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Abstract

Anomaly localization, with the purpose to segment the

anomalous regions within images, is challenging due to

the large variety of anomaly types. Existing methods

typically train deep models by treating the entire image

as a whole yet put little effort into learning the local

distribution, which is vital for this pixel-precise task. In this

work, we propose an unsupervised patch-based approach

that gives due consideration to both the global and local

information. More concretely, we employ a Local-Net and

Global-Net to extract features from any individual patch

and its surrounding respectively. Global-Net is trained

with the purpose to mimic the local feature such that

we can easily detect an abnormal patch when its feature

mismatches that from the context. We further introduce

an Inconsistency Anomaly Detection (IAD) head and a

Distortion Anomaly Detection (DAD) head to sufficiently

spot the discrepancy between global and local features.

A scoring function derived from the multi-head design

facilitates high-precision anomaly localization. Extensive

experiments on a couple of real-world datasets suggest that

our approach outperforms state-of-the-art competitors by a

sufficiently large margin.

1. Introduction

Anomaly detection has received broad attention in recent

years due to its wide applications in industrial inspection [6,

7, 48, 11, 10, 32], medical diagnosis [51, 5, 46, 42],

and surveillance [27, 30, 36]. Its primary goal is to

identify anomalies from normal samples, usually treated

as a bi-classification problem. Considering the ambiguous

definition of anomaly types as well as the great imbalance

between sufficient normal data and scarce abnormal data, a

common practice is to learn the distribution of anomaly-free

data and then use it as a criterion to detect outliers [43, 38,

42, 41, 14, 48].

Recent development of deep neural networks has signifi-

cantly advanced this task with a more powerful capability
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Figure 1. (a) Anomaly localization results where our approach

can precisely segment the anomalous regions. From top to

bottom: abnormal samples, ground-truth, and anomaly score maps

produced by our algorithm. (b) Concept diagram of global

and local feature comparison. Local-Net and Global-Net are

employed to extract features from a patch and its surrounding

respectively. Multiple anomaly detection heads are designed to

determine whether the global and local features match or not.

in representation learning [7, 48, 28]. Most existing

algorithms deploy deep models to spot anomalies at the

instance level (i.e., abnormal images belongs to different

categories against normal ones) by extracting global feature

from the entire image [14, 38, 49, 22, 37, 43, 2]. However,

in many real cases, the anomalies simply differ from the

regular data at some local areas [6, 32], as shown in Fig. 1a.

From this perspective, localizing the anomalous regions at

the pixel level is far more practical.

To solve this pixel-precise task, one feasible solution

is to adopt generative models, such as Generative Adver-

sarial Networks (GANs) [42, 41, 47] and Auto-Encoders
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(AEs) [8, 11, 12, 51], which can produce images with

per-pixel generation. But these approaches still treat each

training image as a whole, omitting the learning of local

information. An alternative solution is to pick patches from

the image and then perform inspection on every patch to

see whether there exists a defect [7, 10]. But this kind

of approach does not consider the correlation between the

patch and its surrounding. As a result, they can only detect

the anomalous patches that have some flaws inside, but fail

to handle the ordinary patches that are placed in the wrong

position, like the second example shown in Fig. 1a where

the top cable should be in green color.

In this work, we propose a novel framework for un-

supervised anomaly localization with due consideration to

both the global and local information. At the training

stage, given a normal image, we randomly crop a patch and

introduce a Local-Net and Global-Net to extract features

from this patch and its surrounding respectively, as shown

in Fig. 1b. Concretely, we develop the global feature to

match the local feature, encouraging the Global-Net to

conjecture the feature of the missing patch based on the

context. For this purpose, we learn Global-Net jointly

with an Inconsistency Anomaly Detection (IAD) head and

a Distortion Anomaly Detection (DAD) head, leading to a

fused metric to better measure the similarity between the

global and local features. At the inference stage, a scoring

function developed from the multi-head feature comparison

is capable of producing an adequate score map from a test

image to help localize anomalous regions, as shown in

Fig. 1a. In summary, our contributions are:

• We propose a novel unsupervised anomaly localization

approach by collecting both the global and local in-

formation from training data. In particular, the local

feature extracted from an image patch is regressed by

the global feature extracted from its surrounding.

