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Abstract

Recently, the group maximum differentiation competition

(gMAD) has been used to improve blind image quality assess-

ment (BIQA) models, with the help of full-reference metrics.

When applying this type of approach to troubleshoot “best-

performing” BIQA models in the wild, we are faced with a

practical challenge: it is highly nontrivial to obtain stronger

competing models for efficient failure-spotting. Inspired by

recent findings that difficult samples of deep models may

be exposed through network pruning, we construct a set of

“self-competitors,” as random ensembles of pruned versions

of the target model to be improved. Diverse failures can then

be efficiently identified via self-gMAD competition. Next,

we fine-tune both the target and its pruned variants on the

human-rated gMAD set. This allows all models to learn

from their respective failures, preparing themselves for the

next round of self-gMAD competition. Experimental results

demonstrate that our method efficiently troubleshoots BIQA

models in the wild with improved generalizability.

1. Introduction

Over the years, researchers and engineers in the field of

image processing and computer vision have realized the im-

portance of blind image quality assessment (BIQA) [42].

Numerous BIQA models [3, 30, 33, 34, 47, 48] have been

proposed, focusing mainly on boosting performance on ex-

isting IQA datasets of fixed sizes. However, the superior

correlation numbers on closed test sets may not translate

in a reliable way to generalization in the open visual world

[44, 29, 36, 50]. Therefore, computational methods for prob-

ing and improving the generalizablity of BIQA models are

highly desirable.

In 2008, Wang and Simoncelli [44] described a maximum

differentiation (MAD) competition procedure to compare

IQA models in the space of all possible images. Ma et al.

[29] proposed gMAD, a discrete instantiation of the MAD

method, by restricting the search space to some specific do-

main of interest. Both methods are able to automatically and

efficiently expose failures of a relatively weak IQA model,
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Figure 1: Failure cases of a “top-performing” BIQA method

- UNIQUE [52] spotted by an ensemble of its pruned ver-

sions. (a) Best/worst-quality images according to the en-

semble, with near-identical quality reported by UNIQUE.

(b) Best/worst-quality images according to UNIQUE with

near-identical quality reported by the ensemble.

by letting it compete with a set of strong models. Wang and

Ma [43] took advantage of gMAD to identify the counterex-

amples of a BIQA model [52] using a set of stronger full-

reference IQA metrics. Furthermore, they demonstrated that

harnessing gMAD-selected failures significantly improves

the BIQA generalizability.

Despite demonstrated success, the progressive failure

identification and model rectification pipeline proposed in

[43] have two drawbacks. First, it can only be applied to the

synthetic distortion scenario, where full-reference IQA mod-

els are computable. For BIQA models in the wild with input

images containing realistic camera distortions, it is highly

nontrivial to obtain a list of stronger methods to falsify a

state-of-the-art model. Second, the competing full-reference

models are fixed throughout model development, rendering

failure-spotting less effective as the target model becomes

stronger [43].
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In this paper, we present an innovative extension of the

pipeline proposed in [43], to troubleshooting BIQA mod-

els in the wild. We start with a “top-performing” BIQA

method based on deep neural networks (DNNs) as the target

model. Instead of finding strong external methods, the key

step in our approach is to compress the target model using

network pruning techniques [15, 16, 24, 27], to construct

strong “self-competitors” from the target model. The critical

underlying rationale takes root in the recent finding [17] in

image classification. The authors observed that, network

pruning, which usually removes smallest-magnitude weights

in a trained network, does not affect all learned classes or

samples equally. Rather, it tends to disproportionally hamper

the network memorization and generalization on the long-

tailed and most difficult images from the training distribution.

In other words, those images are not “memorized” well by

the current model, and therefore easily “forgotten” when

pruning the model. In short, network pruning can effectively

spot the samples not yet well learned or represented, hence

exposing the weakness of the trained model.

Inspired by this prior wisdom [17], we propose to lever-

age network pruning in revealing superficial “shortcuts” in

(either original or pruned) BIQA models. In order to encour-

age spotting diverse failures of the target model, we create

ensembles of subsets of pruned models [53] to compete with

the target model in gMAD [29] (see Figure 1). We then

jointly fine-tune the target and all pruned variants on the

combination of the human-rated gMAD images and previ-

ously trained data. This allows all competing models to learn

from their respective failures, and prepare themselves for the

next round of gMAD competition.

