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Abstract

Self-supervised learning presents a remarkable perfor-

mance to utilize unlabeled data for various video tasks.

In this paper, we focus on applying the power of self-

supervised methods to improve semi-supervised action pro-

posal generation. Particularly, we design an effective Self-

supervised Semi-supervised Temporal Action Proposal

(SSTAP) framework. The SSTAP contains two crucial

branches, i.e., temporal-aware semi-supervised branch

and relation-aware self-supervised branch. The semi-

supervised branch improves the proposal model by intro-

ducing two temporal perturbations, i.e., temporal feature

shift and temporal feature flip, in the mean teacher frame-

work. The self-supervised branch defines two pretext tasks,

including masked feature reconstruction and clip-order pre-

diction, to learn the relation of temporal clues. By this

means, SSTAP can better explore unlabeled videos, and

improve the discriminative abilities of learned action fea-

tures. We extensively evaluate the proposed SSTAP on

THUMOS14 and ActivityNet v1.3 datasets. The experi-

mental results demonstrate that SSTAP significantly out-

performs state-of-the-art semi-supervised methods and even

matches fully-supervised methods. Code is available at

https://github.com/wangxiang1230/SSTAP.

1. Introduction

Temporal action proposal aims to localize action in-

stances in untrimmed videos by predicting both action-ness

probabilities and temporal boundaries. Recently, various

approaches [16, 29, 27] for the task have been proposed

and achieve significant progress with the quick development

of spatio-temporal feature learning [40, 42, 8, 14]. Almost

all the methods rely on dense temporal annotations for the

training videos. However, the annotating task is tedious and
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Figure 1: (a) Feature similarity matrix visualization. We

use cosine similarity to measure the degree of similarity be-

tween arbitrary two snippet-level feature vectors within the

same video. Note that, snippet-level features of the action

as similar as possible while separating actions from back-

grounds. Compared to Ji et al. [20] (top), better representa-

tions of the features can be learned by adding our relation-

aware self-supervised branch (bottom). (b) Our SSTAP

consistently exceeds the state-of-the-art semi-supervised

method (Ji et al. [20]) in terms of Average Recall when

trained with different percentages of labels on the THU-

MOS14 dataset.

requires large amounts of human labor. Thus these methods

may have limited abilities to meet practical demands.

To alleviate the dependence of labeled videos, Ji et

al. [20] first apply the semi-supervised method, i.e., Mean

Teacher [41], to temporal action proposal. In this method,

Ji et al. only use a small portion of labeled videos and
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reach high performances. Due to perturbation is an essential

component of semi-supervised methods, the method pro-

poses two sequential perturbations, i.e., time warping and

time masking, to improve robustness and generalization.

However, the perturbations ignore the temporal interactions,

which is critical to learn robust action representations. An-

other line of paradigm to utilize unlabeled videos is about

self-supervised methods. These methods explore undergo-

ing video structure by predefining pretext tasks, e.g., learn-

ing temporal order [26, 50], pace prediction [44], and learn-

ing playback rate [53]. They have reached an impressive

performance in several video-related tasks [43, 26, 12], and

thus self-supervised learning is proved to be a promising

methodology. However, the methodology has never been

explored to generate temporal action proposals. We believe

that it can contribute to improving the performance by fully

utilizing unlabeled videos.

Based on the above observations, we propose to ap-

ply self-supervised methods to improve the semi-supervised

temporal action proposal by designing the SSTAP frame-

work. The proposed SSTAP contains two main branches,

i.e., temporal-aware semi-supervised branch and relation-

aware self-supervised branch. The temporal-aware semi-

supervised branch targets to improve the method in [20]

by designing two simple but effective perturbations, i.e.,

temporal feature shift and temporal feature flip. The first

perturbation bidirectionally moves some randomly selected

channels of feature maps, which is inspired by [28], and

the second perturbation flips the total features, both of them

along the temporal dimension. By this means, the pro-

posal model can be more robust and generalized. In the

relation-aware self-supervised branch, we define two pre-

text tasks, i.e., masked feature reconstruction and clip-order

prediction. The pretext tasks respectively reconstruct the

randomly masked features and predict the correct order of

the randomly shuffled clip features. Therefore, SSTAP can

better explore the unlabeled videos and learns discrimi-

native features. In Figure 1(a), the covariance-like sim-

ilarity matrixes show that the self-supervised branch can

help to decrease intra-class distance and increase inter-class

distance simultaneously. Hence SSTAP can improve pro-

posal performance (Figure 1(b)). We evaluate the proposed

SSTAP on the challenging THUMOS14 [21] and Activi-

tyNet v1.3 [7] datasets and achieve a remarkable improve-

ment on both datasets.

