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Abstract

Extensive research in neural style transfer methods has

shown that the correlation between features extracted by a

pre-trained VGG network has a remarkable ability to cap-

ture the visual style of an image. Surprisingly, however, this

stylization quality is not robust and often degrades signif-

icantly when applied to features from more advanced and

lightweight networks, such as those in the ResNet family.

By performing extensive experiments with different network

architectures, we find that residual connections, which rep-

resent the main architectural difference between VGG and

ResNet, produce feature maps of small entropy, which are not

suitable for style transfer. To improve the robustness of the

ResNet architecture, we then propose a simple yet effective

solution based on a softmax transformation of the feature

activations that enhances their entropy. Experimental results

demonstrate that this small magic can greatly improve the

quality of stylization results, even for networks with random

weights. This suggests that the architecture used for feature

extraction is more important than the use of learned weights

for the task of style transfer.

1. Introduction

Image style transfer aims to map a content image into

the style of a different reference image. It has received

substantial attention, particularly with the introduction of

neural style transfer algorithms based on deep networks. A

consistent observation from this work [43, 24, 30, 23, 25,

19, 9, 2, 8] is that the correlation between the activations

of a pre-trained VGG [33] network has remarkable ability

to capture the visual style of an image. It is, however, puz-

zling that when the VGG is replaced by architectures of

better performance in other tasks, e.g. classification, such

as the ResNet [14, 44, 42], InceptionNet [35, 34, 36] or

DenseNet [16], stylization performance degrades signifi-

cantly. This is even more puzzling because, when imple-

mented with the VGG, style transfer is very robust. For

example, a VGG model with random weights performs com-

parably to a pre-trained model [14, 3].

p-VGGContent

Style p-ResNet

r-VGG

r-ResNet

On pre-trained models On random models

Figure 1: Neural style transfer by different architectures,

using the methods of [7, 27] (‘p-’, ‘r-’ denotes pre-trained

and randomly initialization. Please zoom in the picture for a

detailed comparison).

Figure 1 shows an example of style transfer using differ-

ent models. The VGG transfers style (color, texture, strokes)

more faithfully than the ResNet, for both pre-trained and

random weights. While these observations have spurred dis-

cussion in the literature, about why style transfer is much

more effective for the VGG [27, 12, 4], there are still no

clear answers. In particular, there has not been a compre-

hensive study of (i) what architectural differences between

the VGG and other networks cause this striking performance

difference, and (ii) what remedies could make non-VGG

networks perform as well as the VGG. One explanation is

that VGG features are more robust than others. To validate

this conjecture, [27, 4] trained a ResNet with adversarial

examples [10] to improve feature robustness. They found

this can significantly improve stylization quality. However,

the fact that the VGG with random weights can generate

comparable results [13, 3] suggests that robustness is not a

property of the training data, but inherent to the architecture.

In this work, we investigate this hypothesis by comparing

stylizations produced with activations from different archi-

tectures. We seek the architectural properties that explain the

differences between these activations, and how these could
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explain the discrepancy between stylization results. Taking

the ResNet as a non-VGG architecture representative, we

study the statistics of both activations and the derived Gram

matrices, usually used to encode image style. A striking

observation is that, when normalized into a probability dis-

tribution, the ResNet activations of deeper layers have large

peaks and small entropy. This shows that they are dominated

by a few feature channels and have nearly deterministic cor-

relation patterns. It suggests that the optimization used to

synthesize the stylized images is biased into replicating a

few dominant patterns of the style image and ignoring the

majority. This explains why the ResNet is unable to transfer

high-level style patterns, such as strokes, that are usually

captured in deeper layers of the network. In contrast, VGG

activations are approximately uniform for all layers, cap-

turing a much larger diversity of style patterns. We then

analyze the architectural properties that could lead to very

peaky activations, and conclude that they can be, in signifi-

cant part, explained by the existence of residual or shortcut

connections between layers. The fact that these connections

are prevalent in most modern architectures explains why the

robustness problem is so widespread. In summary, residual

connections are not good for style transfer.

