
IBRNet: Learning Multi-View Image-Based Rendering

Qianqian Wang1,2 Zhicheng Wang1 Kyle Genova1,3 Pratul Srinivasan1 Howard Zhou1

Jonathan T. Barron1 Ricardo Martin-Brualla1 Noah Snavely1,2 Thomas Funkhouser1,3

1Google Research 2Cornell Tech, Cornell University 3Princeton University

Abstract

We present a method that synthesizes novel views of com-

plex scenes by interpolating a sparse set of nearby views.

The core of our method is a network architecture that in-

cludes a multilayer perceptron and a ray transformer that

estimates radiance and volume density at continuous 5D

locations (3D spatial locations and 2D viewing directions),

drawing appearance information on the fly from multiple

source views. By drawing on source views at render time,

our method hearkens back to classic work on image-based

rendering (IBR), and allows us to render high-resolution

imagery. Unlike neural scene representation work that opti-

mizes per-scene functions for rendering, we learn a generic

view interpolation function that generalizes to novel scenes.

We render images using classic volume rendering, which is

fully differentiable and allows us to train using only multi-

view posed images as supervision. Experiments show that

our method outperforms recent novel view synthesis meth-

ods that also seek to generalize to novel scenes. Further, if

fine-tuned on each scene, our method is competitive with

state-of-the-art single-scene neural rendering methods.1

1. Introduction

Given a set of posed images of a scene, the goal of novel

view synthesis is to produce photo-realistic images of the

same scene at novel viewpoints. Early work on novel view

synthesis focused on image-based rendering (IBR). Starting

from the pioneering work on view interpolation of Chen

and Williams [6], and proceeding through light field ren-

dering [3, 15, 28], view-dependent texturing [8], and more

modern learning-based methods [17], IBR methods gener-

ally operate by warping, resampling, and/or blending source

views to target viewpoints. Such methods can allow for high-

resolution rendering, but generally require either very dense

input views or explicit proxy geometry, which is difficult to

estimate with high quality leading to artifacts in rendering.

1https://ibrnet.github.io/

More recently, one of the most promising research direc-

tions for novel view synthesis is neural scene representations,

which represent scenes as the weights of neural networks.

This research area has seen significant progress through the

use of Neural Radiance Fields (NeRF) [40]. NeRF shows

that multi-layer perceptrons (MLPs) combined with posi-

tional encoding can be used to represent the continuous 5D

radiance field of a scene, enabling photo-realistic novel view

synthesis on complex real-world scenes. NeRF’s use of con-

tinuous scene modeling via MLPs, as opposed to explicit

discretized volumes [56] or multi-plane images [12, 70] al-

lows for more compact representations and scales to larger

viewing volumes.

Although neural scene representations like NeRF can

represent scenes faithfully and compactly, they typically

require a lengthy optimization process for each new scene

before they can synthesize any novel views of that scene,

which limits the value of these methods for many real-world

applications.

In this work, we leverage ideas from both IBR and NeRF

into a new learning-based method that generates a contin-

uous scene radiance field on-the-fly from multiple source

views for rendering novel views. We learn a general view

interpolation function that simultaneously performs den-

sity/occlusion/visibility reasoning and color blending while

rendering a ray. This enables our system to operate with-

out any scene-specific optimization or precomputed proxy

geometry.

At the core of our method is a lightweight MLP network

that we call IBRNet, which aggregates information from

source views along a given ray to compute its final color.

For sampled 3D locations along the ray, the network first

fetches latent 2D features, derived from nearby source views,

that encode spatial context. IBRNet then aggregates these

2D features for each sampled location to produce a density

feature that captures information about whether that feature

seems to be on a surface. A ray transformer module then

computes a scalar density value for each sample by consid-

ering these density features along the entire ray, enabling

visibility reasoning across larger spatial scales. Separately, a

4690



color blending module uses the 2D features and view direc-

tion vectors from source views to derive a view-dependent

color for each sample, computed as a weighted combination

of the projected colors of the source views. A final color

value is then computed for each ray using volume rendering.

Our approach is fully differentiable and can therefore

be trained end-to-end using multi-view images. Our exper-

iments show that when trained on large amounts of data,

our method can render high-resolution photo-realistic novel

views for unseen scenes that contain complex geometry and

materials, and our quantitative evaluation shows that it im-

proves upon state-of-the-art novel view synthesis methods

designed to generalize in a single shot to new test scenes.

Moreover, for a particular scene, we can fine-tune IBRNet to

improve the quality of synthesized novel views to match the

performance of state-of-the-art neural scene representation

methods like NeRF [40]. In summary, our contributions are:

– a new learning-based multi-view image-based rendering

approach that outperforms existing one-shot view synthe-

sis methods on novel scenes,

– a new model architecture called IBRNet that enables the

continuous prediction of colors and densities in space

from multiple views,

– a per-scene fine-tuning procedure that achieves compara-

ble performance to state-of-the-art novel view synthesis

methods designed only for single-scene inference.

2. Related work

Image based rendering. Early work on IBR introduced

the idea of synthesizing novel views from a set of refer-

ence images by a weighted blending of reference pixels

[9, 15, 28]. Blending weights were computed based on

ray-space proximity [28] or approximate proxy geometry

[3, 9, 19]. In more recent work, researchers have proposed

improved methods for computing proxy geometry [5, 18],

optical flow correction [4, 10, 11], and soft blending [46, 51].

