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Abstract

Unsupervised feature learning has made great strides

with contrastive learning based on instance discrimina-

tion and invariant mapping, as benchmarked on curated

class-balanced datasets. However, natural data could be

highly correlated and long-tail distributed. Natural between-

instance similarity conflicts with the presumed instance dis-

tinction, causing unstable training and poor performance.

Our idea is to discover and integrate between-instance

similarity into contrastive learning, not directly by instance

grouping, but by cross-level discrimination (CLD) between

instances and local instance groups. While invariant map-

ping of each instance is imposed by attraction within its

augmented views, between-instance similarity could emerge

from common repulsion against instance groups.

Our batch-wise and cross-view comparisons also greatly

improve the positive/negative sample ratio of contrastive

learning and achieve better invariant mapping. To effect both

grouping and discrimination objectives, we impose them on

features separately derived from a shared representation.

In addition, we propose normalized projection heads and

unsupervised hyper-parameter tuning for the first time.

Our extensive experimentation demonstrates that CLD

is a lean and powerful add-on to existing methods such

as NPID, MoCo, InfoMin, and BYOL on highly correlated,

long-tail, or balanced datasets. It not only achieves new

state-of-the-art on self-supervision, semi-supervision, and

transfer learning benchmarks, but also beats MoCo v2 and

SimCLR on every reported performance attained with a

much larger compute. CLD effectively brings unsupervised

learning closer to natural data and real-world applications.

Our code is publicly available at: https://github.com/frank-

xwang/CLD-UnsupervisedLearning.

1. Introduction

Representation learning aims to extract latent or semantic

information from raw data. Typically, a model is first trained

on a large-scale annotated dataset [34] and then tuned on

a small-scale dataset for a downstream task [25]. As the

model gets bigger and deeper [26, 29], more annotated data

are needed; supervised pre-training is no longer viable.

Self-supervised learning [13, 44, 63, 41, 14, 39] gets

around labeling with a pre-text task which does not require

annotations and yet would be better accomplished with se-

mantics. For example, to predict the color of an object from

its grayscale image does not require labeling; however, do-

ing it well would require a sense of what the object is. The

biggest drawback is that pre-text tasks are domain-specific

and hand-designed, and they are not directly related to down-

stream semantic classification.

Unsupervised contrastive learning has emerged as a direct

winning alternative [53, 64, 58, 6, 24]. The training objec-

tive and the downstream classification are aligned on discrim-

ination, albeit at different levels of granularities: training is

to discriminate known individual instances, whereas testing

is to discriminate unknown groups of instances.

Contrastive learning approaches have made great strides

with two ideas: invariant mapping [23] and instance discrim-

ination [53]. That is, the learned representation should be 1)

stable for certain transformed versions of an instance, and

2) distinctive for different instances. Both aspects can be

formulated without labels, and the feature learned appears to

automatically capture semantic similarity, as benchmarked

by downstream classification on standard datasets such as CI-

FAR100 and ImageNet [6]. However, these datasets are cu-

rated with distinctive and class-balanced instances, whereas

natural data could be highly correlated within the class (e.g.,

repeats) and long-tail distributed across classes.

Natural between-instance similarity demands instance

grouping not instance discrimination, where all the instances

are presumed different. Consequently, feature learning by

instance discrimination is unstable and under-performing

without instance grouping, whereas instance grouping based

on the feature learned without instance discrimination is eas-

ily trapped into degeneracy. Ad-hoc tricks [3, 4] and mutual

information maximization with a uniform class distribution

prior [32] have been used to prevent feature degeneracy.

We propose to discover and integrate between-instance

similarity into contrastive learning, not directly by instance

grouping, e.g., by imposing group-level discrimination as
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Figure 1: Our unsupervised feature learning discovers simi-

lar instances and integrates grouping into instance-level dis-

crimination, outperforming the state-of-the-art (SOTA) clas-

sifiers on highly correlated, long-tail, or balanced datasets.

a) Instance discrimination presumes all instances distinctive:

Instance xi attracts (↔) its augmented version x′
i and repels

(>−<) all other instances including those highly similar ones.

b) We propose cross-level discrimination (CLD) between

instance xi and local groups of alternative views {x′
j}. xi

attracts (↔) the group centroid that x′
i belongs to and re-

pels (>−<) other group centroids. Visually similar instances

tend to attract/repel the same group centroids and are thus

mapped closer. c) Our CLD can be added to existing meth-

ods such as NPID [53], MoCo [24], MoCo v2 [7], InfoMin

[49] and BYOL [21]. It consistently provides a significant

performance boost on highly correlated (HC), long-tail (LT),

and standard balanced ImageNet datasets.

DeepCluster [3, 4] or by regulating instance-level discrimi-

nation based on the grouping outcome as Local Aggregation

(LA) [64], but by imposing cross-level discrimination (CLD)

between instances and local instance groups.

