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Abstract

Inspired by the fact that human eyes continue to develop

tracking ability in early and middle childhood, we propose

to use tracking as a proxy task for a computer vision sys-

tem to learn the visual representations. Modelled on the

Catch game played by the children, we design a Catch-the-

Patch (CtP) game for a 3D-CNN model to learn visual rep-

resentations that would help with video-related tasks. In

the proposed pretraining framework, we cut an image patch

from a given video and let it scale and move according to

a pre-set trajectory. The proxy task is to estimate the po-

sition and size of the image patch in a sequence of video

frames, given only the target bounding box in the first frame.

We discover that using multiple image patches simultane-

ously brings clear benefits. We further increase the dif-

ficulty of the game by randomly making patches invisible.

Extensive experiments on mainstream benchmarks demon-

strate the superior performance of CtP against other video

pretraining methods. In addition, CtP-pretrained features

are less sensitive to domain gaps than those trained by a

supervised action recognition task. When both trained on

Kinetics-400, we are pleasantly surprised to find that CtP-

pretrained representation achieves much higher action clas-

sification accuracy than its fully supervised counterpart on

Something-Something dataset.

1. Introduction

During the development of artificial intelligence, we can

always take inspiration from the way human brain learns,

and computer vision is no exception. For instance, the in-

sight behind building the ImageNet dataset was “to give the

algorithms the kind of training data that a child was given

through experiences in both quantity and quality.”1 In this

work, we intend to address the visual representation learn-

ing problem in computer vision, so we look for clues from

what developing eyes learn to do in childhood. Our intu-

ition is that once a computer vision system learns what de-

1Fei-fei Li’s TED talk ”How we teach computers to understand pic-

tures,” 2005.

Figure 1: Illustration of the Catch-the-Patch game we de-

signed to train a computer vision system. We randomly crop

one or multiple patches from a video clip, let them scale and

move in a smooth way, and then train the neural network to

predict the positions and sizes of the patches in each frame.

veloping eyes are capable of, the visual features it extracts

should contain the most important information needed by

downstream vision tasks.

It is not surprising that the ability to track, or to follow a

moving target, caught our attention. It is not only an impor-

tant capability of human eyes, but it has also been regarded

as an important technology in computer vision and the ba-

sis of video analysis. In this work, however, we do not treat

tracking as an ultimate task. Instead, we want to use it as

a proxy task for a computer vision system to learn feature

representations of visual signals. Here, the visual signals

need to be videos, or moving pictures, instead of static im-

ages. Ideally, the learning process does not require human

annotation, or should be self-supervised. Only in this way

can we make full use of the large amount of video data on

the Internet. This falls into an active area of research called

self-supervised video representation learning, which aims

to learn video understanding models [37, 51, 38, 50] with-

out access to human annotation.

The research progress in this area lags far behind a

closely related area called self-supervised image representa-

tion learning, where several ground-breaking works [14, 3]

emerged in recent years. A possible reason is that videos

are much larger in size and more redundant in its original
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representation than images. It is therefore more critical to

design an efficient proxy task which could guide the neural

network to acquire the core capability or to distill the most

important information. Some existing proxy tasks propose

to estimate the orientation of video frames [20], to predict

the spatial-temporal order [22, 44], or to estimate the play-

back speed of the input video clip [1, 47, 4]. These tasks

may fail to capture the fine-grained information as they only

care about the coarse global attributes.

Our work focuses on helping the network develop the

ability to follow a moving target. The proxy task used to

pretrain the network is inspired by the training of human vi-

sion system. It is well-known that the Catch game can help

children develop their visual tracking abilities. For comput-

ers, we want to design a similar game. It would be ideal

if we could throw all kinds of realistic objects with various

appearance into the videos, but it is hard to implement. So,

we step back and cut a patch from the existing video and let

it change and move in the way we have pre-set it. The pre-

training objective is to predict the location and size of this

patch in all input frames given only the patch information in

the initial frame. We call this game Catch-the-Patch (CtP).

