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Figure 1: Comparisons with state-of-the-art face restoration methods: HiFaceGAN [67], DFDNet [44], Wan et al. [61] and

PULSE [52] on the real-world low-quality images. While previous methods struggle to restore faithful facial details or retain

face identity, our proposed GFP-GAN achieves a good balance of realness and fidelity with much less artifacts. In addition,

the powerful generative facial prior allows us to perform restoration and color enhancement jointly. (Zoom in for best view)

Abstract

Blind face restoration usually relies on facial priors,

such as facial geometry prior or reference prior, to restore

realistic and faithful details. However, very low-quality

inputs cannot offer accurate geometric prior while high-

quality references are inaccessible, limiting the applica-

bility in real-world scenarios. In this work, we propose

GFP-GAN that leverages rich and diverse priors encapsu-

lated in a pretrained face GAN for blind face restoration.

This Generative Facial Prior (GFP) is incorporated into

the face restoration process via spatial feature transform

layers, which allow our method to achieve a good balance

of realness and fidelity. Thanks to the powerful genera-

tive facial prior and delicate designs, our GFP-GAN could

jointly restore facial details and enhance colors with just a

single forward pass, while GAN inversion methods require

image-specific optimization at inference. Extensive experi-

ments show that our method achieves superior performance

to prior art on both synthetic and real-world datasets.

1. Introduction

Blind face restoration aims at recovering high-quality

faces from the low-quality counterparts suffering from un-

known degradation, such as low-resolution [13, 48, 9],

noise [71], blur [39, 58], compression artifacts [12], etc.

When applied to real-world scenarios, it becomes more

challenging, due to more complicated degradation, diverse

poses and expressions. Previous works [9, 69, 6] typically

exploit face-specific priors in face restoration, such as fa-

cial landmarks [9], parsing maps [6, 9], facial component

heatmaps [69], and show that those geometry facial priors

are pivotal to recover accurate face shape and details. How-

ever, those priors are usually estimated from input images

and inevitably degrades with very low-quality inputs in the

real world. In addition, despite their semantic guidance, the

above priors contain limited texture information for restor-

ing facial details (e.g., eye pupil).

Another category of approaches investigates reference

priors, i.e., high-quality guided faces [46, 45, 11] or facial
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component dictionaries [44], to generate realistic results

and alleviate the dependency on degraded inputs. How-

ever, the inaccessibility of high-resolution references limits

its practical applicability, while the limited capacity of dic-

tionaries restricts its diversity and richness of facial details.

In this study, we leverage Generative Facial Prior (GFP)

for real-world blind face restoration, i.e., the prior implic-

itly encapsulated in pretrained face Generative Adversarial

Network (GAN) [18] models such as StyleGAN [35, 36].

These face GANs are capable of generating faithful faces

with a high degree of variability, and thereby providing rich

and diverse priors such as geometry, facial textures and col-

ors, making it possible to jointly restore facial details and

enhance colors (Fig. 1). However, it is challenging to incor-

porate such generative priors into the restoration process.

Previous attempts typically use GAN inversion [19, 54, 52].

They first ‘invert’ the degraded image back to a latent code

of the pretrained GAN, and then conduct expensive image-

specific optimization to reconstruct images. Despite visu-

ally realistic outputs, they usually produce images with low

fidelity, as the low-dimension latent codes are insufficient to

guide accurate restoration.

To address these challenges, we propose the GFP-GAN

with delicate designs to achieve a good balance of realness

and fidelity in a single forward pass. Specifically, GFP-

GAN consists of a degradation removal module and a pre-

trained face GAN as facial prior. They are connected by a

direct latent code mapping, and several Channel-Split Spa-

tial Feature Transform (CS-SFT) layers in a coarse-to-fine

manner. The proposed CS-SFT layers perform spatial mod-

ulation on a split of features and leave the left features to

directly pass through for better information preservation,

allowing our method to effectively incorporate generative

prior while retraining high fidelity. Besides, we introduce

facial component loss with local discriminators to further

enhance perceptual facial details, while employing identity

preserving loss to further improve fidelity.

We summarize the contributions as follows. (1) We

leverage rich and diverse generative facial priors for blind

face restoration. Those priors contain sufficient facial tex-

tures and color information, allowing us to jointly perform

face restoration and color enhancement. (2) We propose

the GFP-GAN framework with delicate designs of architec-

tures and losses to incorporate generative facial prior. Our

GFP-GAN with CS-SFT layers achieves a good balance of

fidelity and texture faithfulness in a single forward pass. (3)

Extensive experiments show that our method achieves su-

perior performance to prior art on both synthetic and real-

world datasets.

2. Related Work

Image Restoration typically includes super-resolution [13,

48, 60, 49, 74, 68, 22, 50], denoising [71, 42, 26], de-

blurring [65, 39, 58] and compression removal [12, 21].