We then investigate whether it is possible to solve the ro-

bustness problem without changing the network architecture,

and in a manner that is compatible with the large diversity of

stylization losses in the literature. Taking inspiration from

knowledge distillation, we propose to smooth the activations

used in the computation of these loss functions. This can be

implemented by adding a simple softmax transformation to

existing losses. We denote the novel version of stylization

as Stylization With Activation smoothinG (SWAG). Experi-

ments show that SWAG is an important contribution at three

levels. First, it improves the performance of several popu-

lar stylization algorithms for several popular architectures,

including ResNet, Inception, and WideResNet. Second, for

these architectures, it improves the performance of random

networks to the level of pre-trained ones. Third, for pre-

trained networks, non-VGG models with SWAG can even

outperform the VGG with standard stylization.

2. Related Work

Stylization. For an extensive review of stylization meth-

ods please see [21]. Starting with [7], it has been shown

that a pre-trained image classifier can be used as a fea-

ture extractor to drive style transfer [7, 22, 41]. Style

transfer algorithms either implement an iterative optimiza-

tion [7, 3, 13], or directly learn a feed-forward genera-

tor network [22, 40, 37]. Unlike all these papers, we

do not propose a new stylization algorithm. Instead, we

note that all previous algorithms use VGG pre-trained mod-

els [43, 30, 23, 25, 19, 41, 2, 8, 26]. In fact, even recent

GAN-based proposals [46] use a VGG encoder. We seek to

make these algorithms applicable to a broader set of network

architectures. To the best of our knowledge, no previous

work discusses the architecture robustness of style transfer.

Random Networks. Our work is partly motivated by

some theoretical and practical studies on random weights [17,

18, 29, 28, 40, 39, 5]. For example, Gaier et al. [5] pro-

pose the weight agnostic neural network, by fixing randomly

initialized weights and searching optimal network architec-

tures, which is shown to achieve good results in several

reinforcement and supervised learning tasks. [38] studies

several low-level vision problems and uses random weights

to show that the structure of a generator network is sufficient

to capture image statistics. [1] compares the performance of

many saliency algorithms based on random and pre-trained

weights. He et al. [13] used a random weight network for

texture synthesis and neural style transfer. However, their ap-

proach does not use genuinely random weights, as discussed

in Section 3.2. In contrast, all random models and results

presented in this work are based on purely random weights.

3. Robust Stylization

3.1. Preliminaries

Consider a color image x0 ∈ R
W0×H0×3, where W0

and H0 are the image width and height. A convolutional

neural network (CNN) maps x0 into a set of feature maps

{F l(x0)}
L
l=1, where F l : RW0×H0×3 → R

Wl×Hl×Dl is the

mapping from the image to the tensor of activations of the lth

layer, which has Dl channels of spatial dimensions Wl ×Hl.

The activation tensor F l(x0) can also be reshaped into a ma-

trix F l(x0) ∈ R
Dl×Ml , where Ml = WlHl. Image style is

frequently assumed to be encoded by a set of Gram matrices

{Gl}Ll=1 where Gl ∈ R
Dl×Dl is derived from the activa-

tions F l of layer l by computing the correlation between

activation channels, i.e.

[Gl(F l)]ij =
∑

k

F l
ikF

l
jk. (1)

To simplify the discussion, we focus on the Gram matrix

loss [7, 24, 37, 3, 13]. However, in the experiment section,

we show that all results hold for other losses. We consider the

image stylization framework of [7], where given a content

image xc
0 and a style image xs

0, an image x∗ that presents the

content of xc
0 under the style of xs

0 is synthesized by solving

x
∗ = argmin

x∈RW0×H0×3

αLcontent(x
c
0,x) + βLstyle(x

s
0,x). (2)

with

Lcontent(x
c
0,x) =

1

2
||F l(x)− F l(xc

0)||
2
2, (3)

Lstyle(x
s
0,x) =

L
∑

l=1

wl

4D2
l M

2
l

||Gl(F l(x))−Gl(F l(xs
0))||

2
2,

(4)
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where wl ∈ {0, 1} are weighting factors of the contribution

of each layer to the total loss. wl = 1 represents that lth is

used otherwise ignored. l and wl are pre-specified in (3) and

(4). x is usually initialized to x
c
0.