Although the concept of the game is simple, it is not an

easy task to design the details for the best pretraining re-

sults. We find that throwing more than one image patch,

changing and moving in different patterns, in a video at the

same time brings clear benefits. In addition, making image

patches invisible, or disappear, from time to time can further

exercise the network’s ability to associate adjacent frames.

We call this masked region model (MRM). We train an R3D

network [38] and an R(2+1)D network [38] using our in-

vented CtP game and apply CtP-pretrained video represen-

tation to two downstream tasks, namely action recognition

and video clip retrieval.

Experimental results show that CtP significantly outper-

forms existing proxy tasks in video representation learn-

ing. On UCF-101 dataset, our CtP-pretrained R3D model

[38] achieves 86.2% top-1 classification accuracy. It out-

performs the most advanced method TempTrans [19] by 6%

absolute gains. Furthermore, for datasets like Something-

something-V1 which require more temporal relationship

mining, CtP-pretraining leads to a 48.3% top-1 accuracy.

Surprisingly, it even surpasses the fully supervised coun-

terpart (44.1%) by a notable margin. To summarize, the

contributions of this work are three-fold:

• Inspired by the Catch game which helps children de-

velop their eyes, we design a Catch-the-Patch game for

neural networks to learn visual features from videos.

• We scientifically design the details of the game, includ-

ing using more than one patches for training and intro-

ducing the MRM. These designs have been carefully

validated by ablations studies.

• We carry out comprehensive evaluation of the pro-

posed method. CtP pretraining not only achieves state-

of-the-art results for standard downstream tasks, but

also closes the performance gap between unsupervised

and supervised video representation learning.

2. Related Work

Our work is about learning visual representations from

videos, so we first review a group of most related work

called unsupervised video representation learning in Sec-

tion 2.1. Image representation learning is not involved here,

as they have a very different problem setting from ours. In

our proposal, tracking is used as a proxy task, but it is dif-

ferent from the object tracking task that computer vision

researchers are familiar with. Therefore, we spend some

paragraphs in Section 2.2 to discuss the connections and dif-

ferences. Last, strictly speaking, the training data we used

are synthetic. Can synthetic data help us achieve efficient

training? We tend to have a positive answer after reviewing

some related papers in Section 2.3.

2.1. Unsupervised video representation learning

Research works in this area fall into one of the two

categories: transformation-based methods and contrastive-

learning-based methods.

The central idea of transformation-based methods is to

construct some transformations so that video representation

models can be trained to recognize those transformations.

Typical transformations include image rotation [20], spatial

shuffling [22], temporal shuffling [44], and speed change

[1, 47, 4]. Some approaches also leverage multiple transfor-

mations to improve performance. For example, VCP [27]

uses rotation degree and shuffling order as supervision sig-

nals. TempTrans [19] integrates a set of temporal transfor-

mations including speed change and random shuffling.

The other major category is contrastive learning [11, 12,

6, 40, 13, 45, 46, 36], which has been proven effective in

many other domains like image [14] and speech [29] pre-

training. In general, contrastive learning aims at discrimi-

nating positive and negative pairs. The definition of “posi-

tive” and “negative” pairs varies in different methods. For

instance, VideoPace [40] adopts the speed attribute as the

condition to assign positive and negative labels. DPC and

its follow-up work [11, 12] introduces a future prediction

module. The predicted future features and corresponding

ground-truth future features are considered positive, while

the rests are negatives. In addition to the label assigning,

there is also related work that constructs training pairs be-

tween two different modalities, such as RGB-flow pair [13]

and audio-visual pair [28].

There is no conclusion yet as to which category is better

over the other, but our work falls into transformation-based

methods. A major characteristic that differentiate our work
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from the other works in the same category is that the trans-

formation is applied to local regions instead of the entire

frame or clip. This design guides the neural network to learn

region-level temporal correspondence, which we believe is

the basic information for most downstream tasks.