In summary, our main contributions are as follows:

• To the best of our knowledge, we are the first to in-

corporate self-supervised learning in semi-supervised

temporal action proposal by designing a unified

SSTAP framework;

• We have designed two simple but effective types

of temporal sequential perturbations and defined two

types of self-supervised pretext tasks for SSTAP;

• We extensively test the proposed SSTAP on two public

datasets and achieve state-of-the-art performance.

2. Related Work

Fully-Supervised Temporal Action Proposal. There

are two mainstream approaches: anchor-based methods and

boundary-based methods. Anchor-based methods generate

proposals by designing multi-scale anchors or sliding win-

dows. The works in [39, 13] adopt the C3D network [42]

as the binary classifier for sliding window proposal evalua-

tion. The works in [6, 5, 4] use LSTM networks to evaluate

the pre-defined anchors. [17, 18, 51, 47, 9] propose to ap-

ply temporal regression to adjust the action boundaries. [16]

proposes to use the complementarity of multi-scale anchors

and sliding windows to improve performance. Instead,

boundary-based methods evaluate each temporal location in

the video. TAG [49] generates proposals by a temporal wa-

tershed algorithm to group continuous high-score regions.

BSN [31] generates proposals via locally locating tempo-

ral boundaries and globally evaluating confidence scores.

MGG [32] combines anchor-based methods and boundary-

based methods to generate proposals. The works in [52, 1]

propose to use graph convolutional networks [22] to model

temporal relationships in the input video. BMN [29] pro-

poses a boundary-matching mechanism for the confidence

evaluation of densely distributed proposals in an end-to-end

pipeline. BMN has become the champion method on Ac-

tivityNet Challenge 2019 [7] and the mainstream solution

on ActivityNet Challenge 2020 [7]. In this work, we focus

on evaluating our SSTAP with the BMN due to its superior

performance.

Semi-Supervised Learning. Semi-supervised learning de-

scribes a class of algorithms that seek to learn from both

unlabeled and labeled data, typically assumed to be sam-

pled from the same or similar distributions. Approaches

differ on what information to gain from the structure of

the unlabeled data. In the image classification task, there

are two important approaches for semi-supervised learning:

pseudo-labeling and consistency regularization. Pseudo-

label [25] imputes approximate classes on unlabeled data

by making predictions from a model trained only on labeled

data. Consistency regularization methods measure the dis-

crepancy between predictions made perturbed data points.

Approaches of this kind include Π-Model [23], Temporal

ensembling [23], Mean Teacher [41], and Virtual Adver-

sarial Training [34]. In the semi-supervised temporal action

proposal task, [20] adopts the Mean Teacher framework and

proposes two perturbations.

Self-Supervised Learning. Self-supervised learning is a

general learning framework that relies on surrogate tasks

that can be formulated using only unlabeled data. For im-
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Figure 2: Overview of our SSTAP. We first encode a sampled untrimmed input video into a feature sequence f1. In the

temporal-aware semi-supervised branch (top right), there are two sequential perturbation operations: temporal feature shift

and temporal feature flip. And the Base Module takes the perturbed sequences fpert and the unobstructed f1 as inputs. Next,

the student model and the teacher model of the same network structure generate outputs. In the relation-aware self-supervised

branch (bottom right), there are two self-supervised pretext tasks: masked feature reconstruction and clip-order prediction.

In the end, a unified multi-task framework is exploited for optimization. Color-coded arrows denote the associations between

the features in the framework and the respective modules.

age data, there exist self-supervised tasks such as predict-

ing relative positions of image patches [11], jigsaw puz-

zles [35], image inpainting [36] and image color channel

prediction [24]. Since the particular property of the video is

temporal information, recent works also attempt to leverage

the temporal relations among frames, such as order veri-

fication [33, 15], order prediction of frames [26, 50], and

perceive multiple temporal resolutions [53].

3. SSTAP

Following the previous work [20], we build our SSTAP

on top of a state-of-the-art fully-supervised proposal gener-

ation network, Boundary-Matching Network (BMN) [29].

Note that, compared with the multi-stage BSN [31] frame-

work employed by [20], the BMN with end-to-end training

can eliminate the mutual influence between multiple stages.

At the same time, we also have conducted a fair comparison

with [20] using the same BMN as our SSTAP. We extend the

Mean Teacher [41] framework with two types of sequen-

tial perturbations, i.e., temporal feature shift and temporal

feature flip in the temporal-aware semi-supervised branch.

