
RSG: A Simple but Effective Module for Learning Imbalanced Datasets

Jianfeng Wang1, Thomas Lukasiewicz1, Xiaolin Hu2, Jianfei Cai3, Zhenghua Xu4*

University of Oxford1 Tsinghua University2 Monash University3 Hebei University of Technology4

{jianfeng.wang,thomas.lukasiewicz}@cs.ox.ac.uk, xlhu@tsinghua.edu.cn, jianfei.cai@monash.edu

zhenghua.xu@hebut.edu.cn

Abstract

Imbalanced datasets widely exist in practice and are

a great challenge for training deep neural models with a

good generalization on infrequent classes. In this work, we

propose a new rare-class sample generator (RSG) to solve

this problem. RSG aims to generate some new samples

for rare classes during training, and it has in particular

the following advantages: (1) it is convenient to use and

highly versatile, because it can be easily integrated into

any kind of convolutional neural network, and it works well

when combined with different loss functions, and (2) it is

only used during the training phase, and therefore, no ad-

ditional burden is imposed on deep neural networks during

the testing phase. In extensive experimental evaluations, we

verify the effectiveness of RSG. Furthermore, by leveraging

RSG, we obtain competitive results on Imbalanced CIFAR

and new state-of-the-art results on Places-LT, ImageNet-

LT, and iNaturalist 2018. The source code is available at

https://github.com/Jianf-Wang/RSG.

1. Introduction

Computer vision research has made great progress in the

past few years, driven by the development of deep convo-

lutional neural networks (CNNs) [20, 27, 11, 15, 35, 33,

32, 5, 12, 28] as well as large-scale datasets of high qual-

ity [7, 22]. However, these large-scale datasets are usually

well-designed, and the number of instances in each class

is balanced artificially, which is inconsistent with the data

distributions in real-world scenaries. It is common that the

images of some categories are difficult to be collected, re-

sulting in a dataset with an imbalanced data distribution. In

general, imbalanced datasets can be classified into two cate-

gories in terms of data distributions: long-tailed imbalanced

distributions [6] and step imbalanced distributions [2], which

will both be the focus of this work.

Generating new samples for rare classes during training

is a good solution [8, 36, 38], which is regarded as a data

*Corresponding author.

RSG

Feature maps

New generated

feature maps of

samples

w1

w2

w1

w2

Sample in the

frequent class

Sample in

the rare class

New generated

sample for the

rare class

Conv Conv

Figure 1: RSG in a simple CNN. The part in the dotted box is

only used during training. RSG learns to generate new rare-class

samples, which are used to reshape the decision boundary and

enlarge the feature space of rare classes.

augmentation method. However, these methods have dif-

ferent drawbacks, which limit their performance. Firstly,

some frameworks [8, 38] were not trained in an end-to-end

manner, so that the gradients cannot be backpropagated from

the top to the bottom of CNNs. But it is well known that

deep models can usually benefit from end-to-end training.

Secondly, some methods [8, 38] utilized variation informa-

tion, such as different poses or lighting, among samples from

the same frequent class to generate new rare-class samples.

However, these methods did not introduce any mechanism to

ensure that the variation information obtained from frequent

classes is class-irrelevant. As a result, if the variation infor-

mation (which still contains the class-relevant information)

is directly combined with real rare-class samples to generate

new rare-class ones for training the classifier and reshaping

decision boundaries, the performance will be hurt due to

the aliasing of different class-relevant information. Finally,

Wang et al. [36] use noise vectors to encode the variation

information mentioned above. But using such noise vectors

for generation can possibly generate unstable or low-quality

samples, since noise vectors are too random to reflect the

true variations among real images.1

1Note that [38] has proposed to avoid sampling random vectors due to

their randomness, and [8] also has conducted experiments and verified that

using random vectors to generate new samples for training classifiers can

degrade the performance.

3784

To alleviate the above drawbacks, in this paper, we pro-

pose a simple but efficient fully parameterized generator,

called rare-class sample generator (RSG), which can be

trained end-to-end with any backbone. RSG directly uses the

variation information, which usually reflects different poses

or lighting, among the real samples from the same frequent

class to generate new samples rather than using random vec-

tors to encode such information, and therefore, RSG can

generate more reasonable and stable samples. Besides, RSG

introduces a new module that is designed to further filter out

the frequent-class-relevant information that possibly exists

in the variation information, solving the aliasing problem

mentioned above.

Figure 1 shows how it is integrated into a simple CNN for

imbalanced datasets. RSG only requires the feature maps of

samples from any specific layer, and it generates some new

samples during training to impact on rare classes in order to

adjust their decision boundaries and enlarging their feature

space. In the testing phase, RSG is removed, so that no

additional computational burden is imposed on the network.

Note that we only show a simple CNN in Fig. 1, but RSG

can be used in any network architecture, such as ResNet

[11], DenseNet [15], ResNeXt [35], and Inception [27].

2. Related Work

Recent existing solutions for dealing with imbalanced

datasets can be largely classified into approaches based on re-

sampling and reweighting, new loss functions, meta-learning,

utilizing unlabeled data, and sample generation.

Resampling techniques include oversampling the minor-

ity classes [25, 2, 3, 1, 19] and undersampling the majority

classes [2, 18, 10], which aims to balance the data distribu-

tion. Reweighting methods [13, 14, 34, 6, 21] also try to

balance the data distribution by assigning different weights

to frequent-class and rare-class samples. Some approaches

[39, 4] designed new loss functions by directly adding con-

straints to affect the decision boundaries for frequent and

rare classes. Some meta-learning-based methods [24, 17, 16]

were also proposed to solve the data imbalance problem.