Our method is the first of its kind to troubleshoot BIQA

models in the wild. The fine-tuned model shows improved

aggressiveness and resistance [29] in gMAD, comparing

with itself in previous rounds. In addition, we find that the

images in the gMAD sets exhibit increasing transferability

to falsify existing BIQA models. Our code is publicly avail-

able at https://github.com/wangzhihua520/

troubleshooting_BIQA.

2. Related Work

BIQA with DNNs Recently, there has been a surge of in-

terest in developing BIQA models based on DNNs. A major

challenge along this direction is to constrain the large set of

network parameters using a small set of human-rated images

with mean opinion scores (MOSs). Kang et al. [20] trained

a DNN with one convolution layer on 32 × 32 patches to

compensate for the lack of training data. Bosse et al. [3] de-

veloped a DNN with more convolution layers using the same

patch training strategy. Ma et al. [30] leveraged the distortion

identification as an auxiliary task to warm up the training.

Kim et al. [21] used the error map from the Minkowski

metric to regularize the training. Ma et al. [31] took a step

further, and exploited multiple full-reference metrics as noisy

annotators for training DNN-based BIQA models without

MOSs. These methods are mostly designed to handle syn-

thetic distortions [38, 26], with limited generalizability to

realistic distortions [14, 18]. To meet the cross-distortion-

scenario challenge, Zhang et al. [51] bilinearly pooled two

feature representations that are sensitive to synthetic and

realistic distortions, respectively. Zhang et al. [52] described

a simple method to train BIQA models on multiple IQA

datasets. The resulting UNIQUE model is capable of assess-

ing image quality in the laboratory and wild, and will be

used as the target model to demonstrate the feasibility of the

proposed method.

Network Pruning DNNs commonly hinge on over-

parameterization [28] and can be effectively compressed

[23]. Network pruning [15] has been an effective technique

to remove redundant computation at surprisingly little sacri-

fice of test accuracy. For example, Han et al. [15] proposed

to prune DNNs by thresholding model weights based on their

magnitudes. Li et al. [24] pruned DNN filters with small

ℓ1- or ℓ2-norms. Liu et al. [27] encouraged channel sparsity

by adding ℓ1-constraints on the batch normalization scaling

parameters. Molchanov et al. [35] estimated filter impor-

tance using Taylor expansion. He et al. [16] used geometry

median to select the most redundant filters. A latest review

is referred to [2].

Some researchers have started to rethink pruning beyond

just an ad-hoc compression tool, and to explore its in-depth

connection with DNN memorization/generalization. Frankle

et al. [12] pioneered to show that there exist highly sparse

“critical subnetworks” from the full DNNs, that can be trained

in isolation from scratch. That critical subnetwork could be

effectively identified by pruning [49, 13]. The most rele-

vant work is due to Hooker et al. [17], who showed that

pruning a trained image classifier tends to harm its perfor-

mance more on the most difficult and long-tailed training

images. This implies that pruning might effectively spot

samples not well learned by the current model, and pro-

vides novel insights to exposing a trained model’s potential

weakness. We take inspiration from [17], and improve their

method to troubleshoot BIQA models, by identifying and

leveraging quality-discriminable images between pruned and

non-pruned methods.

Active Learning The main idea of active learning is to

mine the most valuable samples to label from a large unla-

beled dataset [8]. In active learning for regression, query by

committee (QBC) selects the most disagreed samples by a

committee of models [37, 5]. Expected model change maxi-

mization (EMCM) selects samples that can cause the largest

change to the current model [6]. Greedy sampling (GS) was

originally proposed as a robust clustering method against
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Figure 2: Diagram pf troubleshooting BIQA models in the

wild. We start with a differentiable parametric target BIQA

model, seek pairs of images by letting it compete with ensem-

bles of pruned variants in gMAD [29], collect human scores

for the gMAD set, fine-tune all models on the combination

of the previously seen databases and the newly annotated

gMAD set. The target and competing models co-evolve for

the next round of troubleshooting.

outliers [1]. It was adapted to active learning in [45], with

the goal of selecting samples that can increase the diversity

of model responses. Residual active learning (RSAL) [9, 10]

trains two models to fit the target outputs and the prediction

residuals, respectively. The residual model is then used to

select samples with the maximum predicted residuals. The

procedure of identifying gMAD images [29] in this work can

be seen as a form of active sampling with the criterion that

the selected images have the greatest potential to falsify the

target model. We will compare the error-spotting efficiency

of several active learning methods in Section 4.3.