For example, Hedman et al. [17] use two types of multi-view

stereo [22, 53] to produce a view-dependent mesh surface,

then use a CNN to compute blending weights. Others syn-

thesize a radiance field directly on a mesh surface [8, 21, 62]

or point cloud [1, 38, 47]. While these methods can handle

sparser views than other approaches and achieve promising

results in some cases, they are fundamentally limited by

the performance of 3D reconstruction algorithms [22, 53].

They have difficulty in low-textured or reflective regions,

where stereo reconstruction tends to fail, and cannot han-

dle partially translucent surfaces. In contrast, our method

learns continuous volume densities in an end-to-end man-

ner that is optimized for synthesis quality, leading to better

performance in challenging scenarios.

Volumetric Representations. Another line of work uses

discrete volumetric representations to achieve photo-realistic

rendering. Recent methods leverage convolutional neu-

ral networks (CNNs) to predict volumetric representations

stored in voxel grids [20, 25, 26, 46, 64] or multi-plane im-

ages (MPIs) [12, 13, 31, 39, 59, 70]. At test time, novel

views can be rendered from these representations via al-

pha compositing [48]. Trained end-to-end on large datasets,

these methods often learn to compensate for the discretiza-

tion artifacts of low-resolution voxel grids and can generalize

reasonably well to different scenes. While they achieve high-

quality view synthesis results, they must explicitly process

and store large numbers of samples resulting in extensive

memory overhead, limiting the resolution of their outputs. In

contrast, our method allows for querying color and opacity at

continuous 3D locations and 2D viewing directions without

storing a full scene representation, and can scale to render

high-resolution images. Our method can also handle larger

viewing volumes than MPI-based methods.

Neural scene representations. A promising recent re-

search direction is the use of neural networks for repre-

senting the shape and appearance of scenes. Earlier work

[2, 14, 23, 37, 42, 44, 66] showed that MLPs can be used

as implicit shape representations, where the weights of

the MLPs map continuous spatial coordinates to signed

distance or occupancy values. With advances in differen-

tiable rendering methods [7, 24, 29, 33, 34, 41], many meth-

ods [32, 35, 41, 52, 54, 56, 57, 61, 67] showed the ability

to learn both scene geometry and appearance from multi-

view observations for simple geometry and diffuse materials.

The more recent NeRF [40] achieves very impressive re-

sults for novel view synthesis by optimizing a 5D neural

radiance field for a scene, suggesting the advantages of con-

tinuous representations over discrete ones like voxel grids

or meshes. While NeRF opens up many new research op-

portunities [30, 36, 43, 45, 55, 58], it must be optimized for

each new scene, taking hours or days to converge. Concur-

rent work [63, 68] tries to address this issue and generalize

NeRF (with a focus on very sparse input views). However,

their use of absolute locations as direct network inputs re-

stricts their ability to generalize to arbitrary new scenes.

In contrast, our method can generalize to new, real-world

scenes with high quality.

3. Method

Given nearby source views, our method uses volume ren-

dering to synthesize a target view at a novel camera pose.

The core problem we try to solve is to obtain colors and

densities in a continuous space by aggregating information

present in the source views. Our system pipeline (Fig. 1)

can be divided into three parts: 1) identifying a set of nearby

source views as input and extracting dense features from

each source view, 2) predicting volume densities σ and col-

ors c at continuous 5D locations (3D spatial locations and

4691



?

Target view

Source view

color !

!!

""

"#

"!

#$,!

!# #$,#

!" #$,"

"

ray distance

Volume Rendering

−

!

!

color!"#$ color%&

Rendering Loss

Ray 

Transformer

density feature &'

image color viewing direction

image feature

A

B

A

B
MLP

Figure 1: System Overview. 1) To render a novel target view (shown here as the image labeled with a ‘?’), we first identify a set of

neighboring source views (e.g., the views labeled A and B) and extract their image features. 2) Then, for each ray in the target view, we

compute colors and densities for a set of samples along the ray using our proposed IBRNet (yellow shaded region). Specifically, for each

sample, we aggregate its corresponding information (image colors, features, and viewing directions) from the neighboring source views

to produce its color c and density features fσ (note that these features are not yet scalar density values). We then apply our proposed ray

transformer to these density features across all samples on the ray to predict densities. 3) Finally, we use volume rendering to accumulate

colors and densities along the ray to render its color. Our method can be trained end-to-end with an L2 loss on reconstructed image colors.

2D view directions), and 3) compositing those colors and

densities along each camera ray through volume rendering

to produce a synthesized image.

3.1. View selection and feature extraction

Unlike neural scene representations that attempt to en-

code an entire scene into a single network, we synthesize

the novel target view by interpolating nearby source views.

While our network (described in the next section) can han-

dle an arbitrary number of neighboring views, given limited

GPU memory we select a small number of source views as

the “working set” for rendering a novel view. To obtain an

effective working set, we identify spatially nearby candidate

views, then select the subset of N views whose viewing

directions are most similar to the target view.

Let Ii ∈ [0, 1]Hi⇥Wi⇥3 and Pi ∈ R
3⇥4 respectively

denote the color image and camera projection matrix for the

i-th source view. We use a shared U-Net based convolutional

neural network to extract dense features Fi ∈ R
Hi⇥Wi⇥d

from each image Ii. The set of tuples {(Ii,Pi,Fi)}
N
i=1

forms the input for rendering a target view.

3.2. RGB-σ prediction using IBRNet

Our method synthesizes images based on classic volume

rendering, accumulating colors and densities in the 3D scene

to render 2D images. We propose IBRNet (illustrated in

Fig. 2) to predict colors and densities at continuous 5D lo-

cations by aggregating information from multiple source

views and incorporating long-range context along the ray.