2.2. Visual tracking

Visual tracking is one of the fundamental research tasks

in computer vision. There is a large body of research work

that addresses both single object tracking and multiple ob-

ject tracking. However, these methods are beyond the scope

of this paper, as we are not trying to solve the tracking prob-

lem. Instead, we are using tracking as a proxy task to learn

video representations. It should be mentioned that it is con-

sidered legitimate to leverage some non-data-driven track-

ing methods [17] to provide pseudo ground truth of visual

tracking in self-supervised learning.

There are some related works [39, 43, 41, 25, 24, 42]

which use tracking as a proxy task to learn image represen-

tations. These works train a two-dimensional (2D) back-

bone network to extract features from a single frame. Track-

ing is performed between consequent frames. Since rep-

resentation learning prefers an unsupervised approach to a

supervised one, these works also avoid from accessing hu-

man annotations. Vondrick et al. [39] assume that the color

information of a region is temporally stable, so they pro-

pose to estimate the corresponding positions based on the

coherency of colors in the video. Wang et al. [43] and

UDT [41] introduce a cycle-consistency constraint. After

a few steps of forward tracking and then the same number

of steps of backward tracking, the predicted location of the

target should be close to the starting point.

Our work is different from these image representation

learning methods. Again, there is no conclusion yet whether

visual representation should be learned from images or

videos, but these two camps have very different problem

settings and evaluation processes. The most notable differ-

ence is that video representation learning takes a video clip,

or a sequence of frames, as input and trains a 3D backbone.

2.3. Training with synthetic data

To meet the high demand for training data from machine

learning algorithms, people produce synthetic data through

various approaches, including game engines [31, 9], 3D

models [8], and generative models[33]. It has been proven

that synthetic data play an important role in model pretrain-

ing [9, 8]. The way we throw image patches into a video

to create synthetic training data is similar to the idea be-

hind Flying Chairs dataset [8]. This work overlays a chair,

which is generated by a 3D model with pre-set movement,

on a real image. Our work overlays a cropped image patch

on a real video, since 3D models are more expensive and

are not able to cover all types of targets.

Our work is also related to a category of work that treats

synthetic data as a regularization term. Typical work in-

cludes MixUp [49], CutOut [7] and CutMix [48]. The key

idea of these works is to add some constraints over the in-

put data and labels by human priors. For example, MixUp

assumes that if an image is mixed with another one, the

new ground-truth label should also be a weighted combi-

nation of two original labels. Our pretraining method can

also be viewed as a regularization term to the vanilla video

representation model, which forces the model to encode the

foreground objects’ movements.

3. Catch-the-Patch Learning Framework

Catch, or playing catch, is one of the most basic chil-

dren’s games. The participants throw a ball, a beanbag, or

a frisbee back and forth to each other. In early and middle

childhood, this game helps human vision system develop

the tracking ability. Now, we design the game Catch-the-

Patch for computers to develop the tracking ability. This is

used as a proxy task for neural networks to learn video rep-

resentations. In this section, we first provide a framework

overview in Section 3.1. Then, the design details are illus-

trated in Section 3.2. Last but not least, we discuss how to

acquire proper self-supervision signals to facilitate effective

learning in Section 3.3.

3.1. Framework Overview

In computer vision, tracking is to locate a specified target

in a video clip given the bounding box of the target in the

initial frame. Target locations are usually represented by

upright rectangular bounding boxes. Target locations in a

sequence of frames form a tracking trajectory. In this work,

we use B to denote a ground-truth trajectory:

B = [b1, b2, ..., bT ],

where T is the total number of video frames and bi denotes

the target bounding box in the i-th frame.