Very recently, Yang and Xu [37] analyzed the value of im-

balanced labels, and utilized unlabeled data to boost class-

imbalanced learning via semi-supervised and self-supervised

strategies.

Previous sample generation methods are more relevant

to this work than other approaches. A hallucinator [36] was

designed to generate new samples for rare classes. It uses

real instances from rare classes and noise vectors to produce

new hallucinated instances for rare classes. A ∆-encoder

framework [8] was proposed for generating new samples.

It is first trained to reconstruct the pre-computed feature

vector of input images from frequent classes. Thereafter,

it is used to generate new samples by combining the real

rare-class samples, and the newly generated ones are further

used to train the classifier. A feature transfer learning (FTL)

framework [38] was recently proposed, which consists of

an auto-encoder, a feature filter, and fully-connected (FC)

layers. The auto-encoder is initially pre-trained on a large-

scale dataset for several epochs to converge to learn the latent

representations. Then, principal component analysis (PCA)

is leveraged to transfer the intra-class variance from frequent

classes to rare classes by generating some new rare-class

samples. A two-stage alternating training strategy was also

proposed to jointly optimize the encoder, the feature filter,

and FC layers.

3. Rare-Class Sample Generator (RSG)

The rare-class sample generator (RSG) is composed of

a center estimation module, a contrastive module, and a

vector transformation module (see Fig. 2). To optimize the

parameters of RSG, two loss functions are used, namely,

center estimation with sample contrastive (CESC) loss and

maximized vector (MV) loss.

RSG assumes that samples from a class follow a uni-

modal distribution or a multi-modal distribution [17, 38], and

thus there can be a center or a set of centers in each category

to fit the distribution. In this paper, we define the notion

of feature displacement, which indicates the displacement

of a sample to its corresponding center in a class, caused

by the same object with different conditions (e.g., angles,

poses, or light conditions) in input images. Therefore, under

ideal circumstances, feature displacement should not contain

class-relevant information.

Given a mini-batch of samples consisting of both frequent-

class and rare-class instances, RSG takes their feature maps

as input and forwards them to these modules. The center

estimation module aims to estimate a set of centers in each

class, which is used as “anchors” for obtaining the feature

displacement of each sample. The contrastive module is

used to ensure that the feature displacement does not contain

any frequent-class-relevant information during the sample

generation process. The vector transformation module calcu-

lates the feature displacement of each frequent-class sample

based on the estimated centers and uses it for generating new

samples for rare classes. Intuitively, generating some new

samples with such feature displacement that comes from

abundant classes for rare classes may alleviate the problem

caused by imbalanced datasets, as rare classes usually lack

input variations.

The center estimation module is formulated as:

γl = f(Alave(xl) + bl), (1)

where xl ∈RD×W×H is the feature map of an input sample,

and we assume that the channel dimension, width, and height

are D, W , and H , respectively. l is the class label of the

sample, ave(·) denotes global average pooling across width

3785

Center Estimation

Module

Vector

Transformation

Module

Contrastive

Module

Sample in the

frequent class

Sample in

the rare class
New generated sample

in the rare class

Center in the

frequent class

Center in the

rare class

Figure 2: A diagram of RSG with samples’ feature maps as input. The blue dashed line denotes a decision boundary.

and height, Al and bl are the parameters of this module

performing a linear transformation on the input, and f is

the softmax function that outputs a probability distribution

(γl) for assigning the sample to the closest center in its

corresponding class.

The center estimation module is designed to estimate a

set of centers instead of only one center for each class, since

the intra-class data distribution is unknown. If the intra-class

data distribution is a multi-modal distribution, using a set of

centers is better than using a single center. On the contrary, if

it is a uni-modal distribution, those centers can be very close

or overlapping, which is similar to using a single center.

The contrastive module is formulated as:

γ∗ = f(A∗ave(h(cat[x1, x2])) + b∗), (2)

where x1∈RD×W×H and x2∈RD×W×H are the feature

maps of any two input samples from a given mini-batch,

and cat(·) denotes the concatenation operation, which per-

forms along the channel dimension. h(·) is implemented by

stacking two 3×3 convolutional layers with 256 channels in-

terleaved with a ReLU activation layer throughout the paper.

A∗ and b∗ are the parameters of the linear layer, resulting in

a probability distribution γ∗ to show whether two samples

come from the same class.

The vector transformation module is responsible for gen-

erating new rare-class samples through combining the fea-

ture displacement from real frequent-class samples with real

rare-class samples. As Fig. 1 shows, an imbalanced dataset

causes a bias in the decision boundary, resulting in a smaller

feature space for rare classes than for frequent classes. Thus,

we propose to use the vector transformation module to gener-

ate new samples for rare classes to enlarge the feature space

and “push away” the decision boundaries.

To generate new samples, we first need to obtain the

feature displacement from frequent classes, which is im-

plemented by using the frequent-class samples and their

corresponding centers estimated by the center estimation

module:

xfd-freq = xl
freq − up(Cl

K), (3)

where xl
freq∈RD×W×H denotes a sample in a frequent

class l. We use Cl
i ∈RD to denote the i-th center in class l

with dimension D, and K is the index of the closest center

to xl
freq, i.e., K = arg max f(Alave(xl

freq) + bl). up(·) denotes

the upsampling operation implemented by repeating the val-

ues of Cl
i along the width and height, forming feature maps

of a center in the same size as the xl
freq. After we subtract

the corresponding center feature maps from xl
freq, most of

the class-relevant information is removed from xl
freq; thus,

we use xfd-freq to represent the feature displacement of the

frequent-class sample.