Contrastive learning is built upon dual forces of attraction

and repulsion [23]. Existing methods generally assume repul-

sion between different instances and attraction within known

groupings of instances, e.g., between augmented views of

the same data instances [53, 64, 24], or between data cap-

tured from different times, views, or modalities of the same

physical instances [42, 1, 50, 48].

Feature learning with between-instance similarity calls

for attraction within unknown groupings, not the universal

between-instance repulsion (Fig. 1a). An chicken-and-egg

challenge is to discover such groupings for feature learning

while the feature for the groupings is still to be developed.

Our key insight is that grouping could result from not just

attraction, but also common repulsion. While invariant map-

ping is achieved by within-instance similarity from attraction

across augmented views, between-instance similarity can

emerge from repulsion against common instance groups, the

centroids of which are more stable in the developing feature

space. That is, to discover the most discriminative feature

that also respects natural instance grouping, we desire each

instance to attract the closest group related by augmentation

and repel groups of other instances that are far from it.

In our approach (Fig. 1b), between-instance similarity, un-

known a priori, is not captured directly as attraction between

instances, but by more likely common attraction and repul-

sion between each instance and instance group centroids.

By pulling an instance towards and pushing it against more

stable instance groups, similar instances get mapped closer

in the feature space. To effect both grouping and discrimina-

tion objectives on feature learning, we also impose them on

features separately derived from a shared representation.

Such an interplay between attraction and repulsion has

been utilized to model perceptual popout [60, 2], as well

as simultaneous image segmentation and depth segregation

[59, 38]. However, those works are prior to deep learning

and aim at grouping pixels based on certain fixed pixel-level

feature such as edges, whereas our work aims at learning the

image-level feature discriminatively.

We add CLD to popular state-of-the-art (SOTA) unsu-

pervised feature learning approaches (Fig. 1c), e.g., NPID

[53], MoCo [24], InfoMin [49] (all three based on instance

discrimination), and BYOL [21] (focusing only on invariant

mapping without instance discrimination). CLD delivers a

significant performance boost not only on highly correlated,

long-tail, and balanced datasets, but also on all the self-

supervision, semi-supervision, and transfer learning bench-

marks under fair comparison settings [53, 24, 62].

Our work makes three major contributions. 1) We ex-

tend unsupervised feature learning to natural data with high

correlation and long-tail distributions. 2) We propose cross-

level discrimination between instances and local groups, to

discover and integrate between-instance similarity into con-

trastive learning. We also propose normalized projection

heads and unsupervised hyper-parameter tuning. 3) Our

experimentation demonstrates that adding CLD to existing

methods has an negligible overhead and yet delivers a sig-

nificant boost. It achieves new SOTA on all the benchmarks,

and beats MoCo v2 [7] and SimCLR [6] on every reported

performance attained with a much larger compute.

2. Related Works

Unsupervised representation learning [13, 44, 63, 41, 14,

35, 31, 19, 61] aims to learn features transferable to down-

stream tasks. Our work is closely related to contrastive

learning and unsupervised feature learning with grouping.

Contrastive learning maps positive samples closer and neg-

ative samples apart in the feature space [53, 39, 48, 24, 7, 6].
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Positive samples come from augmented views of each in-

stance, whereas negative ones come from different instances.

The key distinction among existing methods lies in how these

samples are obtained and maintained during learning.

Batch methods [6] draw samples from the current mini-

batch with the same encoder, updated end-to-end with back-

propagation. Memory-bank methods [53, 39] draw sam-

ples from a memory bank that stores the prototypes of all the

instances computed previously. Hybrid methods [24, 7]

encode positive samples by a momentum-updated encoder

and maintain negative samples in a queue.

Instance discrimination methods presume distinctive in-

stances. Their performance drops on natural data that are

highly correlated or long-tail distributed, e.g., consecutive

frames in a video, or different views of the same instance.

Note that our setting is completely unsupervised and differ-

ent from learning representation across views [1, 50, 48]:

We have mixed data without any object or view labels.

Feature learning with grouping exploits natural organiza-

tion of data [54, 55, 4, 64]. Unlike self-supervised learning

[44, 41, 19], it does not require domain knowledge [3].

Earlier works restrict learning to linear feature transfor-

mations. DisCluster [10, 12] and DisKmeans [57] iteratively

apply K-means to generate cluster labels and then use linear

discriminant analysis (LDA) to select the most discriminative

subspace. [56] applies LDA along with spectral clustering

[52]. [40] uses linear regression as a regularization term to

handle out-of-sample data in spectral clustering.

Nonlinear feature transformations have also been stud-

ied. [47] applies a deep sparse autoencoder to a normalized

graph similarity matrix and performs K-means on the latent

representation. [51] implements t-SNE embedding with a

deep neural network. Deep Embedded Clustering [54] si-

multaneously learns cluster centroids and feature mapping

such that centroid-based soft assignments in the embedding

matches a desirable target distribution.