The goal of our work is to train a general video represen-

tation model fθ parameterized by θ. The model fθ receives

a video clip x as input and extracts the spatial-temporal fea-

tures v, which can be formulated as v = fθ(x)
In order to enable this representation to encode the infor-

mation of object trajectory, we introduce a dedicated pre-

diction head that estimates the tracking trajectory based on

the extracted video representation:

B̂ = hφ(v, b1),

where h is the prediction head and φ is the learnable pa-

rameters. Conceptually, the function hφ takes a bounding

box on the starting frame b1 as query and predicts the entire

corresponding trajectory B̂ = [b̂i]
T
i=1. Under this formula-

tion, we can naturally apply the ground-truth trajectory B to
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Figure 2: Illustration of the proposed Catch-the-Patch learning framework. The input videos are synthetic ones with overlaid

image patches. The CNN encoder fθ is the 3D model we intend to pretrain. Given the initial locations of the image patches,

the rest of the network is expected to predict the entire trajectories based on the extracted spatial-temporal features from fθ .

supervise the training of video representation model fθ . As-

sume that we have M video clips {xi}
M
i=1 in the dataset and

each video clip has K ground-truth trajectories {B
(j)
i }Kj=1.

The parameters θ and φ are jointly optimized under the loss

function:

L =
1

MK

M∑

i=1

K∑

j=1

d(B
(j)
i , B̂

(j)

i ),

where d is a predefined distance metric that measures how

far the predicted trajectory is from the ground-truth.

3.2. Design details

The proposed framework is composed of three compo-

nents: a video representation model fθ , a prediction head

hφ and a distance metric d. In this section, we will instanti-

ate each component.

The detailed architecture is illustrated in Fig. 2. Gen-

erally speaking, the video representation model fθ can be

a typical convolution neural network (CNN) encoder de-

signed for video analysis tasks, such as C3D [37], R3D [38]

or TSM [26]. The CNN encoder contains some temporal

modules that establish relationships among video frames.

The receptive field of the encoded spatial-temporal features

is wide enough to cover the entire video clip, which makes

it possible to explore the temporal correspondences for any

queries.

By design, our prediction head hφ receives two inputs:

the spatial-temporal features of the input video clip and the

bounding box query on the starting frame. We adopt the

RoI Align operation [15] to associate these two inputs. RoI

Align can crop the features in the given bounding boxes and

encode them into a fixed size tensor. Before this operation,

we use a 3D convolution layer to squeeze the temporal di-

mension of the spatial-temporal features. The convolution

layer has a spatial kernel size of 1 × 1, and the temporal

kernel size is the same as the temporal dimension size of

the input features. This layer is motivated by the bottleneck

design in ResNet [16]. We compress the temporal dimen-

sion and try to recover the entire trajectory from it.

After extracting regional features for each query bound-

ing box, a two-layer multilayer perceptron (MLP) network

is adopted to produce a vector of size T × 4, where T is the

number of input frames. This vector encodes the relative

deformation between the predicted trajectory and the query

bounding box. Formally, we represent a bounding box b by

a quadruple (x, y, w, h), where (x, y) is the center coordi-

nates and (w, h) is the spatial dimensions. The predicted

corresponding box in the i-th frame b̂i can be written as:

x̂i = x1 + σxt̂i,1 ŷi = y1 + σy t̂i,2

ŵi = w1 exp (σw t̂i,2) ĥi = h1 exp (σht̂i,3)

where (x1, y1, w1, h1) is the query bounding box in the

starting frame, t̂i is the estimated targets for the i-th frame

and σ is a set of constant scaling factors. In this work,

(σx, σh, σw, σh) are set to (0.8, 0.8, 0.04, 0.04).
Following the common practice in object detection [30],

the distance function d is defined in linear space for the cen-

ter coordinates and log space for the spatial dimensions.

Given the ground-truth bounding box (xi, yi, wi, hi), we

use Smooth-L1 function L to calculate the distances:

d(xi, x̂i) = L(
xi − x̂i

σx

) d(yi, ŷi) = L(
yi − ŷi

σy

)

d(wi, ŵi) = L(
1

σw

log
wi

ŵi

) d(hi, ĥi) = L(
1

σh

log
hi

ĥi

)

Compared with the CNN encoder fθ , the prediction head

hφ is light-weight. For instance, an R3D-18 CNN encoder

accounts for more than 82% of the parameters in the entire
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framework. Hence, the power of visual tracking mainly lies

in the CNN encoder. After training, the learned encoder

can be applied to various downstream tasks such as video

recognition, tagging, and retrieval.