• We introduce the multi-head feature comparison where

the IAD head targets at spotting the mismatch between

patches and surroundings while the DAD head aims to

detect subtle defects occurring in the patch. We further

derive a scoring function from this multi-head design,

facilitating high-precision anomaly localization.

• We achieve state-of-the-art performances on a couple

of real-world datasets, significantly surpassing existing

methods. For example, on the recent MVTec AD

dataset [6], which is specifically designed to bench-

mark the anomaly localization task, we beat the second

competitor by 4.7% improvement (i.e., from 91.4% to

96.1%) under the per-region-overlap (PRO) metric [6].

2. Related Work

We summarize existing anomaly detection methods into

two categories: compress-based and reconstruct-based.

Compress-based. Compress-based methods typically

project raw images [7, 10, 22, 48] or high-dimensional

features [38, 43] into a low-dimensional feature space,

where normal and abnormal examples are much more

distinguishable. For this purpose, SVDD [38] considers

a distance-minimize objective, which extracts the shared

feature from normal examples while avoiding them to be

the same. Based on [38], Yi and Yoon [48] propose

a patch-based SVDD that contains multiple cores rather

than a single core in [38], enabling anomaly segmentation.

Bergmann et al. [7] utilize a pre-trained teacher network to

embed image patches and estimate the anomaly score with

a collection of student networks. Kwon et al. [22] argue that

normal and abnormal images are more distinguishable at the

backward gradient space. Some other methods [42, 41, 34]

discover the underlying data distribution with the help of

Generative Adversarial Networks (GANs). After training a

GAN on normal data, they determine whether a test sample

is anomalous based on the discriminator output.

Reconstruct-based. Reconstruct-based approaches assume

that normal images can be described by a unified dis-

tribution in image space. They commonly utilize Auto-

Encoders [40, 11, 20, 50, 17, 14, 36, 32] or GANs [49,

46, 37, 39, 5] to learn the distribution underlying normal

data and then make the decision based on whether a test

sample can be well recovered or not. To improve the

reconstruction sharpness, prior work [11, 12] introduces the

skip connections that provide the decoder with more spatial

information. Gong et al. [14] and Park et al. [36] believe

that limiting the generalization ability is vital in finding

novel images, and hence propose a memory-based auto-

encoder to reconstruct images from features. Xia et al. [46]

learn the image reconstruction from the image segmentation

map instead of the original input. Pseudo-anomalies are

also widely used to improve the performance of anomaly

detection. Zaheer et al. [49] take the images reconstructed

by old generators as another kind of anomalies. Huang et

al. [20] apply data augmentation to improve the attribute

restoration ability of the reconstruction model.

Discussion. Different from the above approaches, which

learn representation either from a patch (local) or from the

entire image (global), our algorithm gives due consideration

to both the global and the local information and makes

decision based on the comparison between local and global

features. A recent work [35] also proposes to aggregate

local and global information for anomaly detection. In

particular, it employs the embedding learned from the

compress-based method as the global information and treat

the image recovered by the reconstructed-based method as

the local information. Differently, we extract the local

information from an image patch and the global information

from its surrounding, forming an one-on-one matching.
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Figure 2. Anomaly Localization Framework. (a) At the training stage, a Local-Net and Global-Net are employed to extract features from

an image patch and its surrounding respectively. The Global-Net is jointly learned with an Inconsistency Anomaly Detection (IAD) head

and a Distortion Anomaly Detection (DAD) head to mimic the output from the Local-Net. (b) At the inference stage, a scoring function is

developed based on the feature comparison results produced by the IAD-head and DAD-head. Anomaly scores corresponding to different

patches are aggregated together into an anomaly score map for anomaly localization.

3. Method

Given a training set of normal images {I1, I2, . . . , In},

and a test set containing both anomaly and anomaly-free

images {I′1, I
′
2, . . . , I

′
m}, the goal is to identify test images

as normal or abnormal, and further localize the anomalous

regions in abnormal samples.

In the following sections, we first discuss how to extract

the local and global features from an image (Sec. 3.1), then

explain the Inconsistency Anomaly Detection head (IAD-

head) and the Distortion Anomaly Detection head (DAD-

head) used for feature comparison (Sec. 3.2), and finally

introduce the way to produce an anomaly score map from a

test image at the inference stage (Sec. 3.3).

3.1. Local and Global Feature Extraction

In this part, we introduce how to extract the local and the

global feature from a patch and its surrounding, as shown in

Fig. 2a.