Our proposed IBRNet is permutation-invariant and accepts

a variable number of source views.

We first describe the input to IBRNet for a single query

point location x ∈ R
3 on a ray r ∈ R

3 with unit-length

viewing direction d ∈ R
3. We project x into all source

views using their camera parameters, and extract colors and

features at the projected pixel locations through bilinear

interpolation. Let {Ci}
N
i=1 ∈ [0, 1]3 and {fi}

N
i=1 ∈ R

d

respectively denote these extracted colors and image features

for point x. We also take into account the viewing directions

for x in all source views, denoted as {di}
N
i=1.

3.2.1 Volume density prediction

Our density prediction at point (x,d) involves two steps.

First, we aggregate the multi-view features at (x,d) to obtain

a density feature. Then, our proposed ray transformer takes

in density features for all samples on a ray and incorporates

long-range contextual information to predict the density for

each sample including (x,d).

Multi-view feature aggregation. We observe that 3D

points on surfaces are more likely to have consistent lo-

cal appearances in multiple views than 3D points in free

space. Therefore, an effective way to infer density would

be to check the consistency among the features {fi}
N
i=1 for

a given point, and a possible implementation would be a

PointNet-like [49] architecture that takes in multi-view fea-

tures and uses variance as the global pooling operator. Specif-

ically, we first compute a per-element mean µ ∈ R
d and

4692



density
Ray

Transformer

!×3 !×1 !×3

!
color

…

!×%

MLP

"!

…

!

!…

concatenation element-wise multiplication

""

MLP

{'"} from the other samples 
on the same ray

!×%

1×%"

#$!

weighted

pooling

"#

"!

…

"!$
"#$

"%$

©

…

%
%

%

…

&
&

&

…

'!
'#
'%
!×1

©

…

#$#
#$%

…

'!&
'#&

'%&

*

* C!
C#
C%

*

* network inputs

{)} of the other samples 
on the same ray

"' image feature % element-wise mean of {#!}!"#
$ & element-wise variance of {#!}!"#

$

'' pooling weight color blending weight''& #$' relative viewing direction C' image color

"" density feature

…

MLP

Figure 2: IBRNet for volume density and color prediction at a continuous 5D location (x,d). We first input the 2D image features

{fi}
N
i=1 extracted from all source views to a PointNet-like MLP to aggregate local and global information, resulting in multi-view aware

features {f 0i}
N
i=1 and pooling weights {wi}

N
i=1. To predict density, we pool {f 0i}

N
i=1 using weights {wi}

N
i=1 which enables multi-view

visibility reasoning to obtain a density feature fσ . Instead of directly predicting density σ from fσ for individual 5D samples, we use a ray

transformer module to aggregate information of all samples along the ray. The ray transformer module takes fσ for all samples on a ray and

predicts all their densities (only the density output for (x,d) is highlighted in the figure for simplicity). The ray transformer module enables

geometric reasoning across a longer range and improves density predictions. For color prediction, we concatenate {f 0i}
N
i=1 with the viewing

directions of the query ray relative to each viewing direction of the source view, i.e., {∆di}
N
i=1, and predict a set of blending weights. The

output color c is a weighted average of the image colors from the source views.

variance v ∈ R
d from features {fi}

N
i=1 to capture global in-

formation, and concatenate each fi with µ and v. Each con-

catenated feature is fed into a small shared MLP to integrate

both local and global information, resulting in a multi-view

aware feature f
0

i and a weight vector wi ∈ [0, 1]. We pool

these new features {f 0i}
N
i=1 by computing their weighted aver-

age and variance using weights {wi}
N
i=1, which are mapped

to a density feature fσ ∈ R
dσ using an MLP. Compared to

a direct average or max-pooling in a PointNet [49], we find

that our weighted pooling improves the network’s ability to

handle occlusions.

Ray transformer. After obtaining a density feature fσ , one

could directly turn it into a single density σ with another

MLP. However, we find such an approach fails to predict

accurate densities for new scenes with complex geometry.

We ascribe this to the fact that looking at features for a sin-

gle point in isolation is inadequate for accurately predicting

its density, and more contextual information is needed—

similar to how plane-sweep stereo methods consider match-

ing scores along a whole ray before determining the depth

of a particular pixel.

We therefore introduce a new ray transformer module

to enable samples on a ray to attend to each other before

predicting their densities. The ray transformer consists of

the two core components of a classic Transformer [65]:

positional encoding and self-attention. Given M samples

along the ray, our ray transformer treats samples from near

to far as a sequence, and applies positional encoding and

multi-head self-attention to the sequence of density features

(fσ(x1), · · · , fσ(xM )). The final density value σ for each

sample is then predicted from its attended feature. The ray

transformer module allows for a variable number of inputs

and only introduces only a small increase in parameters and

computational overhead, while dramatically improving the

quality of the predicted densities and the final synthesized

image, as shown in our ablation studies.

Improving temporal visual consistency. Our method con-

siders only nearby source views as the working set when syn-

thesizing a target view. Therefore, when generating videos

along smooth camera paths, our method is potentially subject

to temporarily inconsistent density predictions and flicker-

ing artifacts due to abrupt changes in the working set as the

camera moves.