And in the relation-aware self-supervised branch, two types

of self-supervised auxiliary tasks, i.e., masked feature re-

construction and clip-order prediction, are utilized to assist

in training the proposal model. Figure 2 shows an overview

of our method.
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Figure 3: The details of our Base Module. Our Base Mod-

ule is an extension of the “Base Module” in BMN [29]

3.1. Problem Description

Given an untrimmed video sequence S = {sn}
ls
n=1

with

its length as ls, our method aims at detecting action in-

stances ϕp = {ξn = [ts,n, te,n]}
Ms

n=1
with a relatively small

amount of training labels, where Ms is the total number

of action instances, and [ts,n, te,n] denotes the starting and

ending points of an action instance ξn, respectively. Note

that, classes of these action instances are not considered in

the semi-supervised temporal action proposal task.

3.2. Feature Encoding

Following recent proposal generation methods [31, 29,

20, 52], we construct SSTAP framework upon visual fea-

ture sequence extracted from the raw video. Given an

untrimmed video sequence S = {sn}
ls
n=1

with length
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ls, we first divide it into non-overlapping short snippets

that contain σ frames each. Then the two-stream net-

work [46] is adopted to extract a visual feature sequence

φ = {φtn}
T

n=1
∈ R

T×C , where C is the dimension of fea-

ture and T = ls/σ.

3.3. Temporal­aware Semi­Supervised Branch

In this section, we present our temporal-aware semi-

supervised branch in SSTAP. We first provide a brief de-

scription of the proposal generation network and mean

teacher framework. Afterward, we introduce two types of

sequential perturbations proposed by us, i.e., temporal fea-

ture shift and temporal feature flip.

Proposal Generation Network. To validate our semi-

supervised framework and better illustrate our approach, we

build our method on top of the Boundary-Matching Net-

work (BMN) [29] , an effective and end-to-end proposal

generation method.

The same feature encoding is performed as the first

step. The BMN comprises three modules: “Base Module”,

“Temporal Evaluation Module” (TEM), “Proposal Evalu-

ation Module” (PEM). “Base Module” handles the input

feature sequence φ and outputs feature sequence φ′ shared

by the following TEM and PEM. TEM evaluates the start-

ing and ending probabilities of each location in the video

to generate boundary probability sequences. PEM con-

tains a Boundary-Matching layer (like the ROI Pooling in

Faster-RCNN [37]) to transfer the feature sequence φ′ to a

boundary-matching feature map and contains a series of 3D

and 2D convolutional layers to generate boundary-matching

confidence maps. The three modules are trained in a unified

framework. Therefore, given an untrimmed video, BMN

can simultaneously generate (1) boundary probability se-

quences to construct proposals and (2) boundary-matching

confidence maps to evaluate the confidences of all proposals

densely. Please refer to [29] for more details of BMN.

Mean Teacher Framework. In the Mean Teacher frame-

work, there are two models: a student proposal model

fθ and a teacher proposal model fθ′ . The student pro-

posal model learns as in fully-supervised learning, with its

weights θ optimized by the supervised losses applied on la-

beled videos. The teacher proposal model has the identical

neural network architecture as the student, while its weights

θ′ are updated with an exponential moving average (EMA)

of the weights from a sequence of student models of differ-

ent training iterations:

θ′τ = αθ′τ−1 + (1− α) θτ , (1)

where τ denotes the training iteration, and α is a smoothing

coefficient, which is always set to 0.999.

Sequential Perturbations. In the temporal-aware semi-

supervised branch, the Mean Teacher framework is adopted

on BMN to form our semi-supervised learning framework.

Meanwhile, in the literature, stochastic perturbations have

been found crucial for learning robust models by many

semi-supervised learning works [23, 34, 41, 2, 20, 48]. And

a typical way of perturbation is adding noise to feature

maps. The work in [41] adds gaussian noise to interme-

diate feature maps of both student and teacher models. Ji et

al. [20] add two perturbations to the input sequence. How-

ever, those perturbations ignore the temporal interactions,

which is critical to temporal action proposal task. In our

work, we further explore what other specific perturbations

are necessary for sequential learning and propose two es-

sential sequential perturbations: temporal feature shift and

temporal feature flip.

The temporal feature shift perturbation is bi-directional

moving some randomly selected channels on the feature

map of input video along the temporal dimension (Fig-

ure 2). Therefore, temporal feature shift can significantly

increase the diversity of the input features. Note that,

this perturbation is inspired by [28]. The differences be-

tween [28] and temporal feature shift include: (1) that [28]

chooses fixed channels (select the first 1/4 of the feature

channels, with half moving forward and the other half mov-

ing backward). While we randomly choose µ of feature

channels (µ is a hyper-parameter, µ/2 of feature channels

move forward, and the other µ/2 of channels move back-

ward). Hence ours will add more feature diversity. And in

the experiments, we observe that the method [28] can lead

to a sharp decline in performance since the perturbed train-

ing features are completely misaligned compared to the test-

ing features without perturbations. (2) the purpose of [28]

is to achieve the effect of 3D convolution (i.e., to capture

the spatio-temporal interactive information between adja-

cent time points) by inserting this 2D disturbance in resid-

ual blocks for action recognition task. Our temporal feature

shift serves as a way of data augmentation, providing more

data for training.