To achieve visually-pleasing results, generative adversarial

network [18] is usually employed as loss supervisions to

push the solutions closer to the natural manifold [41, 57, 64,

7, 14], while our work attempts to leverage the pretrained

face GANs as generative facial priors (GFP).

Face Restoration. Based on general face hallucination [5,

30, 66, 70], two typical face-specific priors: geometry pri-

ors and reference priors, are incorporated to further improve

the performance. The geometry priors include facial land-

marks [9, 37, 77], face parsing maps [58, 6, 9] and facial

component heatmaps [69]. However, 1) those priors require

estimations from low-quality inputs and inevitably degrades

in real-world scenarios. 2) They mainly focus on geom-

etry constraints and may not contain adequate details for

restoration. Instead, our employed GFP does not involve

an explicit geometry estimation from degraded images, and

contains adequate textures inside its pretrained network.

Reference priors [46, 45, 11] usually rely on reference

images of the same identity. To overcome this issue, DFD-

Net [44] suggests to construct a face dictionary of each

component (e.g., eyes, mouth) with CNN features to guide

the restoration. However, DFDNet mainly focuses on com-

ponents in the dictionary and thus degrades in the regions

beyond its dictionary scope (e.g., hair, ears and face con-

tour), instead, our GFP-GAN could treat faces as a whole

to restore. Moreover, the limited size of dictionary restricts

its diversity and richness, while the GFP could provide rich

and diverse priors including geometry, textures and colors.

Generative Priors of pretrained GANs [34, 35, 36, 3] is

previously exploited by GAN inversion [1, 76, 54, 19],

whose primary aim is to find the closest latent codes given

an input image. PULSE [52] iteratively optimizes the latent

code of StyleGAN [35] until the distance between outputs

and inputs is below a threshold. mGANprior [19] attempts

to optimize multiple codes to improve the reconstruction

quality. However, these methods usually produce images

with low fidelity, as the low-dimension latent codes are in-

sufficient to guide the restoration. In contrast, our proposed

CS-SFT modulation layers enable prior incorporation on

multi-resolution spatial features to achieve high fidelity. Be-

sides, expensive iterative optimization is not required in our

GFP-GAN during inference.

Channel Split Operation is usually explored to design

compact models and improve model representation abil-

ity. MobileNet [28] proposes depthwise convolutions and

GhostNet [23] splits the convolutional layer into two parts

and uses fewer filters to generate intrinsic feature maps.

Dual path architecture in DPN [8] enables feature re-usage

and new feature exploration for each path, thus improving

its representation ability. A similar idea is also employed

in super-resolution [75]. Our CS-SFT layers share the sim-

ilar spirits, but with different operations and purposes. We

adopt spatial feature transform [63, 55] on one split and
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Figure 2: Overview of GFP-GAN framework. It consists of a degradation removal module (U-Net) and a pretrained

face GAN as facial prior. They are bridged by a latent code mapping and several Channel-Split Spatial Feature Transform

(CS-SFT) layers. During training, we employ 1) intermediate restoration losses to remove complex degradation, 2) Facial

component loss with discriminators to enhance facial details, and 3) identity preserving loss to retain face identity.

leave the left split as identity to achieve a good balance of

realness and fidelity.

Local Component Discriminators. Local discriminator is

proposed to focus on local patch distributions [32, 47, 62].

When applied to faces, those discriminative losses are im-

posed on separate semantic facial regions [43, 20]. Our in-

troduced facial component loss also adopts such designs but

with a further style supervision based on the learned dis-

criminative features.

3. Methodology

3.1. Overview of GFPGAN

We describe GFP-GAN framework in this section. Given

an input facial image x suffering from unknown degra-

dation, the aim of blind face restoration is to estimate a

high-quality image ŷ, which is as similar as possible to the

ground-truth image y, in terms of realness and fidelity.

The overall framework of GFP-GAN is depicted in

Fig. 2. GFP-GAN is comprised of a degradation removal

module (U-Net) and a pretrained face GAN (such as Style-

GAN2 [36]) as prior. They are bridged by a latent code

mapping and several Channel-Split Spatial Feature Trans-

form (CS-SFT) layers. Specifically, the degradation re-

moval module is designed to remove complicated degrada-

tion, and extract two kinds of features, i.e. 1) latent fea-

tures Flatent to map the input image to the closest latent

code in StyleGAN2, and 2) multi-resolution spatial features

Fspatial for modulating the StyleGAN2 features.

After that, Flatent is mapped to intermediate latent codes

W by several linear layers. Given the close latent code to

the input image, StyleGAN2 could generate intermediate

convolutional features, denoted by FGAN. These features

provide rich facial details captured in the weights of pre-

trained GAN. Multi-resolution features Fspatial are used to

spatially modulate the face GAN features FGAN with the

proposed CS-SFT layers in a coarse-to-fine manner, achiev-

ing realistic results while preserving high fidelity.