3.3. Synthetic data generation

Ideally, visual representation should be learned from real

objects and real trajectories. However, it is impossible to an-

notate the trajectories of countless objects in a huge number

of videos. This is the reason why we step back and resort to

synthetic data sets.

In order to create realistic training data, we design a

three-step process for data generation. First, we randomly

generate a pseudo trajectory that simulates the object move-

ment. To ensure smoothness, we first determine the bound-

ing boxes in some key frames. The trajectory positions in

the rest frames are linearly interpolated between two neigh-

boring key frames. Second, we randomly select one bound-

ing box from the pseudo trajectory and copy the image

patch from the video frame. Finally, the copied image patch

is scaled and overlaid on all original video frames according

to the pseudo trajectory. When we track the copied image

patch, the pseudo trajectory provides the ground-truth. We

repeat this process multiple times so that each training video

clip will have multiple targets and corresponding ground-

truth trajectories. These targets may or may not overlap.

Later, we will show through experiments that this design

significantly improves the pretraining quality.

To strength the awareness of temporal relationships, we

further introduce a masked region model (MRM), which is

inspired by the masked language model in BERT [5]. When

constructing synthetic videos, the simulated patch will be

randomly masked out in some frames with a probability of

0.2. Although the masked patch is invisible in these frames,

the model is still compelled to predict the virtual locations.

It encourages the pretrained model to exploit the temporal

context information in successive frames.

4. A Deep Dive into the Proxy Task

CtP framework has adopted synthetic data for the train-

ing of proxy task. A natural concern is whether it has really

learned how to track in real videos. To figure it out, we con-

duct an experiment to compare CtP-pretrained model with

two baselines. One is a randomly initialized model, and the

other is a 3D model inflated from a 2D model pretrained on

ImageNet [2]. The latter represents a model that has learned

visual representations from images. We do not compare our

model with standard trackers due to the big difference in

problem setting. For instance, standard trackers perform

tracking frame by frame, by comparing the visual features

generated from 2D models. The tracking target is scaled to

a fairly large resolution, and the search region is adjusted

per frame according to the tracking result in the previous
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Figure 3: Tracking performance evaluation of a 17-layer

R3D model under different training strategies.

frame. In our case, we evaluate a 3D model by directly pro-

viding 16 sequential frames. The tracking results in these

16 frames are obtained in a single forward pass.

We use one recently proposed large-scale tracking

dataset, called GOT-10k [18], to conduct the evaluation.

Specifically, we fine-tune CtP-pretrained model and two

reference models using the GOT-10k training set and then

evaluate them on the validation set. In the fine-tuning

process, we experiment with multiple settings that freeze

a different portion of parameters in the pretrained model.

The evaluation metric is the mean interaction-over-union

(mIoU) value between the predicted trajectory and the

ground-truth. Fig. 3 shows the results. CtP-pretrained

model achieves significant gain over the reference models

in all the fine-tuning configurations. This set of experiments

verifies that our model does learn features that were benefi-

cial to object tracking through the designed CtP game. At

the very least, it provides an excellent initialization for tasks

that care about object motion.

5. Experiments

5.1. Implementation details

Model We adopt the standard R3D-18 and R(2+1)D-18

[38] as the video representation models, following the com-

mon practice in previous research [44, 27, 47, 19]. After the

CNN encoder, the RoI Align operation produces several re-

gional features with a spatial size of 5×5. The channel size

of the MLP prediction head is 512. When transferring to the

downstream tasks, we only adopt the pretrained weights of

the CNN encoder and the prediction head is dropped.