3.2. Importance of residual connections

We present results for both pre-trained models and net-

works initialized with random weights. Prefixes ‘r-’ and ‘p-’

are used to indicate if a model is initialized randomly or pre-

trained on ImageNet, respectively. We follow the setup of [7]

for the VGG model, simply replacing their pre-trained mod-

els with random networks in some experiments. For ResNet,

we follow the setting of [27] but, in addition to the outputs of

layers conv2 3, conv3 4, conv4 6, conv5 3, we also use that

of layer conv1 2 in (4). This is for fair comparison to the

VGG implementation of [7], which uses five layers, each se-

lected from one of five layer-groups. VGG19 and ResNet-50

are used as VGG and ResNet models, because the former is

the network of choice for stylization papers and the latter one

of the most popular deep learning models. Random weights

follow default PyTorch settings1. Note that this is unlike the

random network set-up of [13], which samples several sets

of random weights per layer, reconstructs the target image,

and chooses the weights yielding the smallest loss2 [13, 3].

Figures 2b to 2e present two examples of stylization by

the r-VGG, p-VGG, r-ResNet and p-ResNet networks, show-

ing that performance varies drastically with the network

architecture. Compared to p-VGG, the p-ResNet transfers

much lower-level color patterns and produces much noisier

stylized images. This discrepancy is even more obvious for

random models, with the r-ResNet simply failing to stylize

the content image. To investigate the reasons behind the very

different performance of two architectures, we performed

an ablation study over many network components, including

the use of residual connections, convolution kernels varying

among size 1 × 1, 3 × 3 to 7 × 7, variable network depth,

batch normalization, number of channels per layer, a fixed

stride of 2 vs. maxpooling, etc. While detailed results are

presented in the supplementary, the main conclusion was

that the poor performance of the ResNet is mainly explained

by its residual connections. This is interesting, since resid-

ual connections are usually seen as the main asset of this

architecture for tasks like classification.

Figure 2 provides evidence for this claim, comparing

the stylized outcomes by several architectures after dele-

tion or addition of residual connections. Starting from the

ResNet-50, we built a ‘NoResNet’ by removing all residual

connections. As can be seen in Figure 2f, this drastically

1Convolutional layers use kaiming initialization [32, 31]; batchNorm

weights (biases) are set to 1 (0); weights of VGG fully connected layers are

drawn from a normal distribution N (0, 0.01) and biases set to 0.
2We believe that this set-up leads to an unfair comparison to [7], since it

leverages the target image to choose the best random weights and extremely

time-consuming gradient computations to add weight factors in (4).

improves style transfer performance. r-NoResNet has much

closer performance to r-VGG than to r-ResNet. We next

considered the benefits of several other modifications that

made the NoResNet more similar to the VGG: 1) replaced its

7× 7 conv kernel with the 3× 3 conv kernel of the VGG; 2)

replaced the bottleneck module with the basicblock module

of the ResNet-34 (see Figure 5) without the residual con-

nection; 3) inserted a maxpooling layer between each stage

to decrease the size of feature maps, as done in the VGG.

The resulting architecture is denoted as ’pseudo-VGG’. As

shown in Figure 2g, these modifications made the stylization

performance even closer to that of the r-VGG. However, by

comparing the r-ResNet, r-NoResNet, and r-pseudo-VGG

stylizations, it is clear that the bulk of the gains are due to

the deletion of residual connections, i.e., from ResNet to

NoResNet. To further confirm this, we re-introduced the

residual connections in the pseudo-VGG network, to create

a ’pseudo-ResVGG’. Figure 2h shows that this destroyed

all the gains of the pseudo-VGG, again producing undis-

cernable styles. In fact, this network produced the worst

results of Figure 2, showing that there is no benefit to the

pseudo-ResVGG over the ResNet. In summary, the weak

ResNet performance is due to its residual connections.