Then, the second step is to generate new samples for rare

classes by using xfd-freq and the real rare-class samples. Intu-

itively, xfd-freq can be added to the centers of rare classes, but

we directly add xfd-freq to the real rare-class samples for two

reasons: Firstly, the length of some xfd-freq may be smaller

than the original variance of the feature space in rare classes.

If we add xfd-freq to the centers, the new samples may have no

impact on decision boundaries. Secondly, due to the limited

sample size of rare classes, most rare-class samples can di-

rectly determine the decision boundaries, and adding xfd-freq

to rare-class samples has a more straightforward impact on

the decision boundaries.

So, the generation process of new rare-class samples is:

xl
′

new = T (xfd-freq) + xl
′

rare, (4)

where xl
′

rare∈RD×W×H denotes a sample in a rare class l′,
xl

′

new is a newly generated sample in that class, and T is a

linear transformation defined as T (z) = conv(z), where

conv denotes a single convolutional layer containing a set of

convolutional filters with the kernel size 3, the stride 1, and

the padding size 1, whose number is the same as the number

of channels of input feature maps.

The center estimation with sample contrastive loss

(LCESC) aims to update centers of each class and to opti-

mize the contrastive module as well as the center estimation

3786

Algorithm 1: Training Procedure of RSG

Input:

Batch size: s; feature maps of training data: {x(i)}si=1; epoch threshold: Tth; centers: C; training epochs: T;

transfer strength: β ∈ (0, 1]; center estimation module: CEθ; contrastive module: CMθ;

vector transformation module: V Tθ; weights of the backbone network: θ̃; frequent-class ratio: α ∈ (0, 1].

Training:

for j in range(0, T):

Compute LCESC with {x(i)}si=1. Compute gradient ∇CESC.

Update: ∇CESC → CEθ, ∇CESC → C.

if j <Tth:

Compute Lcls with {x(i)}si=1. Compute gradient ∇cls.

Update: ∇cls → θ̃, ∇CESC → CMθ.

else:

Generate new samples with α and β: {x
(i)
new}

snew

i=1. Concat: {x
(i)
aug}

s+snew

i=1 = [{x(i)}si=1, {x
(i)
new}

snew

i=1].

Compute LMV with C, {x
(i)
new}

snew

i=1, and {x(i)}si=1. Compute gradient ∇MV.

Compute Lcls with {x
(i)
aug}

s+snew

i=1 . Compute gradient ∇cls.

Update: ∇MV +∇cls → V Tθ, ∇cls → θ̃.

end if

end for

Direct Addition

The new overall

feature displacement

Vector Transformation Module

The new overall

feature displacement

Figure 3: The objective and principle of the vector transformation

module and MV loss. The triangles and circles in the figure have

the same meaning as those in Fig. 2.

module. Therefore, it is composed of two classical loss

terms, which can be written as:

LCESC =

〈

K−1
∑

i=0

γ
l
i

∑

d,j,k

||xl
(d,j,k) − up(Cl

i)(d,j,k)||
2

〉

s

−〈(ylogγ∗ + (1− y)log(1− γ
∗))〉 s

2

,

(5)

where d, j, and k denote the indices of the feature maps

along the channel, width, and height. γl
i is the probability

of the sample belonging to the i-th center obtained from

Eq. (2), K is the number of centers in each class, s is the

batch size. Considering a mini-batch with batch size s, s
2

sample pairs are formed by randomly picking samples from

the mini-batch during training for the contrastive module.

We denote by y ∈ {0, 1} the ground-truth showing whether

the samples in each input pair come from the same class.

〈·〉s and 〈·〉 s

2
denote that the first term and the second term of

LCESC are calculated over s instances and s
2 pairs on average,

respectively.

The maximized vector loss (LMV) optimizes the parameter

of the vector transformation module (namely, T) and en-

sures that newly generated samples can enlarge the feature

space of rare classes, where the basic idea is to maximize the

feature displacement of newly generated samples relative to

their centers (i.e., the new overall feature displacement in

Fig. 3). Here, we treat the feature displacement of a sam-

ple as a vector starting from a center to the sample (see

Fig. 3). To generate a new rare-class sample, one can di-

rectly add xfd-freq to a rare-class sample (Fig. 3, left), but the

direction of xfd-freq is usually uncertain and the new over-

all feature displacement typically does not always have the

largest length, because of the triangle inequality. Thus, we

design the MV loss to make the transformed vector co-linear

with the feature displacement of the rare-class sample in

the same direction, and leave the length of the transformed

vector unchanged (Fig. 3, right), to maximally impact the de-

cision boundary. For example, if the direct addition is used,

the newly generated samples may not impact the decision

boundary due to the limited overall length. But leveraging

the vector transformation module and MV loss ensures that

the newly generated samples are widely distributed in the

feature space of rare classes, because of the larger displace-

ment relative to the centers, and it improves the probability

that newly generated samples can appear around decision

boundaries in each batch during training.

Moreover, as for a given frequent-class sample, although

the frequent-class-relevant information has been largely re-

moved when the feature displacement of a sample is calcu-

lated via Eq. (3), we still use the contrastive module to ensure

that the feature displacement does not contain frequent-class-

relevant information in order to further alleviate the possible

class-relevant information aliasing problem when new rare-

class samples are generated. W.l.o.g., γ∗ is the probability

that the two input samples of the contrastive module do not

3787

belong to the same category, and the MV loss is:

LMV =

〈
∑

j,k

(|
T (xfd-freq)

(j,k) · x
(j,k)
fd-rare

||T (xfd-freq)(j,k)||2||x
(j,k)
fd-rare||2

− 1|)

〉

snew

+

〈
∑

j,k

(| ||T (xfd-freq)
(j,k)||2 − ||x

(j,k)
fd-freq||2|)