To alleviate this issue, we adopt the pooling technique

of Sun et al. [60]. We replace the mean µ and variance

v of {fi}
N
i=1 with a weighted mean µw and variance vw,

weighted so as to reduce the influence of the furthest images

in the working set. The weight function is defined as:

w̃f

i (d,di) = max

✓

0, es(d·di�1) − min
j=1...N

es(d·dj�1)

◆

,

wf

i (d,di) =
w̃f

i (d,di)
P

j w̃
f

j(d,dj)
, (1)

where s is a learnable parameter. This technique improves

our method in two ways: 1) it smooths the change in global

4693



features between adjacent frames, and 2) it produces more

reasonable global features by up-weighting closer views in

the working set and down-weighting more distant views.

We observe this technique empirically improves synthesis

stability and quality.

3.2.2 Color prediction

We obtain color at a 5D point by predicting blending weights

for the image colors {Ci}
N
i=1 in the source views that cor-

respond to that 5D point. Unlike NeRF [40], which uses

absolute viewing directions, we consider viewing direction

relative to that of the source views, i.e., the difference be-

tween d and di. A smaller difference between d and di

typically implies a larger chance of the color at target view

resembling the corresponding color at view i, and vice versa.

To predict the blending weight for each source color Ci,

we concatenate the feature f
0

i with ∆di = d − di and

input each concatenated feature into a small network to

yield a blending weight wc
i . The final color for this

5D location is blended via a soft-argmax operator c =
PN

i=1[Ci exp(w
c
i )/

PN

j=1 exp(w
c
j)]. An alternative to pre-

dicting blending weights would be to directly regress c. How-

ever, we found that direct regression of c led to decreased

performance.

3.3. Rendering and training

The approach introduced in the previous section allows

us to compute the color and density value at continuous 5D

location. To render the color of a ray r passing through the

scene, we first query the colors and densities of M sam-

ples on the ray, and then accumulate colors along the ray

modulated by densities:

C̃(r) =

M
X

k=1

Tk(1− exp(−σk))ck , (2)

where Tk = exp

✓

−

k�1
X

j=1

σj

◆

. (3)

Here samples from 1 to M are sorted to have ascending

depth values. ck and σk denote the color and density of the

k-th sample on the ray, respectively.

Hierarchical volume rendering. One benefit of having

continuous RGB-σ predictions is that it allows more adaptive

and efficient sampling in space. Following NeRF [40], we

perform hierarchical volume sampling and simultaneously

optimize two networks, a coarse IBRNet and a fine IBRNet,

with identical network architecture. At the coarse scale, we

sample a set of Mc locations at equidistant disparity (inverse

depth) which results in equal intervals between adjacent

point projections in pixel space. Given the prediction of the

coarse network, we then conduct a more informed sampling

of points along each ray, where samples are more likely to

be located at relevant regions for rendering. We sample an

additional Mf locations and use all Mc +Mf locations to

render the fine results as in NeRF [40]. In our network, we

set both Mc and Mf to 64.

Training objective. We render the color of each ray using

both the coarse and fine set of samples, and minimize the

mean squared error between the rendered colors and ground-

truth pixel colors for training:

L =
X

r2R



�

�

�
C̃c(r)− C(r)

�

�

�

2

2
+
�

�

�
C̃f (r)− C(r)

�

�

�

2

2

�

(4)

where R is the set of rays in each training batch. This allows

us to train the feature extraction network as well as the coarse

and fine IBRNet simultaneously.

Fine-tuning. Trained on large amounts of data, our method

is able to generalize well to novel scenes. Our method can

also be fine-tuned per scene using the same objective at

training time (Eq. 4) but only on a specific scene, thereby

improving synthesis performance on that scene.

3.4. Implementation details

Source and target view sampling. Given multiple views of

a scene, we construct a training pair of source and target view

by first randomly selecting a target view, and then sampling

N nearby views as source views. To select source views,

we first identify a pool of n ·N nearby views (n is sampled

uniformly at random from [1, 3]), and then randomly sample

N views from the pool. This sampling strategy simulates

various view densities during training and therefore helps the

network generalize across view densities. During training,

we sample N uniformly at random from [8, 12].

Network details. We implement the image feature ex-

traction network using a U-Net like architecture with

ResNet34 [16] truncated after layer3 as the encoder, and

two additional up-sampling layers with convolutions and

skip-connections as the decoder. We decode two sets of

feature maps in the final decoding layer, to be used as input

to the coarse and fine IBRNet respectively. Both coarse and

fine feature maps have d = 32 dimensions, and are 1/4× the

original image size. For IBRNet, the dimension of the den-

sity feature fσ is 16 and we use 4 heads for the self-attention

module in ray transformer. Please refer to the supplementary

material for more network details.

Training details. We train both the feature extraction net-

work and the IBRNet end-to-end on datasets of multi-view

posed images using Adam [27]. The base learning rates

for feature extraction network and IBRNet are 10�3 and

5 × 10�4, respectively, which decay exponentially along

with the optimization. During fine-tuning, we optimize both

our 2D feature extractor and IBRNet itself using smaller

4694



Diffuse Synthetic 360� [56] Realistic Synthetic 360� [40] Real Forward-Facing [39]

Method Settings PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LLFF [39] No per-scene

optimization

34.38 0.985 0.048 24.88 0.911 0.114 24.13 0.798 0.212
Ours 37.17 0.990 0.017 25.49 0.916 0.100 25.13 0.817 0.205

SRN [57]

Per-scene

optimization

33.20 0.963 0.073 22.26 0.846 0.170 22.84 0.668 0.378
NV [35] 29.62 0.929 0.099 26.05 0.893 0.160 - - -

NeRF [40] 40.15 0.991 0.023 31.01 0.947 0.081 26.50 0.811 0.250
Oursft 42.93 0.997 0.009 28.14 0.942 0.072 26.73 0.851 0.175