During training, except for the global discriminative loss,

we introduce facial component loss with discriminators to

enhance the perceptually significant face components, i.e.,

eyes and mouth. In order to retrain identity, we also employ

identity preserving guidance.

3.2. Degradation Removal Module

Real-world blind face restoration faces with complicated

and severer degradation, which is typically a mixture of

low-resolution, blur, noise and JPEG artifacts. The degra-

dation removal module is designed to explicitly remove the

above degradation and extract ‘clean’ features Flatent and

Fspatial, alleviating the burden of subsequent modules. We

adopt the U-Net [56] structure as our degradation remove

module, as it could 1) increase receptive field for large blur

elimination, and 2) generate multi-resolution features. The

formulation is as follows:

Flatent,Fspatial = U-Net(x). (1)

The latent features Flatent is used to map the input image to

the closest latent code in StyleGAN2 (Sec. 3.3). The multi-

resolution spatial features Fspatial are used to modulate the

StyleGAN2 features (Sec. 3.4).

In order to have an intermediate supervision for remov-

ing degradation, we employ the L1 restoration loss in each

resolution scale in the early stage of training. Specifically,

we also output images for each resolution scale of the U-

Net decoder, and then restrict these outputs to be close to

the pyramid of the ground-truth image.
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3.3. Generative Facial Prior and Latent Code
Mapping

A pre-trained face GAN captures a distribution over

faces in its leaned weights of convolutions, namely, genera-

tive prior [19, 54]. We leverage such pretrained face GANs

to provide diverse and rich facial details for our task. A typ-

ical way of deploying generative priors is to map the input

image to its closest latent codes Z, and then generate the

corresponding output by a pretrained GAN [1, 76, 54, 19].

However, these methods usually require time-consuming it-

erative optimization for preserving fidelity. Instead of pro-

ducing a final image directly, we generate intermediate con-

volutional features FGAN of the closest face, as it contains

more details and could be further modulated by input fea-

tures for better fidelity (see Sec. 3.4).

Specifically, given the encoded vector Flatent of the in-

put image (produced by the U-Net, Eq. 1), we first map it to

intermediate latent codes W for better preserving semantic

property i.e., the intermediate space transformed from Z

with several multi-layer perceptron layers (MLP) [76]. The

latent codes W then pass through each convolution layer in

the pre-trained GAN, and generate GAN features for each

resolution scale.

W = MLP(Flatent),

FGAN = StyleGAN(W).
(2)

Discussion: Joint Restoration and Color Enhancement.

Generative models capture diverse and rich priors beyond

realistic details and vivid textures. For instance, they also

encapsulate color priors, which could be employed in our

task for joint face restoration and color enhancement. Real-

world face images, e.g., old photos, usually have black-and-

white color, vintage yellow color, or dim color. Lively color

prior in generative facial prior allows us to perform color

enhancement including colorization [72]. We believe the

generative facial priors also incorporate conventional geo-

metric priors [9, 69], 3D priors [16], etc. for restoration and

manipulation.

3.4. ChannelSplit Spatial Feature Transform

In order to better preserve fidelity, we further use the in-

put spatial features Fspatial (produced by the U-Net, Eq. 1)

to modulate the GAN features FGAN from Eq. 2. Preserving

spatial information from inputs is crucial for face restora-

tion, as it usually requires local characteristics for fidelity

preservation, and adaptive restoration at different spatial lo-

cations of a face. Therefore, we employ Spatial Feature

Transform (SFT) [63], which generates affine transforma-

tion parameters for spatial-wise feature modulation, and has

shown its effectiveness in incorporating other conditions in

image restoration [63, 44] and image generation [55].

Specifically, at each resolution scale, we generate a pair

of affine transformation parameters (α,β) from input fea-

tures Fspatial by several convolutional layers. After that,

the modulation is carried out by scaling and shifting the

GAN features FGAN, formulated by:

α,β = Conv(Fspatial),

Foutput = SFT(FGAN|α,β) = α⊙ FGAN + β.
(3)

To achieve a better balance of realness and fidelity, we

further propose channel-split spatial feature transform (CS-

SFT) layers, which perform spatial modulation on part of

the GAN features by input features Fspatial (contributing

to fidelity) and leave the left GAN features (contributing to

realness) to directly pass through, as shown in Fig. 2:

Foutput = CS-SFT(FGAN|α,β) (4)

= Concat[Identity(F split0
GAN ),α⊙ F

split1
GAN + β],

where F
split0
GAN and F

split1
GAN are split features from FGAN in

channel dimension, and Concat[·, ·] denotes the concatena-

tion operation.

As a result, CS-SFT enjoys the benefits of directly incor-

porating prior information and effective modulating by in-

put images, thereby achieving a good balance between tex-

ture faithfulness and fidelity. Besides, CS-SFT could also

reduce complexity as it requires fewer channels for modu-

lation, similar to GhostNet [23].