3.3. Why do residual connections degrade perfor­
mance?

We next try to understand why residual connections are

so nefarious for stylization. Since the optimization of (4) is,

in this case, solely based on the Gram matrices Gl of the

network responses to the original and synthesized style, we

start by visualizing the statistics of the network activations

and their Gram matrices. Figure 3 presents the average of

maximum values maxi,k F
l
i,k and maxi,j G

l
i,j , as well as

normalized entropies [11]3

H(F l
i,k) = − 1

log(DlMl)2

∑

i,k p(F
l
i,k) log p(F

l
i,k) (5)

p(F l
i,k) =

e
Fl
i,k

∑
m,n e

Fl
m,n

(6)

H(Gl
i,j) = − 1

logD2

l

∑

i,j p(G
l
i,j) log p(G

l
i,j), (7)

p(Gl
i,j) =

e
Gl

i,j

∑
m,n e

Gl
m,n

(8)

of the activations and Gram matrices, respectively, of the

last layer of each network stage of the random models on 10
style images, where i, j, k are the spatial coordinates defined

in (1). The figure shows that activations and Gram values

have similar behavior. In both cases, the maximum value

increases and the entropy decreases gradually with layer

depth for the architectures with residual connections (ResNet

and pseudo-ResVGG). This is unlike the networks without

shortcuts (NoResNet and pseudo-VGG), where activations

3We omit the dependency on x on these equations for simplicity.
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(a) contentstyle (b) r-VGG (c) p-VGG (d) r-ResNet (e) p-ResNet

(f) r-NoResNet (g) r-pseudo-VGG (h) r-pseudo-ResVGG (i) r-ResNet∗ (j) p-ResNet∗

Figure 2: Stylization by different architectures. (‘p-’, ‘r-’ represent pre-trained and randomly initialized, ‘∗’ denotes SWAG.)
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Figure 3: Activation statistics of different random architectures.
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Figure 4: Activation

tracks across layers.

tend to decrease and entropies remain fairly constant and

much higher. In some cases, e.g. pseudo-ResVGG, the

introduction of residual connections translates into large

maximum and near-zero entropies for the deeper layers, i.e.

activations that are dominated by a single feature channel

and deterministic correlation patterns.
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The observation of small entropies is consistent with

at least two explanations for poor stylization performance.

Both of these follow from the fact that the only variables

in the optimization of (4) are the activations F l(x), which

are encouraged to have Gram matrix as similar as possible

to those of the style image F l(xs
0). A first explanation is

derived from the well known outlier sensitivity of the L2

distance [20]. Due to this outlier sensitivity, when the Gram

matrices derived from x
s
0 are “peaky” (low entropy), the op-

timization will focus mostly on creating equal peaks on the

matrices produced by x
∗, while paying less attention to the

remaining entries of the Gram matrix. From (1), the Gram

matrix value of location i, j is a measure of similarity of the

vectors of activations F l
i,k and F l

j,k across the channel depth

dimension k. Hence, the Gram matrix peaks identify pairs

of locations of strong activations that are highly correlated

across the channel dimension. By giving disproportionate

emphasis to these location pairs, the optimization overfits on

a few style patterns, ignoring most of the remaining. This

explains why small entropies degrade stylization. Note that

the appearance of Gram peaks in the deeper layers is con-

sistent with the stylization results of Figure 2. While the

r-ResNet and r-pseudo-ResVGG can transfer the localized

color patterns captured by the earlier layers, they fail to cap-

ture the long-range correlations that are essential for texture

and style perception and only accessible in the later layers.

A second explanation derives from interpreting stylization

as a knowledge distillation problem [15]. For classification,

neural networks are typically trained to minimize a cross-

entropy loss between the posterior distribution q and a target

distribution p, which is typically a one-hot code. Knowledge

distillation aims to, instead, minimize the distance between

the distribution of a student network q and that of a soft

teacher network p. [15] has shown that using the soft prob-

ability output of a pre-trained larger network as target p

can improve training speed and converge to a better model

than using the hard one-hot target. This is because a teacher

distribution of high entropy produces gradients of much

less variance during training. The same rationale can be

applied to stylization, which can be seen as a form of knowl-

edge distillation, where the optimization of (2) seeks the x
∗

that minimizes the distance between the ‘student’ (F l(x),
Gl(F l(x))) and ‘teacher’ (F l(xc

0), G
l(F l(xs

0))) pairs of ac-

tivations and Gram matrices. Under the distillation view,

pairs of higher entropy should make learning easier.