Table 1: Quantitative comparison on datasets of synthetic and real images. Our evaluation metrics are PSNR/SSIM (higher is better)

and LPIPS [69] (lower is better). Both Ours and LLFF [39] are trained on large amounts of training data and then evaluated on all test scenes

without any per-scene tuning. Ours consistently outperforms LLFF [39] on all datasets. We also compare our method with neural rendering

methods (SRN [57], NV [35], and NeRF [40]) that train a separate network for each scene. To compete fairly with these methods, we also

fine-tune our pretrained model on each scene (Oursft). After fine-tuning, Oursft is competitive with the state-of-the-art method NeRF [40].

base learning rates (5×10�4 and 2×10�4). For pretraining,

we train on eight V100 GPUs with a batch size of 3,200 to

9,600 rays depending on image resolution and the number

of source views, which takes about a day to finish.

4. Experiments

We evaluate our method in two ways: a) directly eval-

uating our pretrained model on all test scenes without any

fine-tuning (Ours). Note that we train only one model and

evaluate it on all test scenes. And b) fine-tuning our pre-

trained model on each test scene before evaluation (Oursft),

similar to NeRF.

4.1. Experimental Settings

Training datasets. Our training data consists of both syn-

thetic data and real data. For synthetic data, we gen-

erate object-centric renderings of the 1,023 models in

Google Scanned Objects [50]. For real data, we use

RealEstate10K [70], the Spaces dataset [12], and 102

real scenes from handheld cellphone captures (35 from

LLFF [39] and 67 from ourselves). RealEstate10K is a

large video dataset of indoor scenes with camera poses. The

Spaces dataset contains 100 scenes captured by a 16-camera

rig. Each of the cellphone captured scenes has 20-60 images

captured by forward-facing cameras distributed roughly on

2D grids [39]. We use COLMAP [53] to estimate camera

parameters and scene bounds for our captures. Our training

data includes various camera setups and scene types, which

allows our method to generalize well to unseen scenarios.

Evaluation datasets. We use both synthetic rendering of

objects and real images of complex scenes for evaluation, as

in NeRF [40]. The synthetic data consists of four Lamber-

tian objects with simple geometry from the DeepVoxels [56]

dataset, and eight objects with complicated geometry and

realistic materials from the NeRF synthetic dataset. Each

object in DeepVoxels has 479 training views and 1,000 test

views at 512 × 512 resolution sampled on the upper hemi-

sphere. Objects in the NeRF synthetic dataset have 100

training views and 200 test views at 800 × 800 resolution

sampled either on the upper hemisphere or the full sphere.

The real dataset contains 8 complex real-world scenes cap-

tured with roughly forward-facing images from NeRF. Each

scene is captured with 20 to 62 images at 1008× 756 reso-

lution. 1/8th of the images are held out for testing.

Baselines. We compare our method against the current best

view synthesis methods from two classes: MPI-based meth-

ods and neural rendering methods. For MPI-based methods,

we compare Ours with a state-of-the-art method LLFF [39]

which uses a 3D convolutional neural network to predict

a discretized grid for each input image and blends nearby

MPIs into the novel viewpoint. Both Ours and LLFF are

designed to generalize to novel scenes. We compare Oursft

with neural rendering methods: Neural Volumes (NV) [35],

Scene Representation Networks (SRN) [57], and NeRF [40].

These methods train separate networks for each scene or each

class of scenes, and either do not generalize at all, or only

generalize within object categories. When evaluating against

these neural scene representation methods we fine-tune our

model per-scene, as do the baselines.

4.2. Results

To render each test view we sample 10 source views

from the training set for all evaluation datasets. We evalu-

ate our method and our baselines using PSNR, SSIM, and

LPIPS [69]. Results can be seen in Tab. 1 and in Fig. 3.

Tab. 1 shows that our pretrained model generalizes well

to novel scenes and consistently outperforms LLFF [39] on

all test scenes. After fine-tuning, our model’s performance

is competitive with state-of-the-art neural rendering meth-

ods like NeRF [40]: We outperform NeRF on both Diffuse

Synthetic 360� and Real Forward-Facing [39] and only have

lower PSNR and SSIM on Realistic Synthetic 360�. One rea-

son that we underperform NeRF on Realistic Synthetic 360�

4695



Orchid

T-Rex

Horns

Fern

Ground Truth Oursft NeRF [40] Ours LLFF [39]

Figure 3: Qualitative comparison on Real-Forward-Facing data. Our method can more accurately recover fine details in both geometry

and appearance, and produce images that are perceptually more similar to ground-truth than other methods. LLFF [39] has difficulty

recovering clean and accurate boundary (ghosting artifacts in Orchid and repeated edges in Horns), and fails to capture thin structures (ribs

in T-Rex) or partially occluded origins (leaves in Fern). NeRF [40]-rendered images exhibits unrealistic noise in Orchid. Meanwhile, the

texture on the petals is missing and the region near the boundary of the petals are not well recovered. Our method is also slightly better than

NeRF at fine structures in T-Rex and Fern, and can reconstruct more details of the reflection on the glass in Horns.

is that this data has very sparse training views for scenes

with very complex geometry. Therefore, the information

contained in the limited set of local source views may be

insufficient for synthesizing a novel view, in which case

methods that optimize a global radiance field using all views

like NeRF may be better suited.

On the Real Forward-Facing [39] data Oursft achieves

substantially better SSIM and LPIPS than NeRF [40], indi-

cating that our synthesized images look more photo-realistic.