〉

snew

− 〈logγ∗〉snew
,

(6)

where j and k denote the indices of the feature maps along

the width and height, | · | takes the absolute value, and xfd-rare

represents the feature displacement obtained from a sample

and its closest center in a rare class via Eq. (3). The two

input samples of the contrastive module are T (xfd-freq) and

xl
freq, respectively. The first term of LMV is essentially to

minimize the cosine angle of T (xfd-freq) and xfd-rare in order

to make them co-linear in the same direction, the second term

is to keep the length of T (xfd-freq) unchanged compared with

xfd-freq, and the third term makes T (xfd-freq) and xl
freq not

belong to the same category, ensuring that T (xfd-freq) will

not have any frequent-class-relevant information. Given a

mini-batch of samples, 〈·〉snew
denotes that LMV is calculated

over newly generated samples on averages, where snew is the

number of newly generated samples.

Note that minimizing LMV may encourage to generate

some new samples with very large overall feature displace-

ment, which can hurt the performance on frequent classes.

Thus, the vector transformation module also receives the

gradients from the classification loss function Lcls, reaching

a trade-off between Lcls and the second term of LMV, to

generate more reasonable new samples for rare classes.

The training procedure and overall loss function of RSG

are summarized in Algorithm 1 and given as follows, re-

spectively:

Ltotal = Lcls + λ1LCESC + λ2LMV, (7)

where Lcls denotes any classification loss, such as softmax

with cross-entropy loss, focal loss [23], AM-Softmax [30,

31], and LDAM [4], and λ1 and λ2 denote coefficients. The

epoch threshold Tth is set to the index of epoch in which the

learning rate is decayed to 0.001 in this paper.

The workflow of RSG is as follows (see Fig. 2). Before the

epoch threshold Tth, given a mini-batch of samples, RSG

splits them into two parts according to a manually set con-

stant frequent-class ratio α = nfreq/ncls, where nfreq and ncls

denote the number of frequent classes and the total number

of classes, respectively. For example, for a training set of 10

classes and α = 0.3, the three classes with the largest num-

ber of samples are frequent classes, and the other classes are

rare classes. (Note that for simplicity, only a frequent-class

and a rare-class are plotted in Fig. 2.) Then, the data are

forwarded to the center estimation module to update centers

for each class and optimize the parameters of the center esti-

mation module. In addition, those data are also forwarded

to the contrastive module to optimize its parameters. After

the epoch threshold Tth, RSG starts to generate new sam-

ples and the parameters of the contrastive module are not

further updated. The feature displacement of each sample in

frequent classes is calculated by the vector transformation

module, which is then transformed with T and randomly

added to the data in rare classes with a manually set parame-

ter transfer strength β, resulting in newly generated samples.

The contrastive module propagates gradients to the T in the

vector transformation module to optimize T and filter out

frequent-class-relevant information. In general, the number

of samples in frequent classes is not smaller than that in rare

classes in a given mini-batch. We define the transfer strength

β as the number of samples in frequent classes involved

in calculating the feature displacement and generating new

samples for rare classes. Specifically, the number of newly

generated samples is snew = max{⌊β×sfreq/srare⌋, 1}×srare,

where sfreq and srare are the numbers of samples in frequent

and rare classes in a mini-batch, respectively, and ⌊·⌋ is the

floor function. Finally, the feature maps of newly gener-

ated samples are concatenated with the original input feature

maps along the batch dimension and forwarded to subse-

quent layers to calculate the loss and to optimize the whole

framework.

4. Experimental Evaluation

Datasets. The experimental evaluation focuses on the Ima-

balanced CIFAR, the iNaturalist 2018, the Places-LT, and

the ImageNet-LT datasets. Imbalanced CIFAR is based on

the original CIFAR dataset, which is constructed by reducing

the training samples per class, and the validation set is not

changed. An imbalance ratio ρ is defined as the ratio between

sample sizes of the most frequent class and the least frequent

class, i.e., ρ = Nmax/Nmin. We conducted experiments on

the long-tailed imbalance [6] and step imbalance [2] settings.

The imbalance factors (ρ) that we used in our experiments

are 50 and 100. The iNaturalist species classification dataset

[29] is a large-scale imbalanced dataset of 437,513 training

images classified into 8142 species in its 2018 version. The

official training and validation set has a long-tailed distribu-

tion and a balanced distribution, respectively. Places-LT has

365 categories, with the maximum of 4980 images per class

and the minimum of 5 images per class, while ImageNet-

LT has 1000 categories, with the maximum of 1280 images

per class and the minimum of 5 images per class. As for

the evaluation on these two datasets, the classes are further

categorized into three splits: many-shot (more than 100 sam-

ples), medium-shot (between 20 to 100), and few-shot (less

than 20) in order to better examine performance variations

across classes with different numbers of samples seen during

3788

training. We follow the experimental setting of these datasets

in previous works [4, 19] for evaluation.

Implementation details. The training details on the four

datasets are summarized as follows:

• Imbalanced CIFAR: We followed the basic data augmen-

tation method [11] for training: 4 pixels are padded, and a

32× 32 patch is randomly cropped from the image or its

horizontal flip. The framework was trained with a batch

size of 128 for 200 epochs. The learning rate was ini-

tially set to 0.1, and then it was decayed by 0.01 at the

160-th epoch and again at the 180-th epoch. The network

was optimized by using stochastic gradient descend with a

momentum of 0.9.

• iNaturalist 2018: We followed standard practice and per-

formed data augmentation with random-size cropping [27]

to 224 × 224 from images or their horizontal flip. The

network was trained from scratch for 90 epochs with a

batch size of 256. The learning rate was set to 0.1 initially,

and then it was decayed by 0.1 at the 50-th epoch, the

70-th epoch, and the 85-th epoch, respectively. Besides,

for a fair comparison, we followed Kang et al. [19] and

also trained the model for the 2× schedular (180 epochs).