3. Proposed Method

We formulate the general problem of troubleshooting

BIQA models in the wild as follows. We assume a strong off-

the-shelf BIQA model f that has been trained on the labeled

set D with images captured in the wild. Also assumed is a

large-scale unlabeled set S, containing images with much

greater scene complexities and realistic distortions. The end

goals are to identify diverse failures of f in S with a limited

human labeling budget, and to leverage the exposed failures

to further improve the generalizability of f .

The gMAD competition [29] suggests to select images

that optimally distinguish f and a stronger competing model

because those images are most likely to be its counterex-

amples. Then the core question is “how to obtain a set of

diverse competing models for efficient failure-spotting?” In

this paper, we create strong competing models, dubbed “self-

competitors,” from the target model by network pruning [17].

After obtaining the labeled gMAD set L through subjective

testing, we jointly fine-tune the target and competing models

on the combination of D and L, attempting to learn from

spotted failures without forgetting previously seen data [25].

Figure 2 illustrates the proposed diagram of troubleshooting

BIQA models in the wild.

3.1. Self­Competitor Construction

The success of failure-spotting of the target model by

gMAD [29] depends on the strength of the competing mod-

els. Here we resort to network pruning for competing model

construction due to two reasons. First, DNN-based models

are highly overparameterized. Therefore, the performance

drop of pruned models on test sets is often insubstantial, and

can be easily recovered if fine-tuning is allowed. Second,

Hooker et al. [17] showed in the context of image classi-

fication that images that differentiate between the original

and pruned classifiers are the least-memorized and weakest-

learned ones by the original models. They appear the most

challenging for both models, and sometimes even for humans

to classify. In BIQA terms, these are likely to be selected

by gMAD as the most informative images to falsify both the

target and competing models.

Specifically, we first generate a list of pruned models

{hj}
m
j=1 from the target model f . Thanks to the prosperity

of the network pruning field, we are able to leverage a diverse

set of state-of-the-art network pruning techniques [15, 16, 24,

27, 35], with different hyperparameter settings, to encourage

diversity among pruned models. Furthermore, as ensemble

models have been shown to achieve stronger generalizability

than individual models in many fields of machine learning

[53], we create n ensemble models {gi}
n
i=1 by randomly

combining a subset of s models out of {hj}
m
j=1:

gi(x) =
1

m

m
∑

j=1

αijhj(x), i = 1, 2, . . . , n, (1)

where αij = 1 if hj is selected to create gi, and
∑

j αij = s.

In Eq. (1), {hj}
n
j=1 have been mapped to the same percep-

tual scale such that the weighted summation is legitimate.

3.2. Failure Identification

Given the large-scale unlabeled dataset S , gMAD selects

top-k pairs of images that best discriminate between the

target model f and the competing model gi:

(x̂ik, ŷik) = argmax
x,y

(gi(x)− gi(y))− (f(x)− f(y))

s.t. x, y ∈ S \ {x̂ij , ŷij}
k−1
j=1 , (2)
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(a) 56 / 42 / 10 (b) 66 / 48 / 17 (c) 14 / 58 / 37 (d) 15 / 50 / 38 (e) 66 / 48 / 30

(f) 58 / 37 / 25 (g) 51 / 29 / 20 (h) 71 / 48 / 42 (i) 26 / 38 / 69 (j) 16 / 35 / 55

Figure 3: Representative failures of the target model in gMAD. (a)-(e) Optimization results of Eq. (2) with k = 10 and

n = 10. (f)-(j) Optimization results of Eq. (3) with k = 1 and n = 120, which appear much more diverse in scene content

and distortion type. Below each image are scores from the target model / the competing models / humans.