We conduct channel-split SFT layers at each resolution

scale, and finally generate a restored face ŷ.

3.5. Model Objectives

The learning objective of training our GFP-GAN con-

sists of: 1) reconstruction loss that constraints the outputs ŷ

close to the ground-truth y, 2) adversarial loss for restoring

realistic textures, 3) proposed facial component loss to fur-

ther enhance facial details, and 4) identity preserving loss.

Reconstruction Loss. We adopt the widely-used L1 loss

and perceptual loss [33, 41] as our reconstruction loss Lrec,

defined as follows:

Lrec = λl1‖ŷ − y‖1 + λper‖φ(ŷ)− φ(y)‖1, (5)

where φ is the pretrained VGG-19 network [59] and we
use the {conv1, · · · , conv5} feature maps before activa-

tion [64]. λl1 and λper denote the loss weights of L1 and

perceptual loss, respectively.

Adversarial Loss. We employ adversarial loss Ladv to en-

courage the GFP-GAN to favor the solutions in the natural

image manifold and generate realistic textures. Similar to

StyleGAN2 [36], logistic loss [18] is adopted:

Ladv = −λadvEŷ softplus(D(ŷ)) (6)

where D denotes the discriminator and λadv represents the

adversarial loss weight.

Facial Component Loss. In order to further enhance the

perceptually significant face components, we introduce fa-

cial component loss with local discriminators for left eye,
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right eye and mouth. As shown in Fig. 2, we first crop in-

terested regions with ROI align [24]. For each region, we

train separate and small local discriminators to distinguish

whether the restore patches are real, pushing the patches

close to the natural facial component distributions.

Inspired by [62], we further incorporate a feature style

loss based on the learned discriminators. Different from

previous feature matching loss with spatial-wise con-

straints [62], our feature style loss attempts to match the

Gram matrix statistics [15] of real and restored patches.

Gram matrix calculates the feature correlations and usu-

ally effectively captures texture information [17]. We ex-

tract features from multiple layers of the learned local dis-

criminators and learn to match these Gram statistic of inter-

mediate representations from the real and restored patches.

Empirically, we found the feature style loss performs better

than previous feature matching loss in terms of generating

realistic facial details and reducing unpleasant artifacts.

The facial component loss is defined as follows. The first

term is the discriminative loss [18] and the second term is

the feature style loss:

Lcomp =
∑

ROI

λlocal EŷROI
[log(1−DROI(ŷROI))]+

λfs ‖Gram(ψ(ŷROI))− Gram(ψ(yROI))‖1

(7)

where ROI is region of interest from the component collec-

tion {left eye, right eye, mouth}. DROI is the local dis-

criminator for each region. ψ denotes the multi-resolution

features from the learned discriminators. λlocal and λfs
represent the loss weights of local discriminative loss and

feature style loss, respectively.

Identity Preserving Loss. We draw inspiration from [31]

and apply identity preserving loss in our model. Similar to

perceptual loss [33], we define the loss based on the fea-

ture embedding of an input face. Specifically, we adopt

the pretrained face recognition ArcFace [10] model, which

captures the most prominent features for identity discrim-

ination. The identity preserving loss enforces the restored

result to have a small distance with the ground truth in the

compact deep feature space:

Lid = λid‖η(ŷ)− η(y)‖1, (8)

where η represents face feature extractor, i.e. ArcFace [10]

in our implementation. λid denotes the weight of identity

preserving loss.

The overall model objective is a combination of the

above losses:

Ltotal = Lrec + Ladv + Lcomp + Lid. (9)

The loss hyper-parameters are set as follows: λl1 = 0.1,

λper = 1, λadv = 0.1, λlocal = 1, λfs = 200 and λid =
10.

4. Experiments

4.1. Datasets and Implementation

Training Datasets. We train our GFP-GAN on the FFHQ

dataset [35], which consists of 70, 000 high-quality images.

We resize all the images to 5122 during training.

Our GFP-GAN is trained on synthetic data that approx-

imate to the real low-quality images and generalize to real-

world images during inference. We follow the practice

in [46, 44] and adopt the following degradation model to

synthesize training data:

x = [(y ⊛ kσ) ↓r +nδ]JPEGq . (10)

The high quality image y is first convolved with Gaussian

blur kernel kσ followed by a downsampling operation with

a scale factor r. After that, additive white Gaussian noise

nδ is added to the image and finally it is compressed by

JPEG with quality factor q. Similar to [44], for each training

pair, we randomly sample σ, r, δ and q from {0.2 : 10},

{1 : 8}, {0 : 15}, {60 : 100}, respectively. We also add

color jittering during training for color enhancement.

Testing Datasets. We construct one synthetic dataset and

three different real datasets with distinct sources. All these

datasets have no overlap with our training dataset. We pro-

vide a brief introduction here.

• CelebA-Test is the synthetic dataset with 3,000

CelebA-HQ images from its testing partition [51]. The gen-

eration way is the same as that during training.