In our 2× schedular experiment, the learning rate was de-

cayed by 0.1 at the 100-th epoch, the 140-th epoch, and

the 170-th epoch, respectively. During validation, images

were center-cropped to 224× 224 without further augmen-

tation.

• Places-LT: We followed previous work [24] to perform

the data augmentation and to fine-tune ResNet-152, which

is pre-trained on the full ImageNet-2012 dataset. The

network was trained with a batch size of 256 for 30 epochs.

The initial learning rate was set to 0.01, and it was decayed

by 0.1 at every 10 epoch, and the training was stopped

after 30 epochs.

• ImageNet-LT: We followed previous work [19] to use

ResNeXt-50-32x4d, which was trained with a batch size

of 256 for 100 epochs. The initial learning rate was set

to 0.1, and it was decayed by 0.1 at the 60-th epoch, the

80-th epoch, and the 95-th epoch, respectively.

Ablation studies. We performed ablation studies on Im-

balanced CIFAR with ρ = 50. The mean error rates that are

taken from three independent runs are reported. We com-

prehensively searched the hyperparameters of RSG and ex-

plored which level of feature is the most suitable for RSG to

generate new samples by conducting experiments on ResNet-

32 [11] with LDAM-DRW [4], where “DRW” denotes a de-

ferred re-weighting training strategy proposed by Cao et al.

[4]. Based on our exploration, in the following experiments,

CIFAR-10
Long-Tailed Step

w/o RSG w/ RSG w/o RSG w/ RSG

ERM 25.19 20.25 28.88 26.07

Focal Loss [23] 23.28 21.58 28.70 26.01

M-DRW [30, 4] 20.44 17.72 21.05 20.09

LDAM-DRW [4] 18.97 17.20 18.67 17.90

CIFAR-100
Long-Tailed Step

w/o RSG w/ RSG w/o RSG w/ RSG

ERM 56.15 54.44 59.32 56.82

Focal Loss [23] 55.68 54.85 58.50 55.93

M-DRW [30, 4] 56.06 55.30 56.26 54.60

LDAM-DRW [4] 53.38 51.50 50.97 49.43

Table 1: Top-1 error rates of ResNet-32 with RSG for different loss

functions on Imbalanced CIFAR for ρ = 50.

CIFAR-10
Long-Tailed Step

w/o RSG w/ RSG w/o RSG w/ RSG

ResNet-32 18.97 17.20 18.67 17.90

ResNet-56 18.01 16.83 18.52 17.20

ResNet-110 17.70 16.61 17.96 16.73

DenseNet-40 17.46 16.21 17.40 16.12

ResNeXt-29, 8×64d 16.10 15.26 16.82 15.99

CIFAR-100
Long-Tailed Step

w/o RSG w/ RSG w/o RSG w/ RSG

ResNet-32 53.38 51.50 50.97 49.43

ResNet-56 51.63 50.60 49.22 48.53

ResNet-110 50.64 49.83 48.65 47.90

DenseNet-40 49.51 48.75 48.30 47.13

ResNeXt-29, 8×64d 49.62 48.70 50.68 47.16

Table 2: Top-1 error rates of different network architectures com-

bined with LDAM-DRW [4] on Imbalanced CIFAR for ρ = 50.

we set the number of centers to 15, the frequent-class ratio

to 0.2 and 0.5 for long-tailed and step imbalanced distribu-

tions, the transfer strength to 1.0 and 0.01 for long-tailed

and step imbalanced distributions, and λ1 and λ2 to 0.1 and

0.01, respectively. The search process can be found in the

supplementary material. Note that RSG was initially used

before the second-to-last down-sampling layer.

Firstly, we fixed the network architecture to ResNet-32

[11] and tested RSG relative to different Lcls. By Table 1, the

deep model equipped with RSG consistently performs better

than the one without RSG when combined with different

loss functions. RSG significantly improves the performance

when the model is combined with standard softmax with

cross-entropy loss (denoted ERM, i.e., empirical risk min-

imization). This is reasonable, as standard softmax does

not have any mechanism against imbalanced datasets. As

for focal loss, AM-softmax, and LDAM, although they are

well-designed to tackle imbalanced datasets, RSG can still

further improve the performance.

Secondly, we set Lcls to LDAM with DRW [4] (i.e.,

LDAM-DRW) and evaluated (mainly five) different network

architectures combined with RSG on Imbalanced CIFAR,

namely, ResNet-32, ResNet-56, ResNet-110, DenseNet-40,

3789

Long-Tailed Step

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

MV Loss w/o 1st Term 18.03 52.15 18.58 50.34

MV Loss w/o 2nd Term 18.07 52.33 18.36 50.19

MV Loss w/o 3rd Term 17.67 52.12 18.23 49.84

Adding to Rare-class Centers 18.91 52.79 18.47 50.67

Direct Addition 18.87 52.48 18.33 49.99

Vector Transformation Module 17.20 51.50 17.90 49.43

Table 3: Ablation study on MV loss and the vector transformation

module. Top-1 error rates of ResNet-32 combined with RSG and

LDAM-DRW [4] on Imbalanced CIFAR for ρ = 50 are reported.