A key component in NeRF is the use of a positional encod-

ing [61] which helps generate high-frequency details. But po-

sitional encoding may also cause unwanted high-frequency

artifacts in images (see Fig. 3 Orchid), reducing perceptual

quality. In contrast, our model does not use positional encod-

ing to regress colors but instead blends colors from source

views, biasing our synthesized images to look more like

natural images. Our method produces reasonable proxy ge-

ometry and can be used to produce temporarily consistent

videos. Please see the supplemental material for more detail.

4.3. Ablations and analysis

Ablation studies. We conduct ablation studies (Tab. 2)

to investigate the individual contribution of key aspects of

our method, using our pretrained models on Real Forward-

Facing [39] data. For “No ray transformer”, we remove the

ray transformer so that the density prediction for samples

on each ray is independent and local. Removing this mod-

ule causes the network to fail to predict accurate densities,

leading to “black hole” artifacts and blurriness (see supple-

mentary material for qualitative comparison). For “No view

directions”, we remove the view direction input in our net-

work. This includes removing the weighted pooling in Eq. 1

and removing the viewing direction as a network input for

color prediction. This reduces our model’s ability to repro-

duce view-dependent effects such as specularities, but does

not reduce performance as significantly as seen in NeRF

because our model blends nearby input images (which them-

selves contain view-dependent effects). For “Direct color

regression”, we directly predict the RGB values at each 5D

4696



PSNR↑ SSIM↑ LPIPS↓

No ray transformer 21.31 0.675 0.355
No view directions 24.20 0.796 0.243
Direct color regression 24.73 0.810 0.220
Full model Ours 25.13 0.817 0.205

Table 2: Ablation study on Real Forward-Facing [39] data. We

report the metrics for the pretrained model of each ablation without

per-scene fine-tuning.

location instead of the blending weights. This is modestly

worse than blending image colors from source views.

Sensitivity to source view density. We investigate how our

method degrades as the source views become sparser on

Diffuse Synthetic 360� [56]. Each scene in the original data

provides 479 training views randomly distributed on the up-

per hemisphere. We uniformly sub-sample the training views

by factors of 2, 4, 6, 8, 10 to create varying view densities.

We report the PSNR for both the pretrained model Ours and

the fine-tuned model Oursft in Fig. 4. Our method degrades

reasonably as the input views become sparser.

Computational overhead at inference. Here we investi-

gate the computation required by IBRNet in comparison to

other methods. Our inference pipeline for rendering a target

view can be divided into two stages: We first extract image

features from all source views of interest, which must only

be done once as features can then be used repeatedly for

rendering. Given these pre-computed features we use our

proposed IBRNet to produce the colors and densities for

samples along each camera ray. Because image features can

be precomputed, the major computational cost at inference

is incurred by IBRNet. Since our method interpolates novel

views from a set of source views, the #FLOPs of IBRNet

depends on the size of the local working set, i.e., the number

of source views (#Src.Views). We report the size of IBRNet

and #FLOPs required to render a single pixel under varying

numbers of source views in Tab. 3.

Figure 4: Sensitivity to source view density. We subsample the

views provided in Diffuse Synthetic 360� [56] by {2, 4, 6, 8, 10} to

create varying source view densities on the upper hemisphere.

Method #Params #Src.Views #FLOPs PSNR↑ SSIM↑ LPIPS↓

SRN 0.55M - 5M 22.84 0.668 0.378
NeRF 1.19M - 304M 26.50 0.811 0.250

Oursft 0.04M

5 29M 25.80 0.828 0.190
8 45M 26.56 0.847 0.176

10 55M 26.73 0.851 0.175

Table 3: Network size and computational cost at inference. The

network size of our MLP is much smaller than SRN [57] and

NeRF [40]. All #FLOPs reported are for rendering a single pixel.

Both NeRF [40] and Oursft use hierarchical volume sampling. Mc,

Mf are set to 64, 128 respectively for NeRF, and 64, 64 for Oursft.

SRN [57] uses ray marching with only 10 steps thus having much

fewer #FLOPs. For our method, the number of #FLOPs scales

roughly linearly with the number of source views (#Src.Views).

We see that IBRNet requires less than 20% of the #FLOPs

than NeRF requires while achieving comparable perfor-

mance. We consider two explanations for IBRNet’s in-

creased efficiency. First, NeRF uses a single MLP to en-

code the whole scene. To query any point in the scene, one

must touch every parameter of the MLP. As the scene be-

comes more complex, NeRF needs more network capacity,

which leads to larger #FLOPs for each query. In contrast,

our method interpolates nearby views locally, and therefore

the #FLOPs does not grow with the scale of the scene but

only with the size of the local working set. This property

also makes our approach more dynamic, enabling applica-

tions like streaming large scenes and adjusting computa-

tional costs on-the-fly to suit a device. Second, we encode

the scene as posed images and features, a more structured

and interpretable representation than the MLP used in NeRF.

A simple projection operation allows us to fetch the most rel-

evant information from source views for estimating radiance

at a point in space. IBRNet must only learn how to combine

that information, not how to synthesize it from scratch.

5. Conclusion

We proposed a learning-based multi-view image-based

rendering framework that synthesizes novel views of a scene

by blending pixels from nearby images with weights and

volume densities inferred by a network comprising an MLP

and ray transformer. This approach combines the advan-

tages of IBR and NeRF to produce state-of-the-art rendering

quality on complex scenes without requiring precomputed

geometry (unlike many IBR methods), storing expensive

discretized volumes (unlike neural voxel representations), or

expensive training for each new scene (unlike NeRF).