Recent works jointly optimize the feature and the cluster

assignment. DeepCluster [3, 4] gets pseudo-class labels

from global clustering and applies supervised learning to

iteratively fine-tune the model, whereas our CLD incorpo-

rates local clustering into contrastive metric learning. Local

Aggregation (LA) [64] identifies a local neighbourhood of

each instance through clustering, and restricts instance-level

discrimination within individual neighbourhoods, whereas

CLD looks beyond local neighbourhoods and conducts cross-

level instance-group discrimination. PCL [36] is a con-

current work that compares instance features with group

centroids which are obtained through global clustering per

epoch, whereas our CLD uses local clustering per batch and

compares instance-group features within the batch. Global

clusters not only takes more time to compute during training,

but conceptually also do not align with classes in down-

stream tasks. Empirically, PCL gains much over MoCo but

not over MoCo v2 [36]. SegSort [30] extends representa-

tion learning from classification to segmentation. It learns

a feature per pixel, and assumes that all the pixels in the

same region form a cluster in the feature space. SegSort uses

one common feature and contrasts each pixel with cluster

centroids in the feature from the same-view, whereas our

CLD uses two separate features and contrasts each image

with cluster centroids in the feature from a different view.

Discussions. While clustering on a fixed feature is well

studied [17], clustering with an adapting feature is a tricky

model selection problem: 1) Clustering could fall into trivial

solutions where most samples are assigned to a single cluster,

trapping feature learning into degeneracy [3]. 2) Without

any external supervision, it is unclear how to ensure that the

learned feature captures latent semantics.

Our work combines contrastive learning and grouping in

a single framework, by expanding discrimination between

instances to that between instances and local groups. Dis-

crimination prevents feature learning from degeneracy, while

grouping improves stability and helps instance-level discrim-

ination see beyond the finest granularity. With these two as-

pects integrated, our CLD significantly improves the learned

representation for downstream classification.

3. Learning with Cross-Level Discrimination

Given n images, we regard instance xi as a view obtained

by a certain transformation (e.g. cropping) of the i-th image.

Let xi and x′
i denote two different views of the i-th instance.

Contrastive learning [23, 53, 24, 48, 42, 6] aims to learn

a mapping function f such that in the f(x) feature space,

instance xi is 1) close to positive sample x′
i (invariant map-

ping), and (2) far from negative sample xj (with j 6= i) of

any other instances (instance discrimination).

We model f by a convolutional neural network (CNN)

with parameters θ, mapping x onto a d-dimensional hyper-

sphere such that ‖f(x)‖ =1. Let f , f+, f− denote the

feature for an instance and its positive / negative samples

respectively. We optimize θ by minimizing loss C over all n

instances so that f attracts f+ and repels f−.
instance-centric contrastive loss:

C
(

fi, f
+
i , f

−
6=i

)

=− log
exp

<fi,f
+
i

>

T

exp
<fi,f

+
i

>

T
+

∑

j 6=i

exp
<fi,f

−
j

>

T

(1)

Temperature T is a hyperparameter regulating what distance

is close. C is the noise contrastive estimation (NCE) [22]

of softmax instance classification loss [53], and it can be

viewed as maximizing a lower bound of mutual information

(MI) between samples of the same instances [43, 23, 42].

Implementation of (fi, f
+
i , f−

6=i) during training. For

sample xi, the self feature is fi = f(xi), whereas positive

feature f+
i and negative feature f−

6=i come from a memory

bank v that holds the representative feature for {xi}
n
i=1. It
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Figure 2: Method overview. Our goal is to learn representa-

tion f(x) given image x and its alternative view x′ from data

augmentation. We fork two branches from f : fine-grained

instance branch fI and coarse-grained group branch fG.

All the computation is mirrored and symmetrical with re-

spect to different views of the same instance. 1) Instance

Branch: We apply contrastive loss (two bottom C’s) be-

tween fI(xi) and a global memory bank {vi}, which holds

the prototype for xi, computed from the average feature of

the augmented set of xi. 2) Group Branch: We perform

local clustering of fG(xi) for a batch of instances to find k

centroids, {M1, . . . ,Mk}, with instance i assigned to cen-

troid Γ(i). Their counterparts in the alternative view are

fG(x
′
i), M

′, and Γ′. 3) Cross-Level Discrimination: We

apply contrastive loss (two top C’s) between feature fG(xi)
and centroids M ′ according to grouping Γ′, and vice versa

for x′
i. 4) Two similar instances xi and xjwould be pushed

apart by the instance-level contrastive loss but pulled closer

by the cross-level contrastive loss, as they repel common

negative groups. Forces from branches fI and fG act on

their common feature basis f , organizing it into one that

respects both instance grouping and instance discrimination.

is computed as the average feature of all the augmented ver-

sions of xi seen so far [53, 6]. It could also be encoded by a

parametric model as in MoCo [24]. Existing methods apply

C at the instance level, between instance feature fI and its

average v: C (fI(xi), vi, v 6=i) (Fig. 2 instance branch).

Pros and cons of instance-level contrastive learning. Con-

trastive learning has greatly closed the gap with supervised

classification [53, 42, 24, 6]. However, there are 4 caveats.

1. It focuses on within-instance similarity by data augmen-

tation, oblivious of between-instance similarity.