• LFW-Test. LFW [29] contains low-quality images in

the wild. We group all the first image for each identity in

the validation partition, forming 1711 testing images.

• CelebChild-Test contains 180 child faces of celebri-

ties collected from the Internet. They are low-quality and

many of them are black-and-white old photos.

• WebPhoto-Test. We crawled 188 low-quality photos

in real life from the Internet and extracted 407 faces to

construct the WebPhoto testing dataset. These photos have

diverse and complicated degradation. Some of them are

old photos with very severe degradation on both details and

color.

Implementation. We adopt the pretrained StyleGAN2 [36]

with 5122 outputs as our generative facial prior. The chan-

nel multiplier of StyleGAN2 is set to one for compact model

size. The UNet for degradation removal consists of seven

downsamples and seven upsamples, each with a residual

block [25]. For each CS-SFT layer, we use two convolu-

tional layers to generate the affine parameters α and β re-

spectively.

The training mini-batch size is set to 12. We augment

the training data with horizontal flip and color jittering. We

consider three components: left eye, right eye, mouth for

face component loss as they are perceptually significant.

Each component is cropped by ROI align [24] with face
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Figure 3: Qualitative comparison on the CelebA-Test for blind face restoration. Our GFP-GAN produces faithful details in

eyes, mouth and hair. Zoom in for best view.

Bicubic ESRGAN* GFP-GAN GTRCAN*

Figure 4: Comparison on the CelebA-Test for ×4 face

super-resolution. Our GFP-GAN restores realistic teeth and

faithful eye gaze direction. Zoom in for best view.

landmarks provided in the origin training dataset. We train

our model with Adam optimizer [38] for a total of 800k it-

erations. The learning rate was set to 2 × 10−3 and then

decayed by a factor of 2 at the 700k-th, 750k-th iterations.

We implement our models with the PyTorch framework and

train them using four NVIDIA Tesla P40 GPUs.

4.2. Comparisons with Stateoftheart Methods

We compare our GFP-GAN with several state-of-the-art

face restoration methods: HiFaceGAN [67], DFDNet [44],

PSFRGAN [6], Super-FAN [4] and Wan et al. [61]. GAN

inversion methods for face restoration: PULSE [52] and

mGANprior [19] are also included for comparison. We also

compare our GFP-GAN with image restoration methods:

RCAN [74], ESRGAN [64] and DeblurGANv2 [40], and

we finetune them on our face training set for fair compar-

isons. We adopt their official codes except for Super-FAN,

for which we use a re-implementation.

For the evaluation, we employ the widely-used non-

reference perceptual metrics: FID [27] and NIQE [53].

We also adopt pixel-wise metrics (PSNR and SSIM) and

the perceptual metric (LPIPS [73]) for the CelebA-Test

with Ground-Truth (GT). We measure the identity distance

with angels in the ArcFace [10] feature embedding, where

smaller values indicate closer identity to the GT.

Synthetic CelebA-Test. The comparisons are conducted

under two settings: 1) blind face restoration whose inputs

and outputs have the same resolution. 2) 4× face super-

resolution. Note that our method could take upsampled im-

Table 1: Quantitative comparison on CelebA-Test for blind

face restoration. Red and blue indicates the best and the

second best performance. ‘*’ denotes finetuning on our

training set. Deg. represents the identity distance.

Methods LPIPS↓ FID↓ NIQE ↓ Deg.↓ PSNR↑ SSIM↑

Input 0.4866 143.98 13.440 47.94 25.35 0.6848

DeblurGANv2* [40] 0.4001 52.69 4.917 39.64 25.91 0.6952

Wan et al. [61] 0.4826 67.58 5.356 43.00 24.71 0.6320

HiFaceGAN [67] 0.4770 66.09 4.916 42.18 24.92 0.6195

DFDNet [44] 0.4341 59.08 4.341 40.31 23.68 0.6622

PSFRGAN [6] 0.4240 47.59 5.123 39.69 24.71 0.6557

mGANprior [19] 0.4584 82.27 6.422 55.45 24.30 0.6758

PULSE [52] 0.4851 67.56 5.305 69.55 21.61 0.6200

GFP-GAN (ours) 0.3646 42.62 4.077 34.60 25.08 0.6777

GT 0 43.43 4.292 0 ∞ 1

ages as inputs for face super-resolution.

The quantitative results for each setting are shown in Ta-

ble. 1 and Table. 2. On both settings, GFP-GAN achieves

the lowest LPIPS, indicating that our results is perceptually

close to the ground-truth. GFP-GAN also obtain the lowest

FID and NIQE, showing that the outputs have a close dis-

tance to the real face distribution and natural image distribu-

tion, respectively. Besides the perceptual performance, our

method also retains better identity, indicated by the smallest

degree in the face feature embedding. Note that 1) the lower

FID and NIQE of our method than GT does not indicate

that our performance is better than GT, as those ‘perceptual’

metrics are well correlated with the human-opinion-scores

on a coarse scale, but not always well correlated on a finer

scale [2]; 2) the pixel-wise metrics PSNR and SSIM are

not correlation well with the subjective evaluation of hu-

man observers [2, 41] and our model is not good at these

two metrics.

