-

ple a local feature from a different image. The COCO pre-

trained model with sampling strategy achieves 56.7% AP

on VOC detection, which is the same as the adopted pool-

ing strategy.

Detection Classification

grid size AP AP50 AP75 mAP

1 54.6 80.8 60.5 82.2

3 55.6 81.3 61.5 81.6

5 56.1 81.4 62.2 82.6

7 56.7 81.7 63.0 82.9

9 56.7 82.1 63.2 82.9

Table 6 – Ablation study of grid size S. The results increase

as the S gets larger. We use grid size being 7 in other exper-

iments, as the performance becomes stable when the S grows

beyond 7.
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Figure 3 – Different pre-training schedules on COCO. For

each pre-trained model, a Faster R-CNN detector is fine-tuned

on VOC trainval07+12 for 24k iterations and evaluated on

test2007. The metric is the COCO-style AP. Results are av-

eraged over 5 independent trials.

Training schedule. We show the results of using differ-

ent training schedules in Table 7. The performance consis-

tently improves as the training schedule gets longer, from

200 epochs to 1600 epochs. Note that the 1600-epoch

COCO pre-trained DenseCL even surpasses the 200-epoch

ImageNet pre-trained MoCO-v2 (57.2% AP vs. 57.0%

AP). Compared to 200-epoch ImageNet pre-training, 1600-

epoch COCO pre-training only uses ∼1/10 images and
∼7/10 iterations. In Figure 3, we further provide an in-

tuitive comparison with the baseline as the training sched-

ule gets longer. It shows that DenseCL consistently outper-

forms the MoCo-v2 by at least 2% AP.

Detection Classification

#epochs AP AP50 AP75 mAP

200 54.8 80.5 60.7 77.6

400 56.2 81.5 62.3 81.3

800 56.7 81.7 63.0 82.9

1600 57.2 82.2 63.6 83.0

Table 7 – Ablation study of training schedule. The results

consistently improve as the training schedule gets longer. Al-

though 1600-epoch training schedule is 0.5% AP better, we use

800-epoch schedule in other experiments for faster training.

Pre-training time. In Table 8, we compare DenseCL with

MoCo-v2 in terms of training time. DenseCL is only 1s
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random init. 10th epoch 200th epoch

Figure 4 – Comparison of dense correspondence extracted from random initialization to well trained DenseCL. The correspondence

is extracted between two views of the same image, using the ImageNet pre-trained model. All the matches are visualized without

thresholding.

time/epoch COCO ImageNet

MoCo-v2 1′45′′ 16′48′′

DenseCL 1′46′′ 16′54′′

Table 8 – Pre-training time comparison. The training time

per epoch is reported. We measure the results on the same

8-GPU machine. The training time overhead introduced by

DenseCL is less than 1%.

and 6s slower per epoch when pre-trained on COCO and

ImageNet respectively. The overhead is less than 1%. It

strongly demonstrates the efficiency of our method.

3.4. Discussions on DenseCL

To further study how DenseCL works, in this section,

we visualize the learned dense correspondence in DenseCL.

The issue of chicken-and-egg during the training is also dis-

cussed.

Dense correspondence visualization. We visualize the

dense correspondence from two aspects: comparison of the

final correspondence extracted from different pre-training

methods, i.e., MoCo-v2 vs. DenseCL, and the comparison

of different training status, i.e., from the random initializa-

tion to well trained DenseCL. Given two views of the same

image, we use the pre-trained backbone to extract the fea-

tures F1 and F2. For each feature vector in F1, we find

the corresponding feature vector in F2 which has the high-

est cosine similarity. The match is kept if the same match

holds from F2 to F1. Each match is assigned an averaged

similarity. In [39], we visualize the high-similarity matches

(i.e., similarity ≥ 0.9). DenseCL extracts many more high-

similarity matches than its baseline. It is in accordance with

our intention that the local features extracted from the two

views of the same image should be similar.

Figure 4 shows how the correspondence changes over

training time. The randomly initialized model extracts some

random noisy matches. The matches get more accurate as

the training time increases.

Chicken-and-egg issue. In our pilot experiments, we ob-

serve that the training loss does not converge if we set λ
to 1.0, i.e., removing the global contrastive learning, and

only applying the dense contrastive learning. It may be be-

cause at the beginning of the training, the randomly initial-

ized model is not able to generate correct correspondence

across views. It is thus a chicken-and-egg issue that good

features will not be learned if incorrect correspondence is

extracted, and the correct correspondence will not be avail-

able if the features are not sufficiently good. As shown in

Figure 4, most of the matches are incorrect with the random

initialization. The core solution is to provide a guide when

training starts, to break the deadlock. We introduce three

different solutions to tackle this problem. 1) To initialize

the model with the weights of a pre-trained model; 2) To

set a warm-up period at the beginning during which the λ
is set to 0; 3) To set λ ∈ (0, 1) during the whole training.

They all solve this issue well. The second one is reported in

Table 4, with λ being changed from 0 to 1.0 after the first

10k iterations. We adopt the last one as the default setting

for its simplicity.

4. Conclusion

In this work we have developed a simple and effective

self-supervised learning framework DenseCL, which is de-

signed and optimized for dense prediction tasks. A new

contrastive learning paradigm is proposed to perform dense

pairwise contrastive learning at the level of pixels (or lo-

cal features). Our method largely closes the gap between

self-supervised pre-training and dense prediction tasks, and

shows significant improvements in a variety of tasks and

datasets, including PASCAL VOC object detection, COCO

object detection, COCO instance segmentation, PASCAL

VOC semantic segmentation and Cityscapes semantic seg-

mentation. We expect the proposed effective and efficient

self-supervised pre-training techniques could be applied to

larger-scale data to fully realize its potential, as well as hop-

ing that DenseCL pre-trained models would completely re-

place the supervised pre-trained models in many of those

dense prediction tasks in computer vision.
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