where {x̂ij , ŷij}
k−1
j=1 is the set of k − 1 pairs of images that

have been selected. The roles of f and gi may be switched

by replacing argmax with argmin. However, recursive

optimization of Eq. (2) may simply expose different instan-

tiations of failures with the same underlying root causes (as

shown in the first row of Figure 3). To encourage spotting

diverse failures, a fine-grained version of gMAD can be

formulated as

(x̂ik, ŷik) = argmax
x,y

(gi(x)− gi(y))− (f(x)− f(y))

s.t. f(x), f(y) ∈ [a, b], and x, y ∈ S \ {x̂ij , ŷij}
k−1
j=1 , (3)

where [a, b] defines a quality level, within which f predicts

the two images x and y to have similar quality (see the sec-

ond row of Figure 3). In this case, f is regarded as the

defender, while gi is the attacker. We may select several

(non-overlapping) quality levels to cover the full quality spec-

trum. All image pairs selected by exhausting the competing

models and the quality levels form the gMAD setM, whose

size is considerably smaller than the unlabeled set S and is

adjustable to fit the available human labelling budget. In

practice, it is possible to further diversify the spotted fail-

ures inM by decreasing k and increasing n provided that

the created ensemble models differ to certain degrees (see

Figure 3). Finally, we conduct subjective testing to collect

human scores for each (x, y) ∈M, leading to four possible

results:

• Case I. Both f and gi are consistent with humans in

ranking the perceived quality of x and y. This hap-

pens because f is a top-performing model, while gi
closely resembles f as its pruned version. We may re-

duce the possibility of this outcome by increasing the

size of S and selecting more suitable network pruning

algorithms.

• Case II. gi is consistent with human perception, but

f is not. In this case, the selected (x, y) constitutes a

failure of f , and is informative for subsequent model

rectification.

• Case III. f is consistent with human perception, but gi
is not. In this case, f successfully spots a counterex-

ample of gi, which seems to deviate from the original

goal. However, it is worth noting that (x, y) is still use-

ful in improving the performance of f because we are

co-evolving f and gi in the subsequent stage of model

rectification. That is, gi is also given the opportunity to

learn from its failures, increasing the possibility of ex-

posing f ’s weaknesses in the next round of the gMAD

competition.

• Case IV. Neither f nor gi is consistent with human

perception. In this case, (x, y) manifests itself as a

double-failure result, which is the most informative in

improving the generalizability of f [17].

3.3. Model Rectification

The labeled gMAD set L exposes aspects of weaknesses

of f , and thus is useful for improving its generalization to the

real world. To avoid catastrophic forgetting [32], we choose

to combine L and previously trained dataset D, and jointly

fine-tune f and {gi}
n
i=1 on the combined set. By doing so,

all models are able to learn from their respective failures

and improve their generalizability for the next round of the

gMAD competition. We may iterate this procedure of failure

identification and model rectification several rounds, leading

to a progressive human-in-the-loop troubleshooting method

for BIQA models in the wild. We denote the target and

competing models in the first round as f (0) and {g
(0)
i }

n
i=1

respectively. In the t-th round, we fine-tune f (t−1) and

{g
(t−1)
i }ni=1 on the combination of D and L =

⋃t

j=1 L
(j).

We summarize the proposed method in Algorithm 1.
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Algorithm 1: Troubleshooting BIQA models in the

wild

Input: A training set D, a large-scale unlabeled

image set S , a target BIQA model f (0), the

number r of fine-tuning rounds

Output: A troubleshot BIQA model f (r)

1 Train/fine-tune f (0) on D

2 Prune f (0) to generate {h
(0)
j }

m
j=1

3 for j ← 1 to m do

4 Fine-tune h
(0)
j on D to recover the performance

5 end

6 L ← ∅
7 for t← 0 to r − 1 do

8 Randomly ensemble subsets of {h
(t)
j }

m
j=1 to

construct {g
(t)
i }

n
i=1

9 Compute the responses of f (t) on S

10 M(t+1) ← ∅, L(t+1) ← ∅
11 for i← 1 to n do

12 Compute the responses of g
(t)
i on S

13 Seek pairs of images associated with f (t) and

g
(t)
i by solving Eq. (3), and include them in

M(t+1)