3.4. Why are residual network activations and
Gram matrices peaky?

We next investigate why residual networks produce peaky

activations and Gram matrices. We start by recalling the

details of the bottleneck ResNet block, shown in Figure 5.

At layer l, this module computes a residual R(F l−1(x)),
which is added to the output F l−1(x) of layer l− 1 to create
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Figure 5: Top: bottleneck; Middle: Basicblock; Bottom: a

variation of bottleneck.

the output of layer l

F l(x) = R(F l−1(x)) + F l−1(x), (9)

where R(·) is implemented with a sequence of convolutional

(Conv), batch normalization (BN) and ReLU layers. An

important detail is that the addition of (9) is computed be-

tween the last BN and ReLU layers in the module, as shown

at the top and middle of Figure 5, i.e. (9) is effectively

implemented as

F l(x) = ReLU
(

R(F l−1(x)
)

+ F l−1(x)). (10)

This design choice contributes to the existence of large

activation maxima for deeper layers. Note that F l−1(x) is

the output of a ReLU layer, i.e. a positive number, and

Ri(F
l−1), a real number. It follows that, for any i, there are

at least two ways in which F l
i (x) can be large: 1) a large

residual Ri(F
l−1(x)), or 2) a positive residual Ri(F

l−1(x))
if F l−1

i (x) is already large. The second condition is particu-

larly prone to creating large peaks, since positive residuals

enable Fi(x) to grow from layer to layer. In fact, the only

way to cancel a large F l−1
i (x) is to make Ri(F

l−1(x)) large

and negative. However, it may be impossible to generate

a large negative residual for one channel without generat-

ing large positive residuals for others. Hence, the attempt

to correct for the second condition could create the first.

This would imply that, once a large activation emerges at

an intermediate layer, the network could be forced into a

game of ”whack-a-mole,” producing large amplitudes for the

subsequent layers.

To investigate this hypothesis, we tracked the evolution

of activations through the network. For a randomly selected

style image, we randomly sampled image positions and

tracked the corresponding activation values accross the net-

work layers, using nearest-neighbor interpolation. Figure

4 shows a typical random sample of 10 activation tracks.

The ”whack-a-mole” effect is visible even in this limited
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sample. The network attempts to mitigate the peaks that

appear in intermediate layers, but this creates larger picks

on other channels of the subsequent layers. Note how the

maximum response increases with layer depth. Figure 4 also

shows that, beyond the large picks, there are many small

activations in the deeper layers. This is also consistent with

the ”whack-a-mole” hypothesis. When combined with the

ReLU of (10), the impetus to produce large negative residu-

als results in many activations F l(x) of small or zero value.

Hence, as depth l increases, the activations become peakier

and of lower entropy. From (1), the Gram matrices are then

likely to have the same property.

It should be noted that this discussion applies to the stan-

dard residual connection structure of the ResNet [14], which

is widely used. One possibility to improve stylization perfor-

mance would be to change the architecture. An example is

given at the bottom of Figure 5, where the skip connection

is moved to precede the output ReLU of layer l − 1. Since,

in this case, the addition of activation and residual operates

on two real numbers, the pressure for activations to grow

would be smaller. We have tried several of these variations,

but found that they tend to result in ineffective architectures

for image recognition. The example modification of Figure

5 reduces the mean classification accuracy of the ResNet-

50 on CIFAR-100 (ImageNet) from 77% to 65% (76% to

62%). Hence, even if it turned out to enhance stylization

performance, it would result on different architectures for

stylization and classification, which is undesirable. In what

follows, we show that it is possible to improve stylization

while maintaining the widely used network architecture.

3.5. Stylization With Activation Smoothing

In this work, we leverage the observations above to im-

prove the stylization performance of networks with residual

connections. We propose a very simple solution, inspired

by the interpretation of stylization as knowledge distilla-

tion [15], where significant gains are observed by smoothing

teaching distributions. In the same vein, we propose to avoid

peaky activations of low entropy, by smoothing all activa-

tions with a softmax-based smoothing transformation 4

σ(F l
ik(x)) =

eF
l
ik(x)

∑

m,n e
F l

mn(x)
, (11)

Note that the softmax layer is not inserted in the network,

which continues to be the original model, but only used to

redefine the style and content loss functions of (2), which

4We experimented with adding a temperature parameter, but this made

no difference. The detailed discussion can be found in the supp.

become

Lcontent(x
c
0,x) =

1

2
||σ(F l(x))− σ(F l(xc

0))||
2
2, (12)

Lstyle(x
s
0,x) =

L
∑

l

wl

4D2
l M

2
l

||Gl(σ(F l(x)))

−Gl(σ(F l(xs
0))||

2
2.