Qualitative results are presented in Fig. 3 and Fig. 4. 1)

Thanks to the powerful generative facial prior, our GFP-

GAN recovers faithful details in the eyes (pupils and eye-

lashes), teeth, etc. 2) Our method treats faces as whole in

restoration and could also generate realistic hair, while pre-

vious methods that rely on component dictionaries (DFD-

Net) or parsing maps (PSFRGAN) fail to produce faithful

hair textures (2nd row, Fig. 3). 3) GFP-GAN is capable

of retaining fidelity, e.g., it produces natural closed mouth
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Figure 5: Qualitative comparisons on three real-world datasets. Zoom in for best view.

Table 2: Quantitative comparison on CelebA-Test for 4×
face super-resolution. Red and blue indicates the best and

the second best performance. ‘*’ denotes finetuning on our

training set. Deg. represents the identity distance.

Methods LPIPS↓ FID↓ NIQE ↓ Deg.↓ PSNR↑ SSIM↑

Bicubic 0.4834 148.87 10.767 49.60 25.377 0.6985

RCAN* [74] 0.4159 93.66 9.907 38.45 27.24 0.7533

ESRGAN* [64] 0.4127 49.20 4.099 51.21 23.74 0.6319

Super-FAN [4] 0.4791 139.49 10.828 49.14 25.28 0.7033

GFP-GAN (ours) 0.3653 42.36 4.078 34.67 25.04 0.6744

GT 0 43.43 4.292 0 ∞ 1

without forced addition of teeth as PSFRGAN does (2nd

row, Fig. 3). And in Fig. 4, GFP-GAN also restores reason-

able eye gaze direction.

Real-World LFW, CelebChild and WedPhoto-Test. To

test the generalization ability, we evaluate our model on

three different real-world datasets. The quantitative re-

sults are show in Table. 3. Our GFP-GAN achieves su-

perior performance on all the three real-world datasets,

showing its remarkable generalization capability. Although

PULSE [52] could also obtain high perceptual quality

(lower FID scores), it could not retain the face identity as

Table 3: Quantitative comparison on the real-world LFW,

CelebChild, WebPhoto. Red and blue indicates the best

and the second best performance. ‘*’ denotes finetuning on

our training set. Deg. represents the identity distance.

Dataset LFW-Test CelebChild WebPhoto

Methods FID↓ NIQE ↓ FID↓ NIQE ↓ FID↓ NIQE ↓

Input 137.56 11.214 144.42 9.170 170.11 12.755

DeblurGANv2* [40] 57.28 4.309 110.51 4.453 100.58 4.666

Wan et al. [61] 73.19 5.034 115.70 4.849 100.40 5.705

HiFaceGAN [67] 64.50 4.510 113.00 4.855 116.12 4.885

DFDNet [44] 62.57 4.026 111.55 4.414 100.68 5.293

PSFRGAN [6] 51.89 5.096 107.40 4.804 88.45 5.582

mGANprior [19] 73.00 6.051 126.54 6.841 120.75 7.226

PULSE [52] 64.86 5.097 102.74 5.225 86.45 5.146

GFP-GAN (ours) 49.96 3.882 111.78 4.349 87.35 4.144

shown in Fig 5.

The qualitative comparisons are shown in Fig. 5. GFP-

GAN could jointly conduct face restoration and color en-

hancement for real-life photos with the powerful genera-

tive prior. Our method could produce plausible and realis-

tic faces on complicated real-world degradation while other

methods fail to recover faithful facial details or produces ar-
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Table 4: Ablation study results on CelebA-Test under blind

face restoration.

Configuration LPIPS↓ FID↓ NIQE ↓ Deg.↓

Our GFP-GAN with SC-SFT 0.3646 42.62 4.077 34.60

a) No spatial modulation 0.550 (↑) 60.44 (↑) 4.183 (↑) 74.76 (↑)

b) Use SFT 0.387 (↑) 47.65 (↑) 4.146(↑) 34.38 (↓)

c) w/o GFP 0.379 (↑) 48.47 (↑) 4.153 (↑) 35.04 (↑)

d) − Pyramid Restoration Loss 0.369 (↑) 45.17 (↑) 4.284 (↑) 35.50 (↑)

tifacts (especially in WebPhoto-Test in Fig 5). Besides the

common facial components like eyes and teeth, GFP-GAN

also perform better in hair and ears, as the GFP prior takes

the whole face into consideration rather than separate parts.

With SC-SFT layers, our model is capable of achieving high

fidelity. As shown in the last row of Fig. 5, most previous

methods fail to recover the closed eyes, while ours could

successfully restore them with fewer artifacts.