2. It focuses on discrimination at the finest instance level,

oblivious of natural groups which often underlie down-

stream tasks’ discrimination at a coarser semantic level.

3. It presumes distinctive instances, whereas non-curated

data could contain repeats, redundant observations of the

same instance, and long-tail distributed instances across

classes in the downstream task. For feature fi, its nega-

tive features {f−
i } would thus contain highly correlated

samples which fi should ideally attract rather than repel.

4. Each instance has a high positive/negative imbalance ra-

tio (1 vs. rest); the more negatives, the larger the signal to

noise ratio [45], and the better the performance [28, 48].

However, the model also leans towards more instance dis-

crimination than invariant mapping, reducing robustness.

Feature grouping. To overcome these caveates, we step

beyond individual instances and discover how they might be

related. We acknowledge the natural grouping of instances

by finding local clusters within a batch of samples. Which

specific clustering method to use is not as critical; we apply

spherical K-means to the unit-length feature vectors.

Local clustering could be rather noisy, especially at the

early stage of learning. Instead of imposing group-level

discrimination, we validate local groupings across views

and impose consistent discrimination between individual

instances and their cross-view local groups.

Group branch. Grouping and discrimination are opposite

in nature. To effect both objectives, we fork two branches

(just one FC layer each) from feature f : fine-grained instance

branch fI and coarse-grained group branch fG (Fig. 2). We

first extract fG at the instance level in a batch, then compute

k local cluster centroids {M1, . . . ,Mk} and assign each

instance to its nearest centroid. Clustering assignment Γ(i)=
j means that instance i is assigned to centroid j.

Cross-level discrimination. Natural groups identified in

the group branch allows the expansion of positive samples

from augmented versions of an individual instance to like-

kind other instances. We also expand negative samples from

other instances to groups of their like-kind instances. We

apply local (i.e., batch-wise) contrastive loss across views

between instance feature fG(x
′
i) and group centroids M ,

i.e., C
(

fG(x
′
i),MΓ(i),M6=Γ(i)

)

and vice versa for fG(xi)
(Fig. 2). Intuitively, if local clustering Γ separates {xi} well,

when xi is replaced by its alternative view x′
i, it should still

be close to xi’s centroid MΓ(i) and far from other centroids

M 6=Γ(i). That is, instances and their local clusters should

retain their grouping relationships across views.

Comparisons across levels, instances, views are beneficial:

1. For instances clustered in the same group, instance feature

fG(xi) and fG(xj) would be attracted to the same group

centroid M or M ′ and are thus drawn closer.

2. For similar instances xi and xj not in the same clus-

ter, they likely repel common group centroids, thereby

pulling instance features fG(xi) and fG(xj) closer.

3. CLD discriminates at instance and group levels, more in

line with coarser discrimination at downstream tasks.

4. Comparisons between fG and M not only avoid direct

repulsion between similar instances, but also greatly im-

proves the positive/negative ratio for invariant mapping.

For example, the ratio on ImageNet is 1
4096 for NPID

[53]’s set-wise NCE vs. 1
255 for CLD’s batch-wise NCE.
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5. Cross-view comparisons between xi and x′
i focus the

model more on invariant mapping.

Probabilistic interpretation of CLD. Our CLD objective

can be understood as minimizing the cross entropy between

hard clustering assignment pij (as ground-truth) based on

fG(xi) and soft assignment qij predicted from fG(x
′
i) in a

different view. Since pij=1 only when j=Γ(i), we have a

loss that validates local groupings across different views:

−Ep[log q] =
∑

i

C(fG(x
′
i),MΓ(i),M6=Γ(i);TG). (2)

Total contrastive learning loss. We add CLD to instance
discrimination (with temperatures TI , TG, weight λ) in sym-
metrical terms over views xi and x′

i:

L(f ;TI , TG, λ)=
∑

i

C(fI(xi), vi, v 6=i;TI)+C(fI(x
′
i), vi, v 6=i;TI)

︸ ︷︷ ︸
instance-level discrimination

+λ
∑

i

C(fG(x
′
i),MΓ(i),M 6=Γ(i);TG)+C(fG(xi),M

′
Γ′(i),M

′
Γ′(i);TG)

︸ ︷︷ ︸
cross-level discrimination

We analyze why two feature branches are better than one

branch, where fI =fG and M is simply the group centroids

of fI(xi) or v. In that case, while the instance discriminia-

tion term would repel xi against any other instances {xj},

the CLD term would make xi attract some other instances

{xj} in the same group of xi through their group centroid.

Minimizing the two terms would lead to opposite effects no

matter what the local clustering is. Basing instance feature

fI and group feature fG as separate branches off feature f

would force f to be discriminative enough for the instance

branch yet loosely similar enough for the group branch.

Normalized projection head. Existing methods derive in-

stance feature fI(x) by mapping the latent feature f(x) onto

a unit hypersphere with first a projection head and then nor-

malization. NPID [53] and MoCo [24] use one FC layer as

a linear projection head. MoCo v2 [7], SimCLR [6], and

BYOL [21] use a multi-layer perceptron (MLP) head; it is

better for large datasets and worse for small datasets.