Local Feature Extraction. We use Local-Net, a light-

weight neural network, to embed image patches into local

features. Since shallow networks distilled from deep

networks trained on classification tasks show promising

results in anomaly detection [7, 33, 32], we distill Local-Net

from pre-trained ResNet-18 [19]. Concretely, Local-Net is

first distilled on ImageNet [13], and then fine-tuned on a

particular training set. Knowledge distillation loss [7] and

compactness loss [44] are utilized in distillation and fine-

tuning. Here, the knowledge distillation loss is defined as

lk = ||D(L(p))−R(p)||22, (1)

where p is the image patch and || · ||2 denotes the ℓ2

norm. L(·) and R(·) stand for Local-Net and the teacher

model (i.e., the pre-trained ResNet-18) respectively. D(·)
is a decoder to ensure L(·) and R(·) to have same output

dimension.

The compactness loss is formulated as

lc =
∑

i 6=j

cij , (2)

where cij represents the (i, j) entry in the correlation matrix

over the Local-Net outputs L(p) within a mini-batch.

Overall, the Local-Net is optimized with

llocal = λklk + λclc, (3)

where λk and λc are loss weights to balance different terms.

After distillation and fine-tuning, the local feature Zl can be

extracted by the Local-Net as

Zl = L(p). (4)

Note that the learning of the Local-Net is referred as pre-

training in our framework. During the training of Global-

Net and DAD-head, as discussed below, parameters of the

Local-Net are fixed.

Global Feature Extraction. Another deep model, named

Global-Net, is employed to extract the global feature from

the surrounding of the patch I\p. To prevent the local

feature from disturbing the global feature, we apply partial

convolution [25] to our Global-Net. Specifically, for every

convolutional layer in the Global-Net, the convolution

operation at every location is formulated as

x′ =

{

WT(X⊙M) sum(1)
sum(M) + b, if sum(M) > 0

0, otherwise.
(5)
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Here, ⊙ represents the element-wise product, X denotes the

input feature map, and M is the binary mask in current

layer. For every pooling layer, feature map is updated as

the normal pooling, and M is refreshed with the binary

version of the mask’s pooling result. The initial mask M0

is defined as a binary matrix where the patch’s pixels are

zero and the others are one. Therefore, Global-Net G(·) can

extract global feature Zg without peeking at the patch, as

formulated below:

Zg = G(I,M0). (6)

3.2. Anomaly Detection Heads

In this part, we introduce two anomaly detection heads,

i.e., the Inconsistency Anomaly Detection head (IAD-head)

and the Distortion Anomaly Detection head (DAD-head).

As shown in Fig. 2a, IAD-head and DAD-head accept the

local feature and the global feature extracted from the patch

and its surrounding and make comparison between these

two features.

Inconsistency Anomaly Detection Head. Inconsistency

anomaly detection head (IAD-head) is designed to detect

the inconsistency between the local feature Zl and the

global feature Zg with

lIAD =
1

n
||Zl − Zg||

2
2, (7)

where n is the dimension of both the local feature and the

global feature.

We assume that in normal images local and global fea-

tures are consistent, while in abnormal images the situation

is the contrary. Therefore, in the training process, lIAD

is utilized as a loss to close the distance between Zl and

Zg . During inference, lIAD serves as a scoring function to

indicate the global-local inconsistency lying in the patch,

which will be discussed in Sec. 3.3.

Distortion Anomaly Detection Head. Distortion anomaly

detection head (DAD-head) is a trainable head, which aims

to detect the distortions in images, e.g., bent grids and

cut carpets. Compared with the IAD-head that focuses on

the mismatch between the patch and its surrounding, the

DAD-head is capable of spotting tiny defects localized in

the patch. Concretely, the DAD-head exploits a number

of fully-connected layers to determine whether distortions

exist in the patch. In addition to the original patch p, we

introduce a negative patch p− following [28, 11], which

is generated by adding a random small stain on p. The

reason for constructing negative patches in this way is

to maintain the majority of the patch and introduce only

tiny differences, encouraging the DAD-head to spot small

distortions. The features extracted from p and p− are

equiprobably fed into the DAD-head together with the

global feature Zg . Then the DAD-head determines whether

the input local feature is Zl or Z−
l by producing a positive

probability

p = C(Z∗,Zg), (8)

where C(·, ·) is the classification network in the DAD-head.