4.3. Ablation Studies

CS-SFT layers. As shown in Table. 4 [configuration a)] and

Fig. 6, when we remove spatial modulation layers, i.e., only

keep the latent code mapping without spatial information,

the restored faces could not retain face identity even with

identity-preserving loss (high LIPS score and large Deg.).

Thus, the multi-resolution spatial features used in CS-SFT

layers is vital to preserve fidelity. When we switch CS-SFT

layers to simple SFT layers [configuration b) in Table. 4],

we observe that 1) the perceptual quality degrades on all

metrics and 2) it preserves stronger identity (smaller Deg.),

as the input image features impose influence on all the mod-

ulated features and the outputs bias to the degraded inputs,

thus leading to lower perceptual quality. By contrast, CS-

SFT layers provide a good balance of realness and fidelity

by modulating a split of features.

Pretrained GAN as GFP. Pretrained GAN provides rich

and diverse features for restoration. A performance drop

is observed if we do not use the generative facial prior, as

shown in Table. 4 [configuration c)] and Fig. 6.

Pyramid Restoration Loss. Pyramid restoration loss is

employed in the degradation removal module and strength-

ens the restoration ability for complicated degradation in

the real world. Without this intermediate supervision, the

multi-resolution spatial features for subsequent modula-

tions may still have degradation, resulting in inferior perfor-

mance, as shown in Table. 4 [configuration d)] and Fig. 6.

Facial Component Loss. We compare the results of 1) re-

moving all the facial component loss, 2) only keeping the

component discriminators, 3) adding extra feature matching

loss as in [62], and 4) adopting extra feature style loss based

on Gram statistics [15]. It is shown in Fig 7 that component

discriminators with feature style loss could better capture

the eye distribution and restore the plausible details.

GFP-GAN b) SFT c) No GFP d) No Pyramida) No SC-SFT

Figure 6: Ablation studies on CS-SFT layers, GFP prior and

pyramid restoration loss. Zoom in for best view.

Input + D + D + fm + D + fsNo D

Figure 7: Ablation studies on facial component loss. In the

figure, D, fm, fs denotes component discriminator, feature

matching loss and feature style loss, respectively.

Input Input InputGFP-GAN GFP-GAN GFP-GAN

Figure 8: Results on dark-skinned faces.

Input GFP-GAN PSFRGAN Input GFP-GAN PSFRGAN

Figure 9: Limitations of our model. The results of PSFR-

GAN [6] are also presented.

4.4. Discussion and Limitations

Training bias. Our method performs well on most dark-

skinned faces and various population groups (Fig. 8), as

our method uses both the pretrained GAN and input image

features for modulation. Beside, we employ reconstruction

loss and identity preserving loss to restrict the outputs to re-

tain fidelity with inputs. However, when input images are

gray-scale, the face color may have a bias (last example in

Fig. 8), as the inputs do not contain sufficient color infor-

mation. Thus, a diverse and balanced dataset is in need.

Limitations. As shown in Fig. 9, when the degradation of

real images is severe, the restored facial details by GFP-

GAN are twisted with artifacts. Our method also produces

unnatural results for very large poses. This is because the

synthetic degradation and training data distribution are dif-

ferent from those in real-world. One possible way is to learn

those distributions from real data instead of merely using

synthetic data, which is left as future work.

5. Conclusion
We have proposed the GFP-GAN framework that lever-

ages the rich and diverse generative facial prior for the

challenging blind face restoration task. This prior is in-

corporated into the restoration process with channel-split

spatial feature transform layers, allowing us to achieve a

good balance of realness and fidelity. Extensive compar-

isons demonstrate the superior capability of GFP-GAN in

joint face restoration and color enhancement for real-world

images, outperforming prior art.

9175



References

[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2stylegan: How to embed images into the stylegan latent

space? In ICCV, 2019. 2, 4

[2] Yochai Blau, Roey Mechrez, Radu Timofte, Tomer Michaeli,

and Lihi Zelnik-Manor. The 2018 pirm challenge on percep-

tual image super-resolution. In ECCVW, 2018. 6

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale gan training for high fidelity natural image synthesis.

arXiv preprint arXiv:1809.11096, 2018. 2

[4] Adrian Bulat and Georgios Tzimiropoulos. Super-fan: In-

tegrated facial landmark localization and super-resolution of

real-world low resolution faces in arbitrary poses with gans.