14 end

15 Collect human scores forM(t+1) to form L(t+1)

16 L ← L
⋃

L(t+1)

17 Fine-tune f (t) on D
⋃

L
18 for j ← 1 to m do

19 Fine-tune h
(t)
j on D

⋃

L

20 end

21 end

4. Experiments

In this section, we first describe the real experimental

setups, and then provide quantitative and qualitative results

to validate the feasibility of the proposed method, followed

by an ablation study to test the failure-spotting efficiency of

our method.

4.1. Experimental Setups

Target Model f We use UNIQUE [52], a state-of-the-art

BIQA model with so far the best cross-distortion-scenario

performance to our best knowledge. We retrain it on six IQA

datasets, i.e., LIVE [38], CSIQ [22], KADID-10k [26], BID

[7], LIVE Challenge [14], and KonIQ-10k [18]. We leave

20% images for monitoring the performance changes of f

during troubleshooting.

Unlabeled Dataset S To construct the large-scale dataset

S for gMAD to seek potential failures of f , we first

Figure 4: The empirical distributions of the gMAD pairs in

(a) L(1) and (b) L(2), respectively.

download 750, 000 images from the Internet followed

by automatic pre-screening to remove duplicate and non-

photographic images. Afterward, we sample 100, 000 im-

ages with marginal distributions nearly uniform with respect

to image attributes, including bitrate, JPEG compression

ratio, brightness, colorfulness, contrast, and sharpness [40].

Finally, we down-sample the images such that the long edge

has 1, 024 pixels as a way of facilitating computational pre-

diction. The constructed S includes a wide range of realistic

camera distortions, such as sensor noise contamination, mo-

tion and out-of-focus blurring, under- and over-exposure,

contrast reduction, color cast, and a mixture of these.

Competing Models {gi}
n
i=1 To encourage the diversity of

the competing model pool, we adopt six network pruning

algorithms: oneshot magnitude pruning (OMP) [15], ℓ1-

filter pruning [24], ℓ2-filter pruning [24], TaylorFOWeight

pruning [35], network slimming [27], and FPGM pruning

[16], among which OMP is unstructured weight pruning,

and the others are filter pruning. Fine-tuning is conducted

after each model pruning method to recover the model per-

formance. In addition, we use three different pruning ratios

for each method, resulting in a total of m = 18 pruned mod-

els {hj}
18
j=1 from f . We randomly combine s = 8 out of

m = 18 pruned models, giving rises to n = 120 ensemble

models {gi}
120
i=1. Note that ensembling requires all pruned

models to use the same perceptual scale. To achieve this, we

map all model predictions onto the MOS scale [0, 100] of

the LIVE Challenge Database [14], with higher values indi-

cating better perceptual quality. The fitted mapping function

can be treated as part of the pruned model. As formulated

in Eq. (1), ensembling is implemented by simple averaging,

which gives all pruned models equal weights.

Labeled gMAD Set L To seek gMAD pairs, we set five

quality levels, roughly covering the full quality range from

“bad”, “poor”, “fair”, “good”, to “excellent”. Two types of

pairs are queried by treating the target model f in Eq. (3)

as the defender and the attacker, respectively. We retain a
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Table 1: Correlation between model predictions and MOSs

on the test set of KonIQ-10k [18], L(1) andL(2), respectively.

Top section lists two knowledge-driven models. Middle

section contains three DNN-based models retrained on the

training set of KonIQ-10k. Note that the result of f on L(2)

is obtained by fine-tuning it on both D and L(1).