Z∗ can be either local feature Zl or negative local feature

Z−
l . During training, the classifier in the DAD-head is

supervised by a cross-entropy loss as

lDAD = −(ylog(p) + (1− y)log(1− p)), (9)

where y is the target output of the classifier, i.e., 0 for the

positive patch and 1 for the negative patch.

Training Objective. The total training loss for the Global-

Net and the DAD-head is

l = lIAD + λtlDAD, (10)

where λt is a loss weight to balance different energies.

Intuitively, lIAD guides the Global-Net to imagine the local

distribution, while lDAD encourages the Global-Net to learn

a more distinguishable representation. Meanwhile, the

DAD-head is trained to find the subtle differences between

normal and distorted patches.

3.3. Anomaly Localization

Scoring Function. At the inference stage, we feed local

feature Zl and global feature Zg into the IAD-head to

generate the inconsistency anomaly score

sIAD =
1

n
||Zl − Zg||

2
2. (11)

We also feed them into the DAD-head to produce the

distortion anomaly score

sDAD = 1− C(Zl,Zg). (12)

Finally, our scoring function integrates these two scores:

s = λssIAD + (1− λs)sDAD, (13)

where λs is a hyper-parameter to balance the inconsistency

anomaly score sIAD and the distortion anomaly score sDAD.

We set λs = 0.8 in our experiments. Detailed study on λs

can be found in Sec. 4.4.

Anomaly Score Map. With the scoring function to assign

the anomaly score to a particular patch, we further propose

a pipeline to aggregate the anomaly scores for different

patches into an anomaly score map. Concretely, we gen-

erate image patches one after another, and organize them in

a raster-scan order, as shown in Fig. 2b. Overlap is allowed

between two adjacent image patches. We assign an anomaly

score for each patch with the scoring function in Eq. (13),

and construct an anomaly score map for the entire image

with the inverse distance weighted (IDW) interpolation.
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4. Experiments

In this section, we study our model’s performance on

pixel-level anomaly detection task (Sec. 4.2), and image-

level one-class classification task (Sec. 4.3). Qualitative and

quantitative results show our approach attains state-of-the-

art performance compared with other methods.

4.1. Datasets

MVTec AD. MVTec AD [6] is a real-world industrial

image anomaly detection dataset with 5354 high-resolution

images in 15 categories. The training set has 3629 normal

images, and the test set contains 1725 normal or abnormal

images. The ground truth in the test set includes both labels

and anomaly masks. We follow the original dataset split of

MVTec AD, i.e., use only anomaly-free images in training,

and test on both normal and abnormal images.

CIFAR-10. CIFAR-10 [21] includes 60000 tiny images

with 10 classes. In each class, 5000 images are used

for training, and the other 1000 images for testing. We

follow the protocol in GradCon [22] to split dataset for one-

class classification task. Specifically, based on the original

training-test split of CIFAR-10, we construct the training

set from images of one class as inliers, and build the test set

from inlier images and the same number of outlier images

randomly sampled from other classes.

4.2. Pixel­level Anomaly Localization

We evaluate our approach’s localization ability on the

pixel-level anomaly detection task. Both qualitative and

quantitative results are provided.

Setup. For pre-training Local-Net, following [7], we first

distill Local-Net from pre-trained ResNet-18 on ImageNet

[13], and then fine-tune it into the specific category in

MVTec AD with the same loss as that in distillation. When

training Global-Net and DAD-head, we randomly crop

patch p from the image, and add some random stains on the

patch to produce p−. Then Global-Net and DAD-head are

trained with the loss in Eq. (10). At inference stage, image

patches are cropped in a roster-scan order, and the anomaly

score s for each patch is estimated according to Eq. (13)

with λs = 0.8. Finally, anomaly score maps of images are

constructed as discussed in Sec. 3.3. More implementation

details can be found in Supplementary Material.