Long-Tailed Step

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

∆-Encoder [8] 23.76 54.91 27.70 57.85

Imaginary [36] 23.99 55.08 28.23 58.46

FTL [38] 23.56 55.24 27.83 58.03

ERM-RSG (ours) 20.25 54.44 26.07 56.82

Table 4: Comparison with other sample generation methods on

Imbalanced CIFAR (ρ = 50). All of them are based on ResNet-32

combined with ERM for a fair comparison.

and ResNeXt-29 (8×64d). Note that the used networks were

built according to the experiments on CIFAR in their orig-

inal papers [11, 35, 15]. As Table 2 shows, when RSG is

integrated into the networks, all the models are consistently

improved.

Thirdly, we did a comprehensive ablation study on MV

loss and the vector transformation module, and we obtain the

following conclusions based on Table 3: (1) Every subterm

of MV loss is important and useful, since once we remove

any subterm of it, an increase can be observed with regard

to the error rate. (2) Adding the feature displacement to

the centers of rare classes leads to an increase in terms of

the error rate. This fact verifies what we have mentioned

in Section 3, i.e., adding the feature displacement to real

rare-class samples is a better choice than adding it to the

centers of rare classes. (3) Using the vector transformation

module with MV loss performs better than directly adding

the feature displacement to the samples in rare classes, which

thus verifies their effectiveness.

Moreover, RSG is compared with previous sample genera-

tion methods [8, 36, 38]. As Table 4 shows, RSG has outper-

formed previous methods with different margins, showing

that RSG can solve the drawbacks in previous generation

methods and improve the performance.

Finally, we leveraged RSG before different pooling layers

of ResNet-32 to explore which level of feature is the most

suitable for generating new samples. As Table 5 shows, RSG

achieves the best result when it was used before the second-

to-last down-sampling layer. Therefore, in the remaining

experiments, RSG was still used before the second-to-last

down-sampling layer.

Comparison with state of the art. For each of the fol-

lowing experiments, we report mean error rates or mean

Long-Tailed Step

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

1st down-sampling 18.13 53.22 18.66 50.81

2nd down-sampling 17.20 51.50 17.90 49.43

3rd down-sampling (GAP) 17.68 52.14 18.05 50.38

Table 5: Ablation study (top-1 error rates) with regard to the differ-

ent layers, where RSG was used on Imbalanced CIFAR (ρ = 50).

RSG was used before the three down-sampling layers in ResNet-

32. ResNet-32 combined with LDAM-DRW was used, and GAP

denotes global average pooling.

accuracies, which are taken from three independent runs. Ta-

ble 6 shows the results on Imbalanced CIFAR with ρ∈{50,

100}. We first compare our LDAM-DRW-RSG with LDAM-

DRW, as this comparison directly shows the improvement

brought by RSG. After combining LDAM-DRW with RSG,

we obtain a remarkable improvement for both long-tailed

and step imbalanced distributions, which shows the power

of RSG for handling imbalanced datasets. As a result, with

the help of RSG, LDAM-DRW-RSG achieves superior re-

sults on Imbalanced CIFAR when compared with previous

methods.

Table 7 shows the top-1 error rate of different methods

using ResNet-50 [11] as the backbone on iNaturalist 2018,

and we followed Kang et al. [19] to conduct experiments

in two training settings, namely, the 1× schedular and the

2× schedular. In the 1× schedular experiment, we compare

LDAM-DRW-RSG and LDAM-DRS-RSG with previous

LDAM-DRW and LDAM-DRS, separately. Here, “DRS”

denotes a deferred class-balanced resampling strategy pro-

posed by Cao et al. [4]. Note that we cannot reproduce

the result on iNaturalist 2018 reported in the original paper

(32.0%) [4] by using LDAM-DRW. So, we report our repro-

duced results of LDAM-DRW and LDAM-DRS [4] based

on their publicly available code. The results in Table 7 show

that we can obtain better results by leveraging the proposed

generator, which directly demonstrates the effectiveness of

RSG. Moreover, as for the 2× schedular setting, the top-1

error rate of LDAM-DRS-RSG is further decreased. Thus,

it can be seen that RSG helps the model achieve new state-

of-the-art results in both training schedular settings, which

demonstrates that RSG is capable of dealing with imbalanced

datasets effectively.

Table 8 shows the top-1 accuracy on Places-LT. The re-

sults show that the performance can be further improved

when RSG is combined with LDAM-DRS, showing that

RSG is useful. Moreover, when compared with the recent

two popular methods, namely, τ -normalized [19] and BBN

[1], RSG can improve the performance of the model on

medium-shot and few-shot classes with less accuracy loss

on many-shot classes, resulting in a higher overall accuracy

and a new state-of-the-art result.

Table 9 shows the top-1 accuracy on ImageNet-LT.

3790

Dataset Imbalanced CIFAR-10 Imbalanced CIFAR-100

Imbalance Type Long-Tailed Step Long-Tailed Step

Imbalance Ratio (ρ) 100 50 100 50 100 50 100 50

ERM 29.64 25.19 36.70 28.88 61.68 56.15 61.43 59.32

Focal loss [23] 29.62 23.28 36.09 28.70 61.59 55.68 61.65 58.50

CB Focal [6] 25.43 20.73 39.73 39.65 63.98 54.83 80.24 85.10

CB RW [6] 27.63 21.95 38.06 30.38 66.01 57.54 78.69 69.63

M-DRW [4] 24.94 20.44 27.67 21.05 59.49 56.06 58.91 56.26

BBN [1] 20.18 17.82 22.34 18.33 57.44 52.98 54.14 50.49

LDAM-DRW [4] 22.97 18.97 23.08 18.67 57.96 53.38 54.64 50.97

LDAM-DRW-SSP [37] 22.17 17.87 22.95 18.38 56.57 52.89 54.28 50.47

LDAM-DRW-RSG (ours) 20.45 17.20 21.65 17.90 55.45 51.50 53.00 49.43

Table 6: Top-1 error rates of ResNet-32 on Imbalanced CIFAR.