SRCC KonIQ-10k L(1) L(2)

NIQE [34] 0.521 0.340 0.293
HOSA [46] 0.520 0.336 0.287
DB-CNN [51] 0.806 0.690 0.641
MetaIQA [54] 0.841 0.801 0.751
HyperIQA [39] 0.902 0.802 0.765
UNIQUE [52] (as f ) 0.862 0.570 0.553

PLCC KonIQ-10k L(1) L(2)

NIQE 0.529 0.339 0.293
HOSA 0.519 0.327 0.275
DB-CNN 0.828 0.722 0.639
MetaIQA 0.878 0.799 0.742
HyperIQA 0.921 0.807 0.741
UNIQUE (as f ) 0.875 0.565 0.555

single pair that best differentiates between f and gi at each

quality level by setting k = 1. We perform two rounds of

troubleshooting (i.e., r = 2), and the number of gMAD pairs

in L(1) and L(2) are 1, 184 and 1, 194, respectively. We

gather human data from 20 subjects in an office environment

with a calibrated display [41] using the single stimulus con-

tinuous quality rating. We process the raw subjective data

using the outlier detection and subject rejection algorithm

in [4]. We find that all subjects are valid, and 2.89% and

3.03% of ratings are outliers and subsequently removed.

Fine-Tuning Details For each round of model rectifica-

tion, we fine-tune all 19 models, including the target model

with the same optimization settings. Specifically, the Adam

method is used with a learning rate of 10−5 and a mini-batch

size of 32 - half from the previous training set D and half

from the gMAD set L. The maximum epoch number is set to

ten. During fine-tuning, we re-scale and crop the images to

384×384. We test on images of original sizes. It takes about

162 GPU hours for each round of fine-tuning as measured

on a machine with a single RTX 2080Ti.

4.2. Main Results

Failure Identification Table 1 lists the Spearman rank cor-

relation coefficient (SRCC) and Pearson linear correlation

coefficient (PLCC) results between model predictions and

MOSs on the gMAD sets L(1) and L(2). We also include the

performance on the test set of KonIQ-10k [18] for reference.

Table 2: Global ranking results of f (0), f (1) and f (2) in

gMAD. A larger aggressiveness/resistance value indicates

better performance [29].

Aggressiveness Resistance

f (0) −2.833 −0.053
f (1) 1.366 0.019
f (2) 1.467 0.034

Several aspects of the results are worth noting. First, the

correlation numbers of f on L(1) and L(2) are much lower

than that on KonIQ-10k, indicating the effectiveness of our

method in exposing failures of a “top-performing” BIQA

model. Second, despite fine-tuned on L(1), f (1) delivers

slightly worse performance on L(2) compared to f (0) on

L(1). This suggests that the co-evolving ensemble models

are able to spot stronger errors of f in the second round of

troubleshooting. Third, the identified counterexamples of f

in each round show increasing transferability to falsify five

existing BIQA models, as evidenced by larger performance

drops on L(2) than L(1).

In Figure 4, we take a look at the empirical distributions of

four possible results of gMAD pairs (see Section 3.2). Gen-

erally, ensemble models are more aggressive to falsify the

target model, and are more resistant to the target’s attacks as

well. After the first round of fine-tuning, the failure-spotting

capability of all models has been significantly improved.

Model Rectification We progressively fine-tune the tar-

get model f (0) on D
⋃

L(1) to obtain f (1), which is further

fine-tuned on D
⋃

L(1)
⋃

L(2) to obtain f (2). To verify the

relative improvements resulting from model rectification,

we let f (0), f (1), and f (2) play the gMAD game against

one other on S \ L. In each of
(

3
1

)

competitions, we select

100 gMAD pairs at five quality levels for human annotation.

As suggested in [29], we aggregate the paired comparison

results into two global ranking vectors to indicate how ag-

gressive one model is to falsify other models as the attacker

and how resistant one model is to survive other models’

attacks as the defender. Table 2 shows the global ranking

results with higher values indicating better performance. It

is easy to conclude that f continually evolves to be a bet-

ter model in terms of both aggressiveness and resistance in

gMAD without forgetting previously seen data. This verifies

the feasibility of the proposed scheme to troubleshoot BIQA

models in the wild.