(13)

The softmax transformation reduces large peaks and in-

creases small values, creating a more uniform distribution.

Since this can be seen as a form of smoothing, we denote this

approach to stylization as Stylization With Activation smooth-

inG (SWAG), and denote the resulting models with a ‘∗’

superscript, e.g. r-ResNet∗. ResNet∗ of figure 3 shows that

SWAG successfully suppresses the maxima and increases

entropies, especially on deeper layers.

The impact of activation smoothing on stylization perfor-

mance is illustrated in Figure 2i and 2j, where SWAG results

are presented for the r-ResNet∗ and p-ResNet∗ networks. In

both cases, the quality of the stylized images improves sub-

stantially after smoothing, in the sense that more high-level

style patterns are transferred. The results of the r-ResNet∗

approach those of the r-VGG and it could be claimed that the

p-ResNet∗ outperforms the p-VGG. This is next evaluated

quantitatively. It should be noted that there are other ways

of smoothing activations and decreasing their entropy, e.g.

softmax with different temperature, nested softmax, or even

multiplying a small constant (< 0.1), that we found working

in our experiments. We chose the softmax of (11) because it

is simple, hyperparameter-free, and achieves similar effects

with other smoothing methods.

4. Experimental Evaluation

In this section we discuss an experimental evaluation of

the stylization gains of SWAG models. More results and

implementation details can be found in the supplementary

materials.

4.1. Qualitative evaluation

We start by evaluating SWAG for two popular non-

VGG architectures, other than the ResNet, that also rely on

shortcut connections: Inception-v3 [36] and Wide ResNet

(WRN) [45]. WRN experiments use all settings of the

ResNet, while conv2d 1a, conv2d 3b, mixed 5b, mixed 6a,

mixed 7a leayers are used for Inception. This is, again, for

consistency with the VGG model of [7]. We denote VGG,

ResNet, WRN, and Inception-v3 networks as ‘V’, ‘R’, ‘W’,

and ‘I’, for brevity. Figure 6 presents style transfer results

on four different images, using the pre-trained versions of

all networks, comparing results of SWAG (∗) and standard

129



(a) contentstyle (b) p-R vs p-R∗ (c) p-W vs p-W∗ (d) p-I vs p-I∗ (e) p-VGG

Figure 6: Comparison of neural style transfer performance between standard and SWAG (denoted with ∗) models, for different

pre-trained architectures with shortcut connections (R: ResNet, W: WRN, I: Inception). The results of the standard VGG

model are also shown for comparison.

Arch. p-R / p-R∗ p-I / p-I∗ p-W / p-W∗ p-V / p-V∗ p-V / p-R∗ p-V / p-I∗ p-V / p-W∗

Pref.(%) 17.0 / 83.07.1,4.3 34.7 / 65.36.2,5.4 32.3 / 67.73.4,5.3 48.3 / 51.71.2,5.5 33.3 / 66.73.7,5.3 34.7 / 65.34.2,5.4 37.3 / 62.73.1,5.5

Arch. r-R / r-R∗ r-I / r-I∗ r-W / r-W∗ r-V / r-V∗ r-V / r-R∗ r-V / r-I∗ r-V / r-W∗

Pref.(%) 15.7 / 84.34.6,4.1 10.7 / 89.32.3,3.5 5.4 / 94.65.3,2.6 44.3 / 55.72.3,6.2 23.3 / 76.76.7,4.8 18.7 / 81.32.1,4.4 25.3 / 74.73.4,4.9

Table 1: Comparison of user preference (%), meanstd, confidence interval (conf. interval at 95% conf. level). (R: ResNet; I:

Inception-v3; W: WRN; V: VGG. r-: random; p-: pre-trained. *: SWAG).

stylization. Note that p-R∗ and p-W∗ transfer more high-

level style features, such as strokes, and textures. For p-I∗,

the improvement is smaller. We speculate that this is due

to the somewhat different structure of the Inception whose

basic module has multiple parallel connections and merges

features of different solutions. This may make the stylization

optimization harder. We have not investigated the issue in

detail. However, the improvement is still visible.