We propose to normalize both the FC layer weights W

and the shared feature vector f so that projecting f onto W

simply calculates their cosine similarity. The t-th component

of normalized feature N(xi) (where N=fI or N=fG) is:

Nt(xi) =<
Wt

‖Wt‖
,

f(xi)

‖f(xi)‖
> . (3)

Normalized linear (NormLinear) or MLP (NormMLP) pro-

jection heads bring additional gains to CLD. Empirically,

they help reduce feature variance from data augmentation.

4. Experiments

We use ResNet-50 for ImageNet data and ResNet-18

otherwise. We compare linear classification accuracies on

ImageNet, and follow NPID on using kNN accuracies (k=

200) for all the small-scale benchmarks. The kNN accuracies

are higher and more fitting for metric learning. Results

marked by † are obtained with released code.

We consider 3 types of datasets. 1) High-correlation:

Kitchen-HC is constructed by extracting objects in their

bounding boxes from the multi-view RGB-D Kitchen dataset

[18]. It has 11 categories with highly correlated samples and

20.8K / 4K / 14.4K instances in train / validation / test sets.

2) Long-tail: CIFAR10-LT, CIFAR100-LT and ImageNet-

LT [37]. 3) Major benchmarks: CIFAR [33], STL10 [9],

ImageNet-100 [48], ImageNet [11]. Following [58], we train

models on 5K samples in the train set and 100K samples in

the unlabeled set, and test on the test set of STL10.

4.1. Benchmarking Results

Results on high-correlation data. Having highly corre-

lated instances breaks the instance discrimination presump-

tion and causes slow or unstable training. Accuracies in

Fig. 3 and feature visualization in Fig. 4 indeed show that

CLD is much better and fast converging towards a more

distinctive feature representation. At Epoch 10, CLD outper-

forms by 40% (23% vs. 63%). CLD outperforms NPID by

9.4%, when the number of groups used in local clustering

is closer to the number of semantic classes in the down-

stream classification. Likewise, MoCo + CLD outperforms

its counterpart MoCo by 5.5%.

Results on long-tailed data. Table 1 shows that CLD out-

performs baselines by a large margin on CIFAR10-LT and

0 10 20 30 40 50 60 70 80
Epochs

10
20
30
40
50
60
70
80

kN
N 

Ac
cu

ra
cy

 (%
)

69.5% - NPID
78.9% - CLD (k=10)
75.8% - CLD (k=40)
72.3% - CLD (k=80)

Kitchen- kNN

HC Accuracy

NPID 69.5

NPID + CLD 78.9 (+9.4)

MoCo 76.1

MoCo + CLD 81.6 (+5.5)

Figure 3: Left: CLD is more accurate and fast converging

than NPID on Kitchen-HC, esp. when the number of groups

is closer to the number of classes 11. The average top-1 kNN

accuracy of 5 runs is reported. Right: CLD outperforms

NPID or MoCo on high correlation dataset Kitchen-HC.

epoch 5 epoch 50 epoch 80

  N
PI

D
O

u
rs

Figure 4: CLD has earlier and better separation between

classes (indicated by the dot color) than NPID in the t-SNE

visualization of instance feature fI(xi) on Kitchen-HC.
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CIFAR10-LT CIFAR100-LT ImageNet-LT

top1 top5 top1 top5 many/med/few top1 top5

Unsupervised

NPID [53] 32.3 74.8 10.2 29.8 47.5/21.3/6.6 29.5 51.1

NPID + CLD 41.1 78.9 21.7 44.3 52.4/25.0/8.3 32.7 55.6

vs. baseline +8.8 +4.1 +11.5 +14.5 +4.9/+3.7/+1.7 +3.2 +4.5

MoCo [24] 34.2 76.7 19.7 42.6 48.1/21.3/6.9 29.9 51.8

MoCo + CLD 43.1 80.4 25.4 50.0 53.1/24.9/9.4 33.3 57.3

vs. baseline +8.9 +3.7 +5.7 +7.4 +5.0/+3.6/+2.5 +3.4 +5.5

Supervised

CE - - - - 40.9/10.7/0.4 20.9 -

OLTR [37] - - - - 43.2/35.1/18.5 35.6 -

Table 1: CLD outperforms unsupervised baselines on long-

tailed datasets, approaching supervised cross-entropy (CE)

and OLTR [37]. The kNN (linear) classifiers are used for

CIFAR (ImageNet-LT). CLD is significantly better than su-

pervised CE on many-shot (100+), medium-shot ([20, 100)),
few-shot (20−), and gets close to OLTR.