Baselines. We have two parts of competitors. The first

part is baselines in [6, 7], including the 1-NN classifier [3],

the One-Class SVM (OCSVM) [43], the K-Means classifier

[29], deterministic autoencoder with l2-reconstruction error

as the anomaly score (l2-AE) [16] , variational autoencoder

with reconstruction probability as the anomaly score (VAE)

[4], CNN-Feature Dictionary (CNN-FD) [32], the SSIM-

Autoencoder (SSIM-AE) [8] and AnoGAN [42]. The

results for above methods are all reported in [6, 7]. The

Score MapImage Ground-Truth Score MapImage Ground-Truth

Figure 3. Qualitative anomaly localization results on MVTec AD

dataset [6]. For each example, the images from left to right are

the defective image, the ground-truth, and the anomaly score map

produced by our algorithm. Zoom in for details.

second part is recently peer-reviewed models, including

teacher-student (TS) [7], Visually Explained Variational

Autoencoder (VAVAE) [26], Superpixel Masking and In-

painting (SMAI) [23], Gradient Descent Reconstruction

with VAEs (GDR) [12], Encoding Structure-Texture Rela-

tion with P-Net for AD (P-Net) [51]. The results for models

in the second part are reported in the original papers.

Qualitative Results. Fig. 3 shows our qualitative results in

MVTec AD [6]. Our approach satisfactorily addresses all

kinds of anomalies and further locates the subtle defects.

More anomaly localization results can be found in Supple-

mentary Material.

To further illustrate the importance of the global and

local feature comparison in anomaly localization, in Fig. 4

we qualitatively compare our model with TS [7], which only

utilizes the local feature of the patch. When encountering

some hard anomalies which seems totally normal in any sin-

gle patch, e.g., misplacement, swapping and bend in Fig. 4,

local feature based models cannot detect the anomalies,

while our method handles them excellently.

Quantitative Results in PRO. We follow the protocol

in [6, 7], and use the per-region-overlap (PRO) as the

evaluation metric. Unlike other per-pixel metrics, PRO

weights ground-truth regions equally regardless of region

sizes [7]. Specifically, as described in TS [7], we increase

the threshold until the average per-pixel false positive

rate reaches 30%. For each threshold, we calculate the

PRO value, i.e., the average ratio of the area detected as

anomalous in each anomaly connected component. And the

final metric is the normalized area under the PRO curve.

We compare our results with all the baselines that report

the PRO metric. Tab. 1 shows the comparison results. Our

method outperforms the other methods by a wide margin.
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Table 1. Comparison results among different anomaly detection methods in the pixel-level anomaly localization task on MVTec AD

dataset [6]. Competitors include 1-NN [3], OC-SVM [43], K-Means [29], l2-AE [16], VAE [4], SSIM-AE [8], AnoGAN [42], CNN-FD

[32] and TS [7]. The results of baselines are borrowed from [6, 7]. Per-region-overlap (PRO) [7] is used as the evaluation metric.

Category 1-NN OC-SVM K-Means l2-AE VAE SSIM-AE AnoGAN CNN-FD TS Ours

T
ex

tu
re

Carpet 0.512 0.355 0.253 0.456 0.501 0.647 0.204 0.469 0.879 0.977

Grid 0.228 0.125 0.107 0.582 0.224 0.849 0.226 0.183 0.952 0.932

Leather 0.446 0.306 0.308 0.819 0.635 0.561 0.378 0.641 0.945 0.909

Tile 0.822 0.722 0.779 0.897 0.870 0.175 0.177 0.797 0.946 0.883

Wood 0.502 0.336 0.411 0.727 0.628 0.605 0.386 0.621 0.911 0.941

O
b

je
ct

Bottle 0.898 0.850 0.495 0.910 0.897 0.834 0.620 0.742 0.931 0.968

Cable 0.806 0.431 0.513 0.825 0.654 0.478 0.383 0.558 0.818 0.980

Capsule 0.631 0.554 0.387 0.862 0.526 0.860 0.306 0.306 0.968 0.960

Hazelnut 0.861 0.616 0.698 0.917 0.878 0.916 0.698 0.844 0.965 0.962

Metal Nut 0.705 0.319 0.351 0.830 0.576 0.603 0.320 0.358 0.942 0.967

Pill 0.725 0.544 0.514 0.893 0.769 0.830 0.776 0.460 0.961 0.978

Screw 0.604 0.644 0.550 0.754 0.559 0.887 0.466 0.277 0.942 1.000

Toothbrush 0.675 0.538 0.337 0.822 0.693 0.784 0.749 0.151 0.933 0.961

Transistor 0.680 0.496 0.399 0.728 0.626 0.725 0.549 0.628 0.666 0.999

Zipper 0.512 0.355 0.253 0.839 0.549 0.665 0.467 0.703 0.951 0.992

Mean 0.640 0.479 0.423 0.790 0.639 0.694 0.443 0.515 0.914 0.961

Specifically, in comparison with TS [7], the state-of-the-

art competitor, our model exceeds greatly in categories

such as the cable and transistor. This is identical with our

observation in Fig. 4, for TS fails in the anomaly cases

involved with global and local feature comparison.