Besides temporal feature shift, we propose temporal

feature flip as another source of sequential perturbation.

Since sequential video features with different perturbations

may have different numbers of proposals with various loca-

tions and sizes, it is challenging to match the given video

features. Therefore, the horizontally flipped video features

are adopted so that one-to-one correspondence between the

proposals in the original and the flipped video features can

be easily aligned (Figure 2). During the training, the stu-

dent models at each iteration are encouraged to generate the

symmetric outputs with the teacher models.

During the training process, each mini-batch includes

both labeled and unlabeled data, and we also adopt a

dropout strategy to prevent overfitting. The labeled samples

are trained using supervised loss. However, without ground

truth labels, the supervised loss is undefined upon unlabeled

videos. Consistency regularization in mean teacher frame-
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work utilizes unlabeled data based on the assumption that

the model should output similar predictions when fed per-

turbed versions of the same input. In our temporal-aware

semi-supervised branch, the consistency loss is applied to

both the labeled and unlabeled data. Note that, we add

consistency loss (L2-loss) to both boundary probability se-

quences and boundary-matching confidence maps output by

BMN. Therefore, in the temporal-aware semi-supervised

branch, the total loss formula is:

Lsemi = Lsupervised + λ1Lpert shift + λ2Lpert flip, (2)

where weight terms λ1 and λ2 are set to 1 and 0.1 sepa-

rately, Lpert shift and Lpert flip are consistency losses for

temporal feature shift perturbation and temporal feature flip

perturbation separately.

3.4. Relation­aware Self­Supervised Branch

Inspired by recent progress in self-supervised learning

in video analysis [33, 15, 26, 50, 53], we hypothesize

that the semi-supervised temporal action proposal method

could dramatically benefit from self-supervised learning

techniques. And based on this insight, in the relation-aware

self-supervised branch, we propose two auxiliary tasks. The

two auxiliary tasks, i.e., masked feature reconstruction and

clip-order prediction, can assist the network in learning tem-

poral relations and discriminative representations.

Masked feature reconstruction. As shown in Figure 2,

the key idea of this self-supervised auxiliary task is to gen-

erate the feature f2 by randomly masking the video feature

f1 at some time points along the time dimension. The Base

Module then utilizes f2 to reconstruct f1. The details of the

Base Module are shown in Figure 3. Masked feature recon-

struction produces self-supervised signals from the original

feature f1, which can learn discriminative representations

in a simple-yet-effective way.

In the masked feature reconstruction auxiliary task, the

Base Module will be driven to perceive and aggregate infor-

mation from the context to predict the dropped snippets. In

this way, the learned temporal semantic relations and dis-

criminative features are conducive to semi-supervised tem-

poral action proposal naturally. We use ω to represent the

degree of the random mask, and we measure the effect of ω
later in Section 4.3.

Clip-order prediction. This auxiliary task needs to predict

clip feature sequences’ correct order in a randomly scram-

bled feature map. Specifically, the reordering of three ran-

domly shuffled feature sequences is shown in Figure 2. Ac-

tually, the clip-order prediction is formulated as a classifica-

tion task. The input is a tuple of clip feature sequences, and

the output is a probability distribution over different orders.

In the experiment, we empirically designed a reordering of

two randomly shuffled feature sequences. The module used

for clip-order prediction is shown in Figure 3.

Clip-order prediction can leverage the chronological or-

der of feature f1 to learn discriminative temporal represen-

tations. And clip-order prediction is at the clip sequence

level, which can reduce the uncertainty of orders and is

more appropriate to learn video feature representations.

3.5. Overall Loss

The total training loss is composed of the losses from

section 3.3 and section 3.4, as follows:

Ltotal = Lsemi + λ3Laux recons + λ4Laux order, (3)

where loss functions Laux recons and Laux order are de-

signed for masked feature reconstruction and clip-order

prediction mentioned above separately. Among them,

Laux recons is L2-loss and Laux order is typical cross-

entropy loss for both labeled and unlabeled data. Even-

tually, the final loss function Ltotal is composed of the

Lsemi in the temporal-aware semi-supervised branch and

the losses in the relation-aware self-supervised branch.

Hyper-parameters λ3 and λ4 are set to 0.0001 and 0.001

separately. To jointly learn the semi-supervised pattern and

the self-supervised pattern, a unified multi-task framework

is exploited for optimization in an end-to-end manner.