kNN accuracies STL10 CIFAR10 CIFAR100 ImageNet100

DeepCluster - 67.6 - -

Exemplar [15] 79.3 76.5 - -

Inv. Spread [58] 81.6 83.6 - -

CMC [48] - - - 79.2

NPID [53] 79.1 80.8 51.6 75.3

NPID + CLD 83.6 86.7 57.5 79.7

vs. baseline +4.5 +5.9 +5.9 +3.6

MoCo [24] 80.8 82.1 53.1 76.6

MoCo + CLD 84.3 87.5 58.1 81.5

vs. baseline +3.5 +5.4 +5.0 +4.9

BYOL [21] - - - 75.8

BYOL + CLD - - - 81.1

vs. baseline - - - +4.7

Table 2: On self-supervised learning on small/medium-

sized benchmarks: STL10, CIFAR10, CIFAR100 and

ImageNet-100, CLD delivers consistent gains as an add-

on to various methods which use either standard contrastive

loss (e.g. MoCo [24]) or without negative pairs (e.g. BYOL

[21]). On ImageNet-100, we use our re-implemented code

for baselines as they are better than those in CMC [48]. All

baselines and their CLD add-on’s are optimized with the

same training recipe for fair comparisons. For small- and

medium-sized datasets, the nonlinear multi-layer perceptron

(MLP) head performs worse than a linear projection head.

CIFAR100-LT. On ImageNet-LT, CLD outperforms NPID

by 4.5% per top-5 accuracy, with the largest relative gain

(24%) on few-shot classes; Our unsupervised CLD even

significantly outperforms supervised plain Cross-Entropy

(CE) by 8-14% and is catching up closely with supervised

long-tail classifier OLTR (33.3% vs. 35.6%).

Results on major benchmarks. Table 2 shows that CLD

outperforms SOTA on STL10, CIFAR10, CIFAR100 and

ImageNet-100. On ImageNet, Table 3 shows that CLD con-

sistently outperforms baselines under fair comparison set-

tings: 200 training epochs, standard augmentations [53], and

comparable model sizes. Adding CLD to InfoMin instead

of MoCo produces 7.7% gain, by using an MLP projection

Figure 5: CLD top retrievals according to fI (Columns 10-

17) are less distracted by textures than NPID (Columns 2-9)

for query images (Column 1) from the ImageNet validation

set. Results are sorted by NPID’s performance. Correct re-

trievals, those in the same category as the query, are outlined

in green and wrong ones in red. NPID seems more sensi-

tive to textural appearance (e.g., Rows 1,4,5,7), first retrieve

those with similar textures or colors.

head over feature f(x), a cosine learning scheduler, extra

data augmentation [7, 6, 49], and a JigSaw branch as in PIRL

[39]. Fig. 5 shows CLD retrievals less distracted by textures.

Results on semi-supervised learning. Table 4 shows that

CLD utilizes annotations far more efficiently, outperforming

SOTA (InfoMin) by 6.1% with only 1% labeled samples.

Baselines and CLDs follow OpenSelfSup benchmarks [62]

for fair comparisons. Baseline results are copied from [62].

Transfer learning for object detection. We test the feature

transferability by fine-tuning an ImageNet trained model for

Pascal VOC object detection [16]. Table 5 shows that CLD

not only outperforms its supervised learning counterpart by

more than 6%(3%) in terms of AP in VOC07(VOC07+12),

but also surpasses current SOTA of MoCo and MoCo v2.

4.2. Further Analysis

Why CLD performs better on long-tailed data? CLD

groups similar samples and uses coarse-grained group proto-

types instead of instance prototypes. There are two conse-

quences. 1) The positive to negative sample ratio is greatly

increased from the instance branch to our group branch. For

example, while each instance is compared against 4,096 neg-

atives (as in MoCo), it is only compared against k negative

centroids in our group branch, where k ≤ 256 – our batch

size. The importance of positives increases from 1
4096 to

1
k

. CLD thus achieves better invariant mapping for all the

classes, head or tail. However, the increased ratio is more im-

portant for tail classes, as they don’t have so many instances

to rely on as head classes. 2) The imbalance between head

and tail classes in the negatives is also reduced in our group

branch. While the distribution of instances in a random

mini-batch is long-tailed, it would be more flattened across

classes after clustering. The tail-class negatives would be

better represented in the NCE loss. Fig. 6 shows that indeed

CLD has clearer class separation than MoCo.
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Methods Architecture #epoch #GPU top-1