Quantitative Results in Pixel-level AUROC. We further

provide quantitative results on pixel-level AUROC [6]. The

comparison with all the baselines that report pixel-level

AUROC is shown in Tab. 2. Our model substantially

surpasses other methods in pixel-wise AUROC (≥ 2%).

This conclusion is consistent with that in PRO results above.

Discussion. Recall that, for each category in the MVTec

AD dataset, we train a separate model only on the normal

data with exactly the same configuration (e.g., hyper-

parameters like learning rate, training epochs, etc.). Results

in Tab. 1 and Tab. 2 show that our approach is generalizable

to various types of data, suggesting strong robustness.

4.3. Image­level Anomaly Detection

To further prove that our method is able to handle various

tasks in anomaly detection, our model is applied to image-

level anomaly detection task. Here we present the results of

unsupervised one-class classification on CIFAR-10 [21].1

Setup. During pre-training, the distillation process is the

same as that in Sec. 4.2, and when fine-tuning on each

category of CIFAR-10, we resize each image into the patch

size, which functions as the image patch in Sec. 4.2.

During training Global-Net and DAD-head, every single

image is reshaped to the patch size and the image size,

denoted as IL and IG, respectively. Then we input IL and

1Our approach also excels in image-level anomaly detection task on

MVTec AD [6], which is discussed in Supplementary Material.

Normal Data Ground-Truth TS OursAnomaly

Figure 4. Qualitative comparisons on MVTec AD dataset [6]

between TS [7], which considers only local patches for anomaly

localization, and our approach. Through adequately utilizing both

the global and the local information, we manage to identify the

transistor shift (first row), the cable swap (second row), and metal

nut bend (third row) anomalies that are omitted by TS.

IG into Local-Net and Global-Net to generate the local and

global feature. The negative local feature is produced by

feeding a random different image (resized into the patch

size) into Local-Net. The other procedures are the same

as those in the experiments on MVTec AD. Further details

can be found in Supplementary Material.

Baselines. Our competitors include OC-SVM [43], KDE

[9], l2-AE [16], VAE [4], pixelCNN [45], LSA [1],

AnoGAN [42], DSVDD [38], OCGAN [37], and GradCon

[22]. The results of baselines are borrowed from [37, 22].

Quantitative Results in AUROC. Image-level AUROC

comparisons with baselines on CIFAR-10 are shown in
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Table 2. Comparison results among different anomaly detection methods in the pixel-level anomaly localization task on MVTec AD

dataset [6]. Competitors include SSIM-AE [8], l2-AE [16], AnoGAN [42], CNN-FD [32], VEVAE [26], SMAI [23], GDR [12] and P-Net

[51]. The results of SSIM-AE, l2-AE, AnoGAN and CNN-FD are borrowed from the MVTec AD paper [6], and the results of VEVAE,

SMAI, GDR and P-Net are reported in their original papers. Pixel-level AUROC is utilized as the evaluation metric.