4. Experiments

4.1. Dataset and Setup

THUMOS14. This dataset has 1010 validation videos and

1574 testing videos with 20 classes. There are 200 valida-

tion videos and 213 testing videos labeled with temporal an-

notations for the action proposal or detection task. We train

our model on the validation set and evaluate on the test set.

To make a fair comparison with the previous works [29, 20],

we employ the same two-stream features [46].

ActivityNet v1.3. This dataset is a large-scale dataset con-

taining 19994 videos with 200 activity classes for action

recognition, temporal action proposal generation and detec-

tion. The quantity ratio of training, validation, and test-

ing sets satisfy 2:1:1. Two-stream features are employed

to make a fair comparison with the previous works [29, 20].

Meanwhile, in order to show that our method is feature-

agnostic, we also adopt I3D features [8] pre-trained on Ki-

netics [8] and without fine-tuned on ActivityNet v1.3.

We follow the same pre-processing and post-processing

steps as the BMN [29], including parameters adopted in

Soft-NMS [3] and network structure parameters for a fair

comparison.

4.2. Temporal Action Propsal Generation

The proposal generation task’s goal is to generate high-

quality proposals to cover action instances with high re-

call and high temporal overlap. To evaluate proposal qual-

ity, Average Recall (AR) under multiple IoU thresholds
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Figure 4: Varying the percentages of labels for training on

ActivityNet v1.3, we compare the AUC (left) and AR@100

(right) of the proposals generated by our semi-supervised

method and the fully-supervised BMN counterpart.
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Figure 5: We compare AR@50 (left), AR@100 (middle),

and AR@200 (right) of the proposals generated by and the

fully-supervised BMN [29], semi-supervised Ji et al. [20]

and our SSTAP when trained with different percentages of

labels on the THUMOS14 dataset. Note that, Ji et al. [20]

did not publish the source code. For fair comparisons, the

results of Ji et al. [20] are carefully reproduced based on

BMN [29] by us.

are calculated. Following conventions, IoU thresholds

[0.5 : 0.05 : 0.95] and [0.5 : 0.05 : 1.0] are used for Activ-

ityNet v1.3 and THUMOS14 respectively. We calculate

AR under different Average Number of proposals (AN) as

AR@AN and calculate the Area under the AR vs. AN curve

(AUC) as metrics on ActivityNet v1.3, where AN is varied

from 0 to 100.

Comparsions with fully-supervised methods. Like [20],

we compare the temporal action proposal results under two

training setups: (1) Our semi-supervised framework, where

x% of training videos are labeled with temporal bound-

aries and (100 − x)% of training videos are unlabeled;

(2) Fully-supervised methods, where the same amount of

labeled videos are employed for training while no other

data are used. With this comparison, we can see how

our semi-supervised framework performs against the fully-

supervised counterpart under different training ratios.

We further compare our SSTAP with fully-supervised

# Method AR@100 AUC

TCN - 59.58

Prop-SSAD 73.01 64.40

CTAP 73.17 65.72

BSN 74.16 66.17

MGG 74.54 66.43

SSTAP@60% 75.20 67.23

(a) # Versus supervised methods.

# Method AR@100 AUC

BMN@60%(I3D) 74.47 66.52

SSTAP@60%(I3D) 75.00 67.04

BMN@60% 74.42 66.47

SSTAP@60% 75.20 67.23

BMN@90% 74.99 67.02

SSTAP@90% 75.46 67.48

BMN@100% 75.01 67.10

SSTAP@100% 75.54 67.53

(b) # Versus BMN.

Table 1: Comparisons between our SSTAP and fully-

supervised temporal action proposal generation methods on

the validation set of ActivityNet v1.3 dataset in terms of

AR@AN and AUC.

Feature Method @50 @100 @200 @1000

2-Stream TAG [49] 18.55 29.00 39.61 -

Flow TURN [17] 21.86 31.89 43.02 64.17

2-Stream CTAP [16] 32.49 42.61 51.97 -

2-Stream BSN [31] 37.46 46.06 53.21 64.52

2-Stream MGG [32] 39.93 47.75 54.65 64.06

2-Stream DBG [27] 37.32 46.67 54.50 66.40

2-Stream BC-GNN [1] 40.50 49.60 56.33 66.57

2-Stream BMN@60% 34.88 42.11 49.76 61.15

2-Stream BMN@90% 38.45 46.31 53.36 65.29

2-Stream BMN@100% 39.36 47.72 54.70 65.49

2-Stream SSTAP@60% 39.42 48.02 55.03 67.07

2-Stream SSTAP@90% 40.12 49.22 55.86 68.21

2-Stream SSTAP@100% 41.01 50.12 56.69 68.81

Table 2: Comparisons between our method and fully-

supervised proposal generation methods on THUMOS14 in

terms of AR@AN.

methods on the validation set of ActivityNet v1.3. Ta-

ble 1 lists a set of proposal generation methods, includ-

ing TCN [10], Prop-SSAD [30], CTAP [16], BSN [31],

MGG [32], and BMN [29]. Specifically, with only 60%

of the videos labeled, our SSTAP surpasses the fully-

supervised BMN trained with all labels (100%) and other

fully-supervised methods (Figure 4 and Table 1). Mean-

while, Table 1 also shows that the performance of our

SSTAP can be further improved when more labels are avail-

able (i.e., 90% and 100%). Our approach also performs well

with I3D feature inputs, which proves that our SSTAP is

feature-agnostic. Similarly, Table 2 and Figure 5 show the

proposal generation performance comparisons on the test-

ing set of THUMOS14.