In CVPR, 2018. 6, 7

[5] Qingxing Cao, Liang Lin, Yukai Shi, Xiaodan Liang, and

Guanbin Li. Attention-aware face hallucination via deep re-

inforcement learning. In CVPR, 2017. 2

[6] Chaofeng Chen, Xiaoming Li, Lingbo Yang, Xianhui

Lin, Lei Zhang, and Kwan-Yee K. Wong. Progressive

semantic-aware style transformation for blind face restora-

tion. arXiv:2009.08709, 2020. 1, 2, 6, 7, 8

[7] Jingwen Chen, Jiawei Chen, Hongyang Chao, and Ming

Yang. Image blind denoising with generative adversarial net-

work based noise modeling. In CVPR, 2018. 2

[8] Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin,

Shuicheng Yan, and Jiashi Feng. Dual path networks. In

NeurIPS, 2017. 2

[9] Yu Chen, Ying Tai, Xiaoming Liu, Chunhua Shen, and Jian

Yang. Fsrnet: End-to-end learning face super-resolution with

facial priors. In CVPR, 2018. 1, 2, 4

[10] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos

Zafeiriou. Arcface: Additive angular margin loss for deep

face recognition. In CVPR, 2019. 5, 6

[11] Berk Dogan, Shuhang Gu, and Radu Timofte. Exemplar

guided face image super-resolution without facial landmarks.

In CVPRW, 2019. 1, 2

[12] Chao Dong, Yubin Deng, Chen Change Loy, and Xiaoou

Tang. Compression artifacts reduction by a deep convolu-

tional network. In ICCV, 2015. 1, 2

[13] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Learning a deep convolutional network for image

super-resolution. In ECCV, 2014. 1, 2

[14] Leonardo Galteri, Lorenzo Seidenari, Marco Bertini, and Al-

berto Del Bimbo. Deep generative adversarial compression

artifact removal. In ICCV, 2017. 2

[15] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-

age style transfer using convolutional neural networks. In

CVPR, 2016. 5, 8

[16] Baris Gecer, Stylianos Ploumpis, Irene Kotsia, and Stefanos

Zafeiriou. Ganfit: Generative adversarial network fitting for

high fidelity 3d face reconstruction. In CVPR, 2019. 4

[17] Muhammad Waleed Gondal, Bernhard Schölkopf, and

Michael Hirsch. The unreasonable effectiveness of texture

transfer for single image super-resolution. In ECCV, 2018. 5

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In NeurIPS,

2014. 2, 4, 5

[19] Jinjin Gu, Yujun Shen, and Bolei Zhou. Image processing

using multi-code gan prior. In CVPR, 2020. 2, 4, 6, 7

[20] Qiao Gu, Guanzhi Wang, Mang Tik Chiu, Yu-Wing Tai, and

Chi-Keung Tang. Ladn: Local adversarial disentangling net-

work for facial makeup and de-makeup. In ICCV, 2019. 3

[21] Jun Guo and Hongyang Chao. Building dual-domain rep-

resentations for compression artifacts reduction. In ECCV,

2016. 2

[22] Yong Guo, Jian Chen, Jingdong Wang, Qi Chen, Jiezhang

Cao, Zeshuai Deng, Yanwu Xu, and Mingkui Tan. Closed-

loop matters: Dual regression networks for single image

super-resolution. In CVPR, 2020. 2

[23] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu,

and Chang Xu. Ghostnet: More features from cheap opera-

tions. In CVPR, 2020. 2, 4

[24] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In ICCV, 2017. 5

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 5

[26] Majed El Helou, Ruofan Zhou, and Sabine Süsstrunk.

Stochastic frequency masking to improve super-resolution

and denoising networks. In ECCV, 2020. 2

[27] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. Gans trained by a

two time-scale update rule converge to a local nash equilib-

rium. In NeurIPS, 2017. 6

[28] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient con-

volutional neural networks for mobile vision applications.

arXiv:1704.04861, 2017. 2

[29] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik

Learned-Miller. Labeled faces in the wild: A database for

studying face recognition in unconstrained environments.

Technical report, University of Massachusetts, Amherst,

2007. 5

[30] Huaibo Huang, Ran He, Zhenan Sun, and Tieniu Tan.

Wavelet-srnet: A wavelet-based cnn for multi-scale face su-

per resolution. In ICCV, 2017. 2

[31] Rui Huang, Shu Zhang, Tianyu Li, and Ran He. Beyond

face rotation: Global and local perception gan for photoreal-

istic and identity preserving frontal view synthesis. In CVPR,

2017. 5

[32] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa.

Globally and locally consistent image completion. ACM

Transactions on Graphics (ToG), 36(4):1–14, 2017. 3

[33] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

ECCV, 2016. 4, 5

[34] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.

Progressive growing of gans for improved quality, stability,

and variation. In ICLR, 2018. 2

[35] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks. In

CVPR, 2018. 2, 5

9176



[36] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,

Jaakko Lehtinen, and Timo Aila. Analyzing and improving

the image quality of stylegan. In CVPR, 2020. 2, 3, 4, 5

[37] Deokyun Kim, Minseon Kim, Gihyun Kwon, and Dae-Shik

Kim. Progressive face super-resolution via attention to facial

landmark. In BMVC, 2019. 2

[38] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015. 6

[39] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych,
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