NPID [53] R50-Linear (24M) 200 8 56.5

w/ CLD R50-Linear (24M) 200 8 60.6

MoCo [24] R50-Linear (24M) 200 8 60.6

w/ CLD R50-Linear (24M) 200 8 63.4

w/ CLD R50-NormLinear (24M) 200 8 63.8

MoCo v2 [7] R50-MLP (28M) 200 8 67.5

w/ CLD R50-MLP (28M) 200 8 69.2

w/ CLD R50-NormMLP (28M) 200 8 70.0

BYOL† [21] R50-MLP (28M) 100 128 66.5

w/ CLD‡ R50-NormMLP (28M) 100 8 69.1

InfoMin [49] R50-MLP (28M) 100 8 67.4

w/ CLD R50-MLP (28M) 100 8 69.5

w/ CLD R50-NormMLP (28M) 100 8 70.1

InfoMin [49] R50-MLP (28M) 200 8 70.1

w/ CLD R50-MLP (28M) 200 8 70.6

w/ CLD R50-NormMLP (28M) 200 8 71.5

SimCLR† [6] R50-MLP (28M) 100 128 66.5

SwAV† [5] R50-MLP (28M) 100 128 66.5

BYOL† [21] R50-MLP (28M) 100 128 66.5

SimSiam† [8] R50-MLP (28M) 100 8 68.1

SimCLR [6] R50-MLP (28M) 200 8 61.9

SimCLR† [6] R50-MLP (28M) 200 128 68.3

SwAV† [5] R50-MLP (28M) 200 128 69.1

BYOL† [21] R50-MLP (28M) 200 128 70.6

MoCo v2 [7] R50-MLP (28M) 200 8 67.5

SimSiam† [8] R50-MLP (28M) 200 8 70.0

PIRL [39] R50-Linear (24M) 800 32 63.6

CMC [48] R50L+ab-Linear (47M) 280 8 64.1

CPC v2 [27] R170-Linear (303M) 200 32 65.9

SimCLR [6] R50-MLP (28M) 800 128 69.3

MoCo v2 [7] R50-MLP (28M) 800 8 71.1

SwAV [5] R50-MLP (28M) 400 128 70.1

SimSiam† [8] R50-MLP (28M) 800 8 71.3

Table 3: On self-supervised learning on ImageNet, our

CLD and NormMLP can be added to improve existing meth-

ods and achieve SOTA under 100-/200-epoch pre-training

settings. Note that our experiments with CLD are con-

ducted with 8 RTX 2080Ti GPUs, whereas PIRL, SimCLR,

BYOL and SwAV require batch size 4,096 and 128/512

GPUs/TPUs for their original reported performance. All

the results follow the standard linear evaluation protocol as

used in [53, 24, 7, 49], except those marked by † (all copied

from [8]): The linear classifier training of SwAV [5], BYOL

[21] and SimSiam [8] uses base lr = 0.02 with a cosine

decay scheduler, batch size 4096 with a LARS optimizer,

giving these methods about 1% additional gain [8]. All the

baseline results are from either their original papers or [8].

For BYOL+CLD results marked by ‡, the target network is

updated once every 16 steps and uses batch size 256.

How many groups shall CLD use? The ideal number of

groups depends on the level of instance correlation, the num-

ber of classes, and the batch size. Table 7 shows that for

CIFAR100, CLD is best when the number of groups is close

to the number of classes, although CLD already outperforms

MoCo at 10 groups. For ImageNet, the instance correlation

is low; since the number of classes of 1,000 is larger than

the batch size that our 8 GPUs can afford, we just choose the

Methods Model
Label fraction

1% 10%

random initialization ResNet50 1.6 21.8

rotation [19] ResNet50 19.0 53.9

DeepCluster [3] ResNet50 33.4 52.9

NPID [53] ResNet50 28.0 57.2

MoCo [24] ResNet50 33.2 60.1

SimCLR [6] ResNet50 36.3 58.5

MoCo v2 [7] ResNet50 38.7 61.6

InfoMin † [49] ResNet50 39.7 62.3

MoCo v2 + CLD ResNet50 44.4 63.6

InfoMin + CLD ResNet50 45.8 64.4

vs. SOTA ResNet50 +6.1 +2.1

Table 4: Top-1 accuracy of semi-supervised learning (1%

and 10% label fractions) on ImageNet. CLD greatly im-

proves SOTA. Baselines and CLD follow training recipes

of OpenSelfSup benchmark [62] for fair comparisons, and

apply the best performing hyper-parameter setting for each

method. † denotes re-implemented results with [62].

Methods
VOC07 VOC07+12

AP50 AP AP50 AP

supervised 74.6 42.4 81.3 53.5

JigSaw [20] - - 82.7 53.3

LocalAgg [64] 69.1 - - -

MoCo [24] 74.9 46.6 81.5 55.9

MoCo v2 [7] - - 82.0 56.4

SimCLR [6] 75.2 - - -

NPID + CLD 75.7 47.2 82.0 56.4

MoCo + CLD 76.8 48.3 82.4 56.7

MoCo v2 + CLD 77.6 49.3 82.7 57.0

InfoMin + CLD 77.9 49.8 83.0 57.2

vs. SOTA +2.7 +3.2 +1.0 +0.8

Table 5: Transfer learning results on object detection: We

fine-tune on Pascal VOC trainval07+12 or trainval07, and

test on VOC test2007. The detector is Faster R-CNN with

ResNet50-C4. MoCo v2 model is pre-trained for 200 epochs.

Note that our model outperforms SOTA methods without

using an MLP head. Baseline results are copied from [24, 7].

Tail class ‘truck’

(a) MoCo

Tail class ‘truck’

(b) MoCo+CLD

Figure 6: t-SNE feature visualization of (a) MoCo (b)

MoCo + CLD on CIFAR10-LT. Tail class embedding is

more compact and better separated from head classes. Head

and medium-shot classes also have cleaner separation.

largest number of groups possible. We expect continuous

gain with more groups and larger batches afforded by more

GPUs. Nevertheless, our model wins with its merit of the

CLD idea instead of a large compute.