Comparisons with semi-supervised baselines. Table 3

compares semi-supervised proposal generation methods on

the testing set of the THUMOS14 dataset. To ensure

a fair comparison, we adopt the same video feature and

post-processing steps. Table 3 shows that our method

using two-stream video features outperforms other semi-

supervised methods significantly when the proposal number

is set within [50, 100, 200, 500, 1000]. Especially, Figure 5

demonstrates that our SSTAP outperforms the strong semi-

supervised method in Ji et al. [20] consistently under the

different ratios of labeled/(labeled + unlabeled) training
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Method Label @50 @100 @200 @500 @1000

Vanilla BMN 10% 23.71 31.11 37.98 46.35 52.25

Mean Teacher [41] 10% 27.95 36.27 43.42 51.68 57.28

Pseudo-label [25] 10% 26.89 35.48 42.11 50.89 55.56

Ji et al. [20] 10% 29.10 37.43 45.07 52.67 57.96

SSTAP 10% 32.33 40.92 48.27 54.99 59.38

Vanilla BMN 60% 34.88 42.11 49.76 56.76 61.15

Mean Teacher [41] 60% 36.77 45.23 52.26 59.50 64.04

Pseudo-label [25] 60% 36.46 45.43 53.08 59.94 63.93

Ji et al. [20] 60% 37.42 46.71 53.96 61.01 65.10

SSTAP 60% 39.42 48.02 55.03 62.64 67.07

Table 3: Comparisons between semi-supervised baselines

trained with 10% and 60% of the labels. For fair compar-

isons, semi-supervised baselines are all based on BMN. We

report AR at various AN on THUMOS14.

Method Label @50 @100 @200 @500 @1000

Vanilla BMN 10% 23.71 31.11 37.98 46.35 52.25

SSTAP - F 10% 32.07 40.52 47.88 54.59 58.77

SSTAP - F - R 10% 30.82 39.24 46.85 54.31 58.71

SSTAP - F - R - C 10% 30.23 38.75 46.12 53.96 58.16

SSTAP - R - C 10% 30.80 38.96 46.31 54.28 58.23

SSTAP - S - R - C 10% 29.21 37.57 45.10 52.92 57.99

SSTAP (ALL) 10% 32.33 40.92 48.27 54.99 59.38

Vanilla BMN 60% 34.88 42.11 49.76 56.76 61.15

SSTAP - F 60% 39.26 48.00 54.95 62.07 66.65

SSTAP - F - R 60% 38.52 47.24 54.69 61.89 66.72

SSTAP - F - R - C 60% 38.04 46.71 54.35 62.17 66.51

SSTAP - R - C 60% 38.57 46.89 54.48 62.35 66.83

SSTAP - S - R - C 60% 37.44 46.86 54.07 61.23 65.21

SSTAP (ALL) 60% 39.42 48.02 55.03 62.64 67.07

Table 4: Ablation study of the effectiveness of components

in our SSTAP on THUMOS14. Abbreviations: F for tem-

poral feature flip, R for masked feature reconstruction, C

for clip-order prediction, and S for temporal feature shift.

videos. Unless otherwise stated, the results of Ji et al. [20]

are all based on BMN.

4.3. Ablation Study

In this section, we present ablation studies of several

components of our algorithm. We use different values of

hyper-parameters that give the best result for each architec-

tural change. The THUMOS14 dataset is employed in all

studies performed in this section.

Complementarity between components. We further con-

duct detailed ablation studies to evaluate different compo-

nents of the proposed framework, including temporal fea-

ture shift (S), temporal feature flip (F), clip-order prediction

(C), and masked feature reconstruction (R). Ablation stud-

ies include the following:

Vanilla BMN : All of the above four components are dis-

carded.

SSTAP - F : Only temporal feature flip perturbation is dis-

carded.

SSTAP - F - R : The temporal feature flip perturbation and

masked feature reconstruction auxiliary task are discarded.