Category SSIM-AE l2-AE AnoGAN CNN-FD VEVAE SMAI GDR P-Net Ours

T
ex

tu
re

Carpet 0.87 0.59 0.54 0.72 0.78 0.88 0.74 0.57 0.96

Grid 0.94 0.90 0.58 0.59 0.73 0.97 0.96 0.98 0.78

Leather 0.78 0.75 0.64 0.87 0.95 0.86 0.93 0.89 0.90

Tile 0.59 0.51 0.5 0.93 0.80 0.62 0.65 0.97 0.80

Wood 0.73 0.73 0.62 0.91 0.77 0.80 0.84 0.98 0.81

O
b

je
ct

Bottle 0.93 0.86 0.86 0.78 0.87 0.86 0.92 0.99 0.93

Cable 0.82 0.86 0.78 0.79 0.90 0.92 0.91 0.70 0.94

Capsule 0.94 0.88 0.84 0.84 0.74 0.93 0.92 0.84 0.90

Hazelnut 0.97 0.95 0.87 0.72 0.98 0.97 0.98 0.97 0.84

Metal Nut 0.89 0.86 0.76 0.82 0.94 0.92 0.91 0.79 0.91

Pill 0.91 0.85 0.87 0.68 0.83 0.92 0.93 0.91 0.93

Screw 0.96 0.96 0.8 0.87 0.97 0.96 0.95 1.00 0.96

Toothbrush 0.92 0.93 0.90 0.77 0.94 0.96 0.99 0.99 0.96

Transistor 0.90 0.86 0.80 0.66 0.93 0.85 0.92 0.82 1.00

Zipper 0.88 0.77 0.78 0.76 0.78 0.90 0.87 0.90 0.99

Mean 0.86 0.82 0.74 0.78 0.86 0.89 0.89 0.89 0.91

Tab. 3. Our method considerably exceeds the second state-

of-the-art, GradCon [22], by 4.1% in image-level AUROC.

The results show that our model is adaptive to different

settings of anomaly detection.

4.4. Analysis on Multi­head Feature Comparison

In this section, we first conduct ablation study on IAD-

head and DAD-head, and further analyze the different

discriminative ability in view of these two heads.

Ablation Study. To evaluate the effectiveness of joint

scoring function of the IAD-head and DAD-head, i.e., Eq.

(13), we vary λs from 0.0 to 1.0, and calculate the PRO

metric on each category. According to Eq. (13), larger

λs results in greater proportion of sIAD in the synthetic

anomaly score s, while the proportion of sDAD decreases

accordingly. In the extreme case, s will degenerate into

sDAD or sIAD if λs equals 0 or 1, respectively.

Tab. 4 shows the PRO results of our method under

different values of λs. Overall, multi-head scoring function

performs better than single-head ones, with 4.9% and

0.7% increase compared to single DAD-head and single

IAD-head scoring function, respectively. More concretely,

categories of textures (e.g., carpet, grid and wood) enjoy

greater improvement than those of objects after applying

multi-head scoring function. We infer this is because

much more repetitive patterns are contained in textures

than in objects, and multi-head strategy is conducive to a

more distinguishable feature representation, enhancing our

model’s anomaly localization ability greatly on textures.

However, it should be noticed that in Tab. 4, the overall

performances of single DAD-head are worse than those

of single IAD-head for both texture and object classes.

The reason might be that the performance of DAD-head

is highly correlative with the way to construct negative

patches. That is, if the construction approach is similar

to the real anomalies, DAD-head might perform better,

otherwise might perform worse. In our experiment, to

involve no priori knowledge, we utilize a simple negative

patch construction approach and apply the same method

to all the different classes, yet DAD-head still shows great

potential in cooperation with IAD-head. To further improve

performance of DAD-head, we encourage users to modify

the negative patch construction way according to the real-

world scenarios.

Feature Visualization. To better understand the different

discriminative abilities in view of IAD-head and DAD-

head, we visualize the global and local features under the

metrics of IAD-head and DAD-head. Fig. 5 shows the

feature visualization for the texture and object. We ran-

domly crop 800 patches from both texture-type (i.e., carpet)

and object-type (i.e., cable) defective images, and utilize

t-SNE [31] to visualize the features of the abnormal patches

and their surroundings. As shown in Fig. 5a, compared

with IAD-head, DAD-head is more discriminative on the

texture, presenting a clear boundary between anomalies’

local and global features. On the contrary, Fig. 5b illus-

trates that IAD-head seperates abnormal local and global

features better than DAD-head on the object. Different

discriminative abilities of IAD-head and DAD-head ensure

excellent performance of the multi-head anomaly detection

mechanism in various situations.
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(a) Texture feature visualization (b) Object feature visualization
IAD-Head DAD-Head IAD-Head DAD-Head

Figure 5. Visualization of the global and local features under the metrics provided by the two anomaly detection heads, i.e., IAD-head

and DAD-head. Abnormal patches selected from 800 patches in MVTec AD dataset [6], together with their surroundings, are used for both

texture-type (i.e., carpet) and object-type (i.e., cable) visualization. The color map indicates the ratio of the ground-truth anomalous area to

each individual patch. Triangles and circles stand for the global and local features respectively. It turns out that texture features are more

distinguishable in the view of DAD-head while object features can be better differentiated by IAD-head.