Similarity among positives / negatives? We measure fea-
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CIFAR10 retrieval NMI kNN

NPID fI 75.1 57.7 80.8

CLD
fI 78.6 63.5 86.7

fG 75.6 69.0 81.4

CIFAR100

NPID fI 48.7 36.1 51.6

CLD
fI 50.2 43.8 57.5

fG 48.8 49.4 51.8

Table 6: The feature quality of fI
and fG evaluated by retrieval, normal-

ized mutual information and kNN.

# groups top-1

baseline 53.1

10 55.2

20 55.4

60 56.7

80 57.4

100 57.7

128 58.1

Table 7: #groups vs.

Accuracy on CI-

FAR100 for CLD.
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Figure 7: CLD has more (dis)similar instances in posi-

tive(negative) pairs than baseline MoCo, creating a larger

similarity gap. Columns 1-3 are the histograms of cosine

similarities between positive and negative pairs and their

differences per the linear projection layer for fI(xi) (Row

1) and f(xi) (Row 2) on ImageNet100.

ture (cosine) similarity as Aij(f) =<
f(xi)

‖f(xi)‖
,

f(x′
j)

‖f(xj)‖
>,

with Aii (Ai,j 6=i) for positive (negative) pairs, and their gap

is A∆
ij=Aii−Aij . Fig. 7 shows that CLD has higher (lower)

similarities between positives (negatives) than MoCo, cre-

ating larger gaps of A∆
ij , especially on f(xi) (Fig. 7 Row

2) – the common feature shared by our instance and group

branches, making f a better discriminator than MoCo. It in

turn improves fI (Fig. 7 Row 1), the instance branch that

runs parallel to the group branch fG.

Mutual information characterization? We use kNN clas-

sification accuracy, Normalized Mutual Information (NMI),

and retrieval accuracy R to compare features. NMI(f, Y ) =
I(C|f,Y )

√
H(C|f)H(Y )

reflects global MI between feature f and down-

stream classification labels Y , where C is cluster labels

predicted from k-Means clustering of f (k assuming the

number of classes), H(·) is entropy, and I(C|f ;Y ) is the

MI between Y and C [46]. The top-1 retrieval accuracy

R(f, Y ) reflects instance-level mutual information.

Table 6 shows that fI is more accurate than fG at re-

trievals and downstream classification. While fG has higher

NMI, its kNN accuracy is worse than fI . That is, maximizing

global MI would not deliver better downstream classification;

maximizing instance-level MI is also important.

Unsupervised hyper-parameter tuning? Unsupervised

linear

𝑅(𝑓, 𝑓′)

NMI 𝑓, 𝑓! * 𝑅(𝑓, 𝑓′)

NMI(𝑓, 𝑓′)

linear

𝑅(𝑓, 𝑓′)

NMI 𝑓, 𝑓! * 𝑅(𝑓, 𝑓′)

NMI(𝑓, 𝑓′)

(a) accuracy vs. 𝝀 (b) accuracy vs. temperatures

Figure 8: Unsupervised hyper-parameter tuning on

ImageNet-100, for weight λ (left) and for the temperatures

TI, TG used in CLD (right). Unsupervised evaluation metric

NMI(f, f ′) ·R(f, f ′) ranks models similarly as supervised

linear classification, corroborating our idea that both global

mutual information and augmentation-invariant local infor-

mation are important for downstream performance. Each

curve is individually normalized.

learning is meant to draw inference from unlabeled data.

However, its hyper-parameters such as our weight λ and

temperature T are often selected by labeled data in the down-

stream task. Self-supervised feature learning benchmarks

pass as a supervised shallow feature learner with a few hyper-

parameters. We explore unsupervised hyper-parameter se-

lection based entirely on the unlabeled data.

We study how the supervised linear accuracy at the down-

stream can be indicated by unsupervised metrics such as

NMI and R between feature f(x) and f ′ = f(x′). Fig. 8

shows that the linear accuracy is well indicated by R(f, f ′)
for λ and by NMI(f, f ′) for temperatures, but neither alone

is sufficient. Their product NMI(f, f ′) · R(f, f ′) turns out

to be a promising unsupervised evaluation metric.

5. Summary

We extend unsupervised learning to natural data with

correlation and long-tail distributions by integrating local

clustering into contrastive learning. It discovers between-

instance similarity not by direct attraction and repulsion at

the instance or group level, but cross-level between instances

and groups. Their batch-wise and cross-view comparisons

greatly improve the positive/negative sample ratio for achiev-

ing more invariant mapping. We also propose normalized

projection heads and unsupervised hyper-parameter tuning.

Our extensive experimentation and analysis shows that

CLD is a lean and powerful add-on to existing SOTA meth-

ods, delivering a significant performance boost on all the

benchmarks and beating MoCo v2 and SimCLR on every

reported performance with a much smaller compute.
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