We next evaluate SWAG with other two stylization al-

gorithms [22, 24]. Unlike [7], [22] trains a style-specific

transformer to directly transfer the target to the stylized im-

age, using a perceptual loss. [24], which trains a single

transformer for all types of styles, is the state-of-the-art

for universal stylization. Figure 7 compares the results of

SWAG implementations of the two algorithms, for different

networks. For both random and pre-trained models, the per-

formance of the two algorithms improves significantly under

SWAG. For example, [24] fails for the p-ResNet, producing

many repeated image patches. SWAG improves its results

to a level comparable with VGG. These results show that

SWAG is generally beneficial for stylization algorithms.

4.2. Quantitative evaluation

Stylization quality is difficult to evaluate quantitatively,

since it is subjective. While some works only show synthe-

sized images [7, 3, 14, 41, 2, 8], the user study has been

mainly used for quantitative evaluation in this paper, where

humans choose a preferred image among a set of candidates.

This is consistent with the subjective nature of stylization.

We present results of a user study on Amazon Mechanical

Turk, comparing pairs of images synthesized by networks

with and without SWAG. Each comparison was assigned

to 30 turkers. Each turker was asked to choose the image

that more closely resembled a given style image. 10 ran-

domly selected stylization comparisons were performed by

turker. The results of the experiment are summarized in

Table 1, which shows several interesting findings. First, for
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p-VGGp-ResNetr-ResNet r-ResNet* r-VGGcontentstyle p-ResNet*

Figure 7: Comparison of neural style transfer performance between standard and SWAG (denoted with ∗) implementations of

different stylization algorithms. Top: algorithm of [22]; Bottom: algorithm of [24]. The results of the VGG model are also

shown for comparison.

p-R p-R*
top: content

bottom: style (texture)

Figure 8: Top: reconstruction of the top-left content image;

Bottom: texture synthesis of the bottom-left image.

both pre-trained and random networks, models with SWAG

always earned more preferences than models without. Sec-

ond, all models with SWAG significantly outperformed the

standard VGG implementation. All these results suggest that

SWAG eliminated the dependence of stylization on the VGG

architecture.

4.3. Ablation study

For stylization, the target image is usually initialized with

the content image [7, 13, 3], i.e. the optimization of (2) uses

the content image xc
0 as initial condition. This reduces the

difficulty in transferring content information to the target

image. In fact, it can make the content loss negligible [27],

to the point where the latter can be removed from the op-

timization altogether [3]. This creates difficulties to ablate

the effectiveness of SWAG on the content and style loss

individually.

For this, we leveraged two alternative tasks: image re-

construction and texture synthesis, using a random initial

image. Following [7, 6], we matched conv3 4 features from

the content images for image reconstruction, and multilayer

features from the texture image for texture synthesis. As

shown in Figure 8, SWAG produces better reconstructed

images (average PSNR over 10 randomly selected content

images of p-R/p-R∗: 27.9(±0.1)/28.3(±0.1)) and synthe-

sizes textures with a larger diversity of patterns, including

small-scale and large-scale style patch patterns. This sug-

gests that 1) residual connections hurt both losses fail; 2)

SWAG can match styles at deeper layers, which capture

larger-scale features, to improve reconstruction and texture

synthesis quality.

5. Conclusion

We have studied the lack of robustness of stylization al-

gorithms for non-VGG architectures. This showed that a

significant factor is the use of residual connections, which

decreases the entropy of deeper layer activations. A simple

solution was proposed by adding activation smoothing to the

loss functions used for stylization, using a softmax function.

This was denoted as SWAG, and shown to be effective for

various architectures, forms of pre-training (random vs. Ima-

geNet), and stylization algorithms. It was shown that, with

the addition of SWAG, the lightweight non-VGG becomes a

viable alternative to VGG in future stylization work.
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