Acknowledgements We thank Jianing Wei, Liangkai Zhang,

Adel Ahmadyan, and Bhav Ashok for helpful discussions.

4697



References

[1] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry

Ulyanov, and Victor Lempitsky. Neural point-based graphics.

arXiv preprint arXiv:1906.08240, 2019.

[2] Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai

Maron, and Yaron Lipman. Controlling neural level sets.

NeurIPS, 2019.

[3] Chris Buehler, Michael Bosse, Leonard McMillan, Steven

Gortler, and Michael Cohen. Unstructured lumigraph render-

ing. SIGGRAPH, 2001.

[4] Dan Casas, Christian Richardt, John Collomosse, Christian

Theobalt, and Adrian Hilton. 4d model flow: Precomputed

appearance alignment for real-time 4d video interpolation.

Computer Graphics Forum, 2015.

[5] Gaurav Chaurasia, Sylvain Duchene, Olga Sorkine-Hornung,

and George Drettakis. Depth synthesis and local warps for

plausible image-based navigation. ACM TOG, 2013.

[6] Shenchang Eric Chen and Lance Williams. View interpolation

for image synthesis. SIGGRAPH, 1993.

[7] Wenzheng Chen, Jun Gao, Huan Ling, Edward Smith, Jaakko

Lehtinen, Alec Jacobson, and Sanja Fidler. Learning to pre-

dict 3d objects with an interpolation-based differentiable ren-

derer. NeurIPS, 2019.

[8] Paul Debevec, Yizhou Yu, and George Borshukov. Effi-

cient view-dependent image-based rendering with projective

texture-mapping. Eurographics Workshop on Rendering Tech-

niques, 1998.

[9] Paul E Debevec, Camillo J Taylor, and Jitendra Malik. Mod-

eling and rendering architecture from photographs: A hybrid

geometry-and image-based approach. Computer graphics

and interactive techniques, 1996.

[10] Ruofei Du, Ming Chuang, Wayne Chang, Hugues Hoppe, and

Amitabh Varshney. Montage4d: Interactive seamless fusion

of multiview video textures. ACM SIGGRAPH Symposium

on Interactive 3D Graphics and Games, 2018.

[11] Martin Eisemann, Bert De Decker, Marcus Magnor, Philippe

Bekaert, Edilson De Aguiar, Naveed Ahmed, Christian

Theobalt, and Anita Sellent. Floating textures. Computer

graphics forum, 2008.

[12] John Flynn, Michael Broxton, Paul Debevec, Matthew Du-

Vall, Graham Fyffe, Ryan Overbeck, Noah Snavely, and

Richard Tucker. Deepview: View synthesis with learned

gradient descent. CVPR, 2019.

[13] John Flynn, Ivan Neulander, James Philbin, and Noah Snavely.

Deepstereo: Learning to predict new views from the world’s

imagery. CVPR, 2016.

[14] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and

Thomas Funkhouser. Local deep implicit functions for 3d

shape. CVPR, 2020.

[15] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and

Michael F. Cohen. The Lumigraph. SIGGRAPH, 1996.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. CVPR, 2016.

[17] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,

George Drettakis, and Gabriel Brostow. Deep blending for

free-viewpoint image-based rendering. SIGGRAPH Asia,

2018.

[18] Peter Hedman, Tobias Ritschel, George Drettakis, and Gabriel

Brostow. Scalable inside-out image-based rendering. ACM

TOG, 2016.

[19] Benno Heigl, Reinhard Koch, Marc Pollefeys, Joachim Den-

zler, and Luc Van Gool. Plenoptic modeling and rendering

from image sequences taken by a hand-held camera. 1999.

[20] Philipp Henzler, Niloy J. Mitra, and Tobias Ritschel. Learning

a neural 3d texture space from 2d exemplars. CVPR, 2020.

[21] Jingwei Huang, Justus Thies, Angela Dai, Abhijit Kundu,

Chiyu Jiang, Leonidas J Guibas, Matthias Nießner, and

Thomas Funkhouser. Adversarial texture optimization from

rgb-d scans. CVPR, 2020.

[22] Michal Jancosek and Tomás Pajdla. Multi-view reconstruc-

tion preserving weakly-supported surfaces. CVPR, 2011.

[23] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang,

Matthias Nießner, and Thomas Funkhouser. Local implicit

grid representations for 3d scenes. CVPR, 2020.

[24] Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker.

Sdfdiff: Differentiable rendering of signed distance fields for

3d shape optimization. CVPR, 2020.

[25] Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ra-

mamoorthi. Learning-based view synthesis for light field

cameras. ACM TOG, 2016.

[26] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning

a multi-view stereo machine. NeurIPS, 2017.

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. ICLR, 2015.

[28] Marc Levoy and Pat Hanrahan. Light field rendering. SIG-

GRAPH, 1996.

[29] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehti-

nen. Differentiable monte carlo ray tracing through edge

sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia),

37(6):222:1–222:11, 2018.

[30] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.

Neural scene flow fields for space-time view synthesis of

dynamic scenes. arXiv preprint arXiv:2011.13084, 2020.

[31] Zhengqi Li, Wenqi Xian, Abe Davis, and Noah Snavely.

Crowdsampling the plenoptic function. ECCV, 2020.

[32] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and

Christian Theobalt. Neural sparse voxel fields. NeurIPS,

2020.

[33] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft raster-

izer: A differentiable renderer for image-based 3d reasoning.

ICCV, 2019.