Training Schedular Method Error Rate

1× schedular

ERM 42.86

CB Focal Loss [6] 38.88

ERM-DRW [4] 36.27

ERM-DRS [4] 36.44

BBN [1] 33.71

τ -normalized [19] 34.40

LDAM-DRW [4] 34.00

LDAM-DRS [4] 32.73

LDAM-DRW-SSP [37] 33.70

LDAM-DRW-RSG (ours) 33.22

LDAM-DRS-RSG (ours) 32.10

2× schedular

BBN [1] 30.38

τ -normalized [19] 30.70

cRT [19] 32.40

LWS [19] 30.50

LDAM-DRS-RSG (ours) 29.74

Table 7: Top-1 error rates of ResNet-50 on iNaturalist 2018.

When compared with LDAM-DRW, LDAM-DRW-RSG can

achieve a higher accuracy, verifying that RSG is able to al-

leviate the problem caused by imbalanced datasets. RSG

can enhance the model and greatly improve its generality on

medium-shot and few-shot classes. In addition, by equip-

ping RSG, we can also obtain a new state-of-the-art result

on ImageNet-LT.

Since all hyperparameters of RSG were fixed after the

hyperparameter searching process, we can conclude that the

hyperparameters and RSG are quite robust to new datasets

(i.e., Places-LT, ImageNet-LT, and iNaturalist 2018). If hy-

perparameters are further tuned on the new datasets, even

better results might be obtained.

5. Summary and Outlook

We have introduced a rare-class sample generator (RSG),

which is a general building block to mitigate the issue of

training on imbalanced datasets. RSG is simple yet effective,

since it is an architecture-agnostic and loss-agnostic plug-

in module, and it does not bring any additional burdens

Method Many Medium Few All

Lifted Loss [26] 41.1 35.4 24.0 35.2

Focal Loss [23] 41.1 34.8 22.4 34.6

Range Loss [39] 41.1 35.4 23.2 35.1

FSLwF [9] 43.9 29.9 29.5 34.9

BBN [1] 42.5 40.3 30.6 38.7

OLTR [24] 44.7 37.0 25.3 35.9

τ -normalized [19] 37.8 40.7 31.8 37.9

LDAM-DRS [4] 43.3 38.3 30.7 38.6

LDAM-DRS-RSG (ours) 41.9 41.4 32.0 39.3

Table 8: Top-1 accuracy of ResNet-152 on Places-LT.

Method Many Medium Few All

Focal Loss [23] 63.3 37.4 7.7 43.2

OLTR [24] 52.1 39.7 20.3 41.2

Joint [19] 65.9 37.5 7.7 44.4

NCM [19] 56.6 45.3 28.1 47.3

cRT [19] 61.8 46.2 27.4 49.6

τ -normalized [19] 59.1 46.9 30.7 49.4

LWS [19] 60.2 47.2 30.3 49.9

LDAM-DRS [4] 63.7 47.6 30.0 51.4

LDAM-DRS-RSG (ours) 63.2 48.2 32.3 51.8

Table 9: Top-1 accuracy of ResNeXt-50 on ImageNet-LT.

to the backbone network during the inference phase. In

extensive experiments, we have verified the effectiveness of

RSG, which has achieved excellent results on four public

benchmarks. Since RSG is flexible and orthogonal to most

previous methods, future research can focus on improving

the RSG module directly by designing more elegant ways to

generate higher-quality rare-class samples.

Acknowledgments. This work was supported by the National

Natural Science Foundation of China under the grant 61906063, by

the Natural Science Foundation of Tianjin City, China, under the

grant 19JCQNJC00400, and by the “100 Talents Plan” of Hebei

Province, China, under the grant E2019050017. This work was

also supported by the Alan Turing Institute under the EPSRC grant

EP/N510129/1 and by the AXA Research Fund. We also acknowl-

edge the use of the Tier 2 facility JADE (EP/P020275/1) and GPU

computing support by Scan Computers International Ltd.

3791

References

[1] B. Zhou, C. Quan, W. Wei, and Z. Chen. BBN: Bilateral-

branch network with cumulative learning for long-tailed vi-

sual recognition. In Computer Vision and Pattern Recognition,

pages 1–8, 2020. 2, 7, 8

[2] M. Buda, A. Maki, and M. Mazurowski. A systematic study of

the class imbalance problem in convolutional neural networks.

Neural Networks, 106:249–259, 2018. 1, 2, 5

[3] J. Byrd and Z. Lipton. What is the effect of importance

weighting in deep learning? In International Conference on

Machine Learning, pages 872–881, 2019. 2

[4] K. Cao, C. Wei, A. Gaidon, N. Arechiga, and T. Ma. Learning

imbalanced datasets with label-distribution-aware margin loss.

Advances in Neural Information Processing Systems, 2019. 2,

5, 6, 7, 8

[5] S. Chen, J. Wang, Y. Chen, Z. Shi, X. Geng, and Y Rui.

Label distribution learning on auxiliary label space graphs

for facial expression recognition. In Computer Vision and

Pattern Recognition, 2020. 1

[6] Y. Cui, M. Jia, T. Lin, Y. Song, and S. Belongie. Class-

balanced loss based on effective number of samples. In Com-

puter Vision and Pattern Recognition, pages 9268–9277, 2019.

1, 2, 5, 8

[7] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li. Ima-

geNet: A large-scale hierarchical image database. In Com-

puter Vision and Pattern Recognition, pages 248–255, 2009.