Table 3. Comparison results among different one-class classification methods in the image-level anomaly detection task on CIFAR-10

[21]. Competitors include OC-SVM [43], KDE [9], l2-AE [16], VAE [4], PixelCNN [45], LSA [1], AnoGAN [42], DSVDD [38], OCGAN

[37] and GradCon [22]. The results of baselines are borrowed from [22, 37]. Image-level AUROC is utilized as the evaluation metric.

Normal Class OC-SVM KDE l2-AE VAE PixelCNN LSA AnoGAN DSVDD OCGAN GradCon Ours

Airplane 0.630 0.658 0.411 0.634 0.788 0.735 0.671 0.617 0.757 0.760 0.791

Automobile 0.440 0.520 0.478 0.442 0.428 0.580 0.547 0.659 0.531 0.598 0.703

Bird 0.649 0.657 0.616 0.640 0.617 0.690 0.529 0.508 0.640 0.648 0.675

Cat 0.487 0.497 0.562 0.497 0.574 0.542 0.545 0.591 0.620 0.586 0.561

Deer 0.735 0.727 0.728 0.743 0.511 0.761 0.651 0.609 0.723 0.733 0.739

Dog 0.500 0.496 0.513 0.515 0.571 0.546 0.603 0.657 0.620 0.603 0.638

Frog 0.725 0.758 0.688 0.745 0.422 0.751 0.585 0.677 0.723 0.684 0.732

Horse 0.533 0.564 0.497 0.527 0.454 0.535 0.625 0.673 0.575 0.567 0.674

Ship 0.649 0.680 0.487 0.674 0.715 0.717 0.758 0.759 0.820 0.784 0.814

Truck 0.508 0.540 0.378 0.416 0.426 0.548 0.665 0.731 0.554 0.678 0.722

Mean 0.586 0.610 0.536 0.583 0.551 0.641 0.618 0.648 0.657 0.664 0.705

Table 4. Results of ablation study on the multi-head scoring

function. λs in Eq. (13) varies from 0.0 to 1.0 with step 0.2.

The categories having better performance with multi-head scoring

functions than with single-head ones is highlighted in boldface.

Per-region-overlap (PRO) is used as the evaluation metric.

Category 0.0 0.2 0.4 0.6 0.8 1.0

Carpet 0.963 0.966 0.968 0.972 0.977 0.965

Grid 0.868 0.882 0.907 0.932 0.932 0.894

Leather 0.899 0.902 0.909 0.911 0.909 0.896

Tile 0.951 0.920 0.905 0.895 0.883 0.874

Wood 0.832 0.900 0.925 0.941 0.941 0.920

Bottle 0.928 0.956 0.965 0.966 0.968 0.965

Cable 0.941 0.980 0.991 0.989 0.980 0.961

Capsule 0.843 0.884 0.910 0.937 0.960 0.978

Hazelnut 0.937 0.937 0.949 0.957 0.962 0.964

Metal Nut 0.921 0.930 0.941 0.956 0.967 0.971

Pill 0.875 0.935 0.958 0.971 0.978 0.978

Screw 0.948 0.986 0.996 0.999 1.000 1.000

Toothbrush 0.897 0.913 0.934 0.948 0.961 0.966

Transistor 0.883 0.935 0.972 0.993 0.999 0.997

Zipper 0.995 0.995 0.995 0.994 0.992 0.974

Mean 0.912 0.935 0.948 0.957 0.961 0.954

5. Conclusion and Discussion

In this work, we propose an unsupervised anomaly

localization approach with due consideration to both the

global and the local information from an image. Two

anomaly detection heads are introduced to sufficiently spot

the discrepancy between global and local features. With the

scoring function developed from such multi-head design,

we achieve high-precision anomaly localization, signifi-

cantly surpassing state-of-the-art alternatives.

However, there still remains some future work worth

exploration. On one hand, our approach uses a fixed patch

size regardless of the anomaly type. To further improve

the robustness under various anomaly scales, techniques

such as score map averaging [7] and feature pyramid [24]

could be considered. On the other hand, Local-Net in

our work is distilled from a deep model pre-trained on

ImageNet. Self-supervised learning methods [18, 15] might

be of benefit to getting a better representation on specific

datasets. Nevertheless, our approach sheds light on a

promising direction by relating the individual patches with

their surroundings for the anomaly localization task.
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