We next compare f (0), f (1), and f (2) qualitatively. Figure

5 shows four representative gMAD pairs between f (0) and

f (1). It is clear that the pairs of images in (a) and (b) exhibit

substantially different quality, which is in disagreement with

f (0). In contrast, f (1) correctly predicts top images to have
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Figure 5: Representative gMAD pairs between f (0) and f (1). (a) Fixing f (0) at the low quality level. (b) Fixing f (0) at the

high quality level. (c) Fixing f (1) at the low quality level. (d) Fixing f (1) at the high quality level.
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Figure 6: Representative gMAD pairs between f (1) and f (2). (a) Fixing f (1) at the low quality level. (b) Fixing f (1) at the

high quality level. (c) Fixing f (2) at the low quality level. (d) Fixing f (2) at the high quality level.

much better quality than bottom images. When the roles of

f (0) and f (1) are reversed, f (0) still fails to expose failures

of f (1) (see (c) and (d)), suggesting that f (1) is significantly

improved by learning from the gMAD set in the first round.

Figure 6 depicts four gMAD competition results between

f (1) and f (2). In (a) and (b), we observe that f (2) is able

to falsify f (1) by finding its counterexamples which appear

dark, but the perceptual gaps between best and worst cases

are not as large as those when f (1) attacks f (0). In (c) and (d),

f (2) successfully survives the attacks from f (1), with pairs

of images of similar quality according to human perception.

This indicates that perceptual gains from the second round of

fine-tuning are not as substantial as those in the first round,

which is a common phenomenon in active learning.

We also show four gMAD pairs between f (0) and f (2) in

Figure 7 to further demonstrate the improvements of f (0) af-

ter two rounds of troubleshooting. f (2) favors the top images

in (a) and (b), which is consistent with human judgments,

suggesting that f (2) successfully attacks f (0). f (0) fails to

penalize the top image in (c) and (d), which are spotted by

f (2). This further validates the improved generalizability of

f to the real world.

4.3. Ablation Study

In this subsection, we show that gMAD sampling in our

method has stronger failure-spotting capability compared
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Figure 7: Representative gMAD pairs between f (0) and f (2). (a) Fixing f (0) at the low quality level. (b) Fixing f (0) at the

high quality level. (c) Fixing f (2) at the low quality level. (d) Fixing f (2) at the high quality level.

Table 3: Comparison of the failure-spotting efficiency be-

tween gMAD sampling and five active learning methods

on the SPAQ database [11]. A lower correlation coefficient

indicates better performance.

Method SRCC PLCC

Random 0.729 0.776
QBC 0.180 0.334
RSAL 0.629 0.700
EMCM 0.547 0.584
GS 0.395 0.392
Ours 0.137 0.297

to five active learning methods for regression: random sam-

pling, QBC [37], EMCM [6], RSAL [9, 10], and GS [1].

We conduct experiments on the smartphone photography

attribute and quality (SPAQ) dataset [11], which contains

11, 125 human-rated images captured by 66 smartphones.

We sample a subset of 200 images by each method, and com-

pute the SRCC and PLCC between MOSs and predictions

by f (0) (i.e., UNIQUE [52]). Table 3 shows the results, with

a lower correlation coefficient indicating better performance.

As can be seen, the images selected by gMAD [29] lead to

the worst performance of f (0), among all methods, which

shows the failure-spotting capability of the proposed gMAD

sampling.

5. Conclusion

We have introduced a computational method for pro-

gressively troubleshooting BIQA models in the wild. The

key to success of our method is to construct strong “self-

competitors” as random ensembles of pruned versions of a

“top-performing” target model. We have demonstrated the

effectiveness of the ensemble models in exposing diverse

counterexamples of the target model in the gMAD competi-

tion. A second advantage of our method is the flexibility to

co-evolve the target and competing models, which allows all

models to learn from their respective failures, making pro-

gressively troubleshooting the target model more effective.

Our work extends a new line of research in BIQA with

many important topics to be explored. For example, the

current work only performs two rounds of troubleshooting

due to the limited human labeling budget. Nevertheless, it is

interesting to mathematically analyze the convergence of the

proposed method or come up with a practical stop criterion

to guide the setting of the fine-tuning round. Moreover, the

computational complexity of constructing competing mod-

els, i.e., pruning followed by fine-tuning, is relatively high.

It is thus worth exploring more computationally efficient

methods, e.g., snapshot ensembles [19] for competing model

construction. Another future direction is to extend the cur-

rent work to troubleshoot BIQA models in the laboratory

and wild, towards universal and generalizable BIQA.
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