1

[8] E. Schwartz, L. Karlinsky, J. Shtok, S. Harary, M. Marder,

A. Kumar, R. Feris, R. Giryes, A. Bronstein. Delta-encoder:

an effective sample synthesis method for few-shot object

recognition. In Advances in Neural Information Processing

Systems, pages 2845–2855, 2018. 1, 2, 7

[9] S. Gidaris and N. Komodakis. Dynamic few-shot visual

learning without forgetting. In Computer Vision and Pattern

Recognition, pages 4367–4375, 2018. 8

[10] H. He and E. Garcia. Learning from imbalanced data.

IEEE Transactions on Knowledge and Data Engineering,

21(9):1263–1284, 2009. 2

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Computer Vision and Pattern

Recognition, pages 770–778, 2016. 1, 2, 6, 7

[12] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks.

In Computer Vision and Pattern Recognition, pages 7132–

7141, 2018. 1

[13] C. Huang, Y. Li, C. Chen, and X. Tang. Learning deep

representation for imbalanced classification. In Computer

Vision and Pattern Recognition, pages 5375–5384, 2016. 2

[14] C. Huang, Y. Li, C. Chen, and X. Tang. Deep imbalanced

learning for face recognition and attribute prediction. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

2019. 2

[15] G. Huang, Z. Liu, L. Maaten, and K. Weinberger. Densely

connected convolutional networks. In Computer Vision and

Pattern Recognition, pages 4700–4708, 2017. 1, 2, 7

[16] J. Shu, Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and D. Meng.

Meta-Weight-Net: Learning an explicit mapping for sample

weighting. In Advances in Neural Information Processing

Systems, pages 1917–1928, 2019. 2

[17] J. Snell, K. Swersky, and R. Zemel. Prototypical networks

for few-shot learning. In Advances in Neural Information

Processing Systems, pages 4077–4087, 2017. 2

[18] N. Japkowicz and S. Stephen. The class imbalance problem:

A systematic study. Intelligent Data Analysis, 6(5):429–449,

2002. 2

[19] B. Kang, S. Xie, M. Rohrbach, Z. Yan, A. Gordo, J. Feng, and

Y. Kalantidis. Decoupling representation and classifier for

long-tailed recognition. Internation Conference on Learning

Representations, 2020. 2, 6, 7, 8

[20] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classifi-

cation with deep convolutional neural networks. In Advances

in Neural Information Processing Systems, pages 1097–1105,

2012. 1

[21] B. Li, Y. Liu, and X. Wang. Gradient harmonized single-

stage detector. In AAAI Conference on Artificial Intelligence,

volume 33, pages 8577–8584, 2019. 2

[22] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dollár, and C. Zitnick. Microsoft COCO: Common objects

in context. In European Conference on Computer Vision,

pages 740–755, 2014. 1

[23] Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss

for dense object detection. In International Conference on

Computer Vision, pages 2980–2988, 2017. 5, 6, 8

[24] Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. Yu. Large-

scale long-tailed recognition in an open world. In Computer

Vision and Pattern Recognition, pages 2537–2546, 2019. 2,

6, 8

[25] L. Shen, Z. Lin, and Q. Huang. Relay backpropagation for

effective learning of deep convolutional neural networks. In

European Conference on Computer Vision, pages 467–482,

2016. 2

[26] H. Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep metric

learning via lifted structured feature embedding. In Computer

Vision and Pattern Recognition, pages 4004–4012, 2016. 8

[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper

with convolutions. In Computer Vision and Pattern Recogni-

tion, pages 1–9, 2015. 1, 2, 6

[28] M. Tan and Q. Le. EfficientNet: Rethinking model scaling for

convolutional neural networks. In International Conference

on Machine Learning, 2019. 1

[29] G. Van, O. Mac, Y. Song, Y. Cui, C. Sun, A. Shepard, H.

Adam, P. Perona, and S. Belongie. The iNaturalist species

classification and detection dataset. In Computer Vision and

Pattern Recognition, pages 8769–8778, 2018. 5

[30] F. Wang, J. Cheng, W. Liu, and H. Liu. Additive margin

softmax for face verification. IEEE Signal Processing Letters,

25(7):926–930, 2018. 5, 6

[31] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li,

and W. Liu. CosFace: Large margin cosine loss for deep face

recognition. In Computer Vision and Pattern Recognition,

pages 5265–5274, 2018. 5

[32] J. Wang and X. Hu. Gated recurrent convolution neural net-

work for OCR. In Advances in Neural Information Processing

Systems, pages 334–343, 2017. 1

3792

[33] J. Wang and X. Hu. Convolutional neural networks with gated

recurrent connections. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2021. 1

[34] Y. Wang, D. Ramanan, and M. Hebert. Learning to model the

tail. In Advances in Neural Information Processing Systems,

pages 7029–7039, 2017. 2

[35] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggre-

gated residual transformations for deep neural networks. In

Computer Vision and Pattern Recognition, pages 1492–1500,

2017. 1, 2, 7

[36] Y. Wang, R. Girshick, M. Hebert, and B. Harihara. Low-

shot learning from imaginary data. In Computer Vision and

Pattern Recognition, pages 7278–7286, 2018. 1, 2, 7

[37] Y. Yang, and Z. Xu. Rethinking the value of labels for im-

proving class-imbalanced learning. In Advances in Neural

Information Processing Systems, 2020. 2, 8

[38] X. Yin, X. Yu, K. Sohn, X. Liu, and M. Chandraker. Fea-

ture transfer learning for deep face recognition with under-

represented data. Computer Vision and Pattern Recognition,

2019. 1, 2, 7

[39] X. Zhang, Z. Fang, Y. Wen, Z. Li, and Y. Qiao. Range loss

for deep face recognition with long-tailed training data. In

International Conference on Computer Vision, pages 5409–

5418, 2017. 2, 8

3793