SSTAP - F - R - C : The temporal feature flip perturbation

and the two self-supervised auxiliary tasks in the relation-

Method Label @50 @100 @200 @500 @1000

Vanilla BMN 10% 23.71 31.11 37.98 46.35 52.25

BMN + C 10% 26.47 34.77 41.95 49.24 54.57

BMN + R 10% 27.45 34.89 41.51 48.71 53.75

BMN + C + R 10% 28.45 36.13 42.60 49.34 54.99

Vanilla BMN 60% 34.88 42.11 49.76 56.76 61.15

BMN + C 60% 36.75 45.76 53.05 61.78 65.84

BMN + R 60% 37.14 45.83 53.17 61.20 65.75

BMN + C + R 60% 37.82 47.00 54.02 61.53 65.93

Table 5: Ablation study of the effectiveness of self-

supervised branch. Abbreviations: R for masked feature

reconstruction, and C for clip-order prediction.
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Figure 6: Ablation comparisons. The effects of temporal

feature shift perturbation and masked feature reconstruction

auxiliary task under different hyper-parameter choices on

the THUMOS14 dataset.

aware self-supervised branch are discarded.

SSTAP - R - C : The two self-supervised auxiliary tasks in

the relation-aware self-supervised branch are discarded.

SSTAP - S - R - C : The temporal feature shift perturbation

and the two self-supervised auxiliary tasks in the relation-

aware self-supervised branch are discarded.

Table 4 demonstrates that the four components are com-

plementary in terms of improving performance. In particu-

lar, when combined with the four components (i.e., SSTAP

(ALL)), the best performance is achieved. And the results

for SSTAP - F - R - C and SSTAP - S - R - C show that our

single perturbation also performs very well.

Effectiveness of self-supervised branch. As illustrated

in Table 5, we compare the results of applying clip-order

prediction (C) and masked feature reconstruction (R) di-

rectly to the original BMN. That shows the effectiveness

of the two self-supervised auxiliary tasks for performance

improvement. Note that, both labeled and unlabeled data

are used for training the auxiliary tasks.

Selection of hyper-parameters. Figure 6 illustrates the

comparison of the selection of hyper-parameters. It can be

observed that the adjustment of parameters has a certain ef-

fect on the performance of AR@50 on THUMOS14, mean-

while, µ = 2−4 and ω = 0.3 appear to be the optimal oper-

ating points.

4.4. Action Detection with Our Proposals

To further examine the quality of the proposals gener-

ated by SSTAP, we put the proposals in a temporal action

detection framework. The evaluation metric of temporal

action detection is mAP, which calculates the Average Pre-

cision under multiple IoU thresholds for each action cate-
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Method Reference 0.5 0.75 0.95 Average

SCC [19] CVPR’17 40.00 17.90 4.70 21.70

CDC [38] CVPR’17 45.30 26.00 0.20 23.80

R-C3D [51] ICCV’17 26.80 - - -

BSN [31]+ [55] ECCV’18 46.45 29.96 8.02 30.03

TAL-Net [9] CVPR’18 38.23 18.30 1.30 20.22

P-GCN [54] ICCV’19 48.26 33.16 3.27 31.11

G-TAD [52]+ [55] CVPR’20 50.36 34.60 9.02 34.09

BC-GNN [1]+ [55] ECCV’20 50.56 34.75 9.37 34.26

BMN@60%+ [55] ICCV’19 49.50 33.68 8.15 33.17

BMN@90%+ [55] ICCV’19 49.94 33.73 8.23 33.74

BMN@100%+ [55] ICCV’19 50.07 34.78 8.29 33.85

Ji et al. @60%+ [55] ICCV’19 49.82 34.53 7.01 33.52

Ji et al. @90%+ [55] ICCV’19 50.24 34.97 7.35 34.13

Ji et al. @100%+ [55] ICCV’19 50.55 35.01 7.58 34.23

SSTAP@60%+ [55] - 50.14 34.92 7.43 34.01

SSTAP@90%+ [55] - 50.64 35.12 7.80 34.35

SSTAP@100%+ [55] - 50.72 35.28 7.87 34.48

Table 6: Action detection results on the validation set of

ActivityNet v1.3, where our proposals are combined with

video-level classification results generated by [55].

gory. On ActivityNet v1.3, the IoU thresholds for mAP are

set to {0.5, 0.75, 0.95}, and the IoU thresholds for average

mAP are set to [0.5 : 0.05 : 0.95]. On THUMOS14, the IoU

thresholds for mAP are set to {0.3, 0.4, 0.5, 0.6, 0.7}.