[34] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc

Pollefeys, and Zhaopeng Cui. Dist: Rendering deep implicit

signed distance function with differentiable sphere tracing.

CVPR, 2020.

[35] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel

Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural

volumes: Learning dynamic renderable volumes from images.

ACM TOG, 2019.

[36] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Saj-

jadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel

Duckworth. NeRF in the Wild: Neural Radiance Fields for

Unconstrained Photo Collections. CVPR, 2021.

4698



[37] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy networks:

Learning 3d reconstruction in function space. CVPR, 2019.

[38] Moustafa Mahmoud Meshry, Dan B Goldman, Sameh

Khamis, Hugues Hoppe, Rohit Kumar Pandey, Noah Snavely,

and Ricardo Martin Brualla. Neural rerendering in the wild.

CVPR, 2019.

[39] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,

Nima K. Kalantari, Ravi Ramamoorthi, Ren Ng, and Ab-

hishek Kar. Local light field fusion: Practical view synthesis

with prescriptive sampling guidelines. ACM TOG, 2019.

[40] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view synthe-

sis. ECCV, 2020.

[41] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and

Andreas Geiger. Differentiable volumetric rendering: Learn-

ing implicit 3d representations without 3d supervision. CVPR,

2020.

[42] Jeong Joon Park, Peter Florence, Julian Straub, Richard New-

combe, and Steven Lovegrove. Deepsdf: Learning continuous

signed distance functions for shape representation. CVPR,

2019.

[43] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien

Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo

Martin-Brualla. Deformable neural radiance fields. arXiv

preprint arXiv:2011.12948, 2020.

[44] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc

Pollefeys, and Andreas Geiger. Convolutional occupancy

networks. ECCV, 2020.

[45] Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang,

Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body:

Implicit neural representations with structured latent codes

for novel view synthesis of dynamic humans. CVPR, 2021.

[46] Eric Penner and Li Zhang. Soft 3D reconstruction for view

synthesis. SIGGRAPH Asia, 2017.

[47] Francesco Pittaluga, Sanjeev J Koppal, Sing Bing Kang, and

Sudipta N Sinha. Revealing scenes by inverting structure

from motion reconstructions. CVPR, 2019.

[48] Thomas Porter and Tom Duff. Compositing digital images.

Computer graphics and interactive techniques, 1984.

[49] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification and

segmentation. CVPR, 2017.

[50] Google Research. Google scanned objects. https://

app.ignitionrobotics.org/GoogleResearch/

fuel/collections/GoogleScannedObjects.

[51] Gernot Riegler and Vladlen Koltun. Free view synthesis.

ECCV, 2020.

[52] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-

ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned

implicit function for high-resolution clothed human digitiza-

tion. CVPR, 2019.

[53] Johannes L Schonberger and Jan-Michael Frahm. Structure-

from-motion revisited. CVPR, 2016.

[54] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas

Geiger. Graf: Generative radiance fields for 3d-aware image

synthesis. NeurIPS, 33, 2020.

[55] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas

Geiger. Graf: Generative radiance fields for 3d-aware image

synthesis. NeurIPS, 2020.

[56] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias

Nießner, Gordon Wetzstein, and Michael Zollhofer. Deep-

voxels: Learning persistent 3d feature embeddings. CVPR,

2019.

[57] Vincent Sitzmann, Michael Zollhoefer, and Gordon Wetzstein.

Scene representation networks: Continuous 3D-structure-

aware neural scene representations. NeurIPS, 2019.

[58] Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang, Matthew

Tancik, Ben Mildenhall, and Jonathan T. Barron. Nerv: Neu-

ral reflectance and visibility fields for relighting and view

synthesis. arXiv, 2020.

[59] Pratul P Srinivasan, Richard Tucker, Jonathan T Barron, Ravi

Ramamoorthi, Ren Ng, and Noah Snavely. Pushing the bound-

aries of view extrapolation with multiplane images. CVPR,

2019.

[60] Tiancheng Sun, Zexiang Xu, Xiuming Zhang, Sean Fanello,

Christoph Rhemann, Paul Debevec, Yun-Ta Tsai, Jonathan T.

Barron, and Ravi Ramamoorthi. Light stage super-resolution:

Continuous high-frequency relighting. SIGGRAPH Asia,

2020.

[61] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara

Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-

mamoorthi, Jonathan Barron, and Ren Ng. Fourier features let

networks learn high frequency functions in low dimensional

domains. NeurIPS, 2020.

[62] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-

ferred neural rendering: Image synthesis using neural textures.

ACM TOG, 2019.

[63] Alex Trevithick and Bo Yang. Grf: Learning a general radi-

ance field for 3d scene representation and rendering. arXiv

preprint arXiv:2010.04595, 2020.

[64] Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, and Jiten-

dra Malik. Multi-view supervision for single-view reconstruc-

tion via differentiable ray consistency. CVPR, 2017.

[65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. NeurIPS, 2017.

[66] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech,

and Ulrich Neumann. Disn: Deep implicit surface network for

high-quality single-view 3d reconstruction. NeurIPS, 2019.

[67] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan

Atzmon, Ronen Basri, and Yaron Lipman. Multiview neural

surface reconstruction with implicit lighting and material.

NeurIPS, 2020.

[68] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.

pixelNeRF: Neural radiance fields from one or few images,

2020.

[69] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,

and Oliver Wang. The unreasonable effectiveness of deep

features as a perceptual metric. CVPR, 2018.

[70] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,

and Noah Snavely. Stereo magnification: Learning view

synthesis using multiplane images. SIGGRAPH, 2018.

4699