We adopt the two-stage “detection by classifying propos-

als” temporal action detection framework to combine our

proposals with action classifiers. For fair comparisons, fol-

lowing [31, 29, 52, 1], on ActivityNet v1.3, we adopt top-1

video-level classification results generated by method [55]

and use confidence scores of BMN proposals for detection

results retrieving. On THUMOS14, following BMN [29],

we also use both top-2 video-level classification results gen-

erated by UntrimmedNet [45]. And the same classifiers are

also used for other proposal generation methods, including

SST [5], TURN [17], BSN [31], MGG [32], DBG [27], G-

TAD [52], and BC-GNN [1].

Table 6 illustrates the performance comparisons, which

are evaluated on the testing set of THUMOS14. With

only 60% of the videos labeled, our SSTAP achieves bet-

ter performance than fully-supervised BMN trained with

all labels in metrics of average mAP. Especially, with

100% of the videos labeled, our SSTAP outperforms the

fully-supervised proposal methods, namely BMN [29], G-

TAD [52], BC-GNN [1], and Ji et al. [20]. Similar results

on THUMOS14 are shown in Table 7, thus demonstrating

the effectiveness of our proposed SSTAP.

4.5. Generalization Experiments

To prove the SSTAP method is valid for other network

architectures and frameworks, we introduce SSTAP to G-

TAD [52]. G-TAD proposes to use graph convolutional

networks [22] to model temporal relationships between

each time point in the input video. As illustrated in Ta-

ble 8, introducing SSTAP to G-TAD also improves perfor-

mance. In particular, our SSTAP outperforms the strong

Method Reference 0.7 0.6 0.5 0.4 0.3

SST [5]+UNet CVPR’17 4.7 10.9 20.0 31.5 41.2

TURN [17]+UNet ICCV’17 6.3 14.1 24.5 35.3 46.3

BSN [31]+UNet ECCV’18 20.0 28.4 36.9 45.0 53.5

MGG [32]+UNet CVPR’19 21.3 29.5 37.4 46.8 53.9

DBG [27]+UNet AAAI’20 21.7 30.2 39.8 49.4 57.8

G-TAD [52]+UNet CVPR’20 23.4 30.8 40.2 47.6 54.5

BC-GNN [1]+UNet ECCV’20 23.1 31.2 40.4 49.1 57.1

BMN@60%+UNet ICCV’19 17.0 25.5 34.0 44.7 53.4

BMN@90%+UNet ICCV’19 19.7 28.9 38.2 46.8 55.5

BMN@100%+UNet ICCV’19 20.5 29.7 38.8 47.4 56.0

Ji et al. @60%+UNet ICCV’19 19.2 28.1 37.1 47.2 55.4

Ji et al. @90%+UNet ICCV’19 21.5 31.6 41.2 50.6 57.2

Ji et al. @100%+UNet ICCV’19 21.9 32.2 41.7 51.2 57.9

SSTAP@60%+UNet - 20.7 30.5 39.4 48.8 56.5

SSTAP@90%+UNet - 22.1 32.3 41.9 51.2 57.8

SSTAP@100%+UNet - 22.8 32.8 42.3 51.5 58.4

Table 7: Action detection results on the testing set of THU-

MOS14 in terms of mAP@tIoU. We compare with “pro-

posal + classification” methods, where classification results

are generated by UntrimmedNet [45].

Method Label 0.7 0.6 0.5 0.4 0.3

Vanilla G-TAD 10% 6.8 12.6 20.4 28.5 37.3

Ji et al. [20]+G-TAD 10% 9.5 17.4 25.8 34.4 43.4

SSTAP+G-TAD 10% 11.1 18.4 27.6 35.9 45.5

Vanilla G-TAD 60% 16.5 25.3 35.4 44.8 50.9

Ji et al. [20]+G-TAD 60% 20.1 29.4 39.6 47.5 53.8

SSTAP+G-TAD 60% 21.8 31.1 41.4 50.2 56.3

Vanilla G-TAD 100% 23.4 30.8 40.2 47.6 54.5

Ji et al. [20]+G-TAD 100% 21.3 31.3 41.2 49.6 55.3

SSTAP+G-TAD 100% 22.6 32.4 42.7 51.3 57.0

Table 8: Generalizing our SSTAP to G-TAD [52] in terms of

mAP@tIoU on THUMOS14. The comparison experiments

all use the same two-stream feature [46] as in G-TAD [52].

semi-supervised baseline [20] by a large margin.

5. Conclusion

In this paper, we incorporate self-supervised learning in

the semi-supervised temporal action proposal task and pro-

pose a unified SSTAP framework. Specially, we have de-

signed two simple but effective types of temporal sequential

perturbations and defined two types of self-supervised pre-

text tasks for SSTAP. We show empirically that SSTAP con-

sistently outperforms the state-of-the-art semi-supervised

methods and even matches the fully-supervised methods.

Furthermore, we indicate that our SSTAP is agnostic to

specific proposal methods and can be effectively applied to

other temporal action proposal approaches.
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