Pretraining data Most of the evaluated models are

pretrained on UCF-101 [34] (shorted as “UCF”) 2 and

Kinetics-400 datasets [21] (shorted as “K400”). During pre-

training, the temporal length of input videos is 16, with a

frame interval ranging from 1 to 5. For each video clip, we

generate three independent ground-truth trajectories. The

2We use training split 1 from the official splits of UCF-101 dataset.
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spatial resolution of the input clip is 112×112, and the size

of the cropped patch is uniformly sampled from 16× 16 to

64× 64. The maximum speed of the trajectory is limited to

3 pixels per frame, and the scale ratio of the bounding boxes

in two successive frames should fall in [e−0.025, e0.025].

Optimization The pretraining process lasts for 300

epochs on UCF and 90 epochs on K400. We adopt a stan-

dard stochastic gradient descent (SGD) algorithm to opti-

mize the training objective function. The initial learning

rate is 0.01, which is decayed by a factor of 0.1 at 100th and

200th epoch (30th and 60th for K400), respectively. The

optimizer momentum is 0.9 and the weight decay is 10−4.

During training, the total batch size is 32. Using 8 NVIDIA

V100 GPU cards, training takes about 4 hours to finish on

UCF and 2 days on K400.

Evaluation We evaluate the learned video representations

in two downstream tasks: action recognition and video clip

retrieval. For action recognition, we append a one-layer lin-

ear classifier after the CNN encoder. The entire model is

then fine-tuned on the target dataset for 150 epochs. In

our experiments, we perform evaluation on UCF, HMDB-

51 [23] (shorted as “H51”). For video clip retrieval, we

follow the same implementation as in VCOP [44]. In both

tasks, the performance is evaluated by top-k accuracy. If the

class of a test video appears in its k most confident predic-

tions (or its k nearest training clips for retrieval task), it is

considered to be a correct classification (or retrieval).

5.2. Sources of groundtruths

We have used synthetic training data in this work. The

advantage is that the target trajectory is pre-set and there-

fore the ground-truth is always accurate and precise. The

disadvantage, however, is that the pictures are not real. Ap-

parently, there is another option to use real pictures but less

precise ground-truth. In this section, we discuss and com-

pare some alternatives to obtain pseudo ground-truth.

Teacher tracker. One option is to generate pseudo la-

bels by a teacher tracker. Although there have emerged

many advanced trackers in the deep learning era, we choose

one of the best non-data-driven trackers, named KCF [17],

in this experiment. KCF relies on handcrafted features, so

it fits into the setting of unsupervised learning.

Cycle consistency. Cycle consistency constraint is

adopted by some tracking-based unsupervised image repre-

sentation learning methods [43, 25]. We can also make use

of this constraint to generate ground-truths. A simple im-

plementation is to use the inverse trajectory of the backward

tracking as the ground-truth of forward tracking. However,

using this strategy alone may lead to a trivial solution of

static trajectory. Therefore, we use a mixed solution where

a quarter of the training labels are sourced from the syn-

thetic data, and the rest is from backward tracking.

Real annotations. There exist some annotated

Table 1: Ablation analysis of different ways to acquire

ground-truths. In this experiment, we adopt R3D-18 models

transferred to the action recognition task.

Pretraining Source of Top-1 Acc. (%)

dataset ground-truths UCF H51

None - 65.0 30.9

UCF-101 Teacher tracker 70.6 44.4

UCF-101 Cycle consistency 81.1 53.3

UCF-101 Pre-set (×3) 83.9 53.6

GOT-10k Real annotation 77.0 51.4

GOT-10k Pre-set (×1) 80.4 49.4

GOT-10k Pre-set (×3) 85.9 55.7

datasets for visual object tracking. We find that GOT-10k

dataset [18] is fairly large with a variety of object classes.

The ground-truth labels are considered accurate, but one

disadvantage is that there is only one annotated object in

each video. Besides, the movement of non-object is not

annotated throughout the dataset.

We train R3D-18 models using these different sources

of ground-truths. The learned video representations are

transferred to the action recognition task on UCF and H51

datasets, as specified in the evaluation protocol 5.1.

Table 1 presents the results. It is not surprising that all

pretrained models achieve better performance than a ran-

domly initialized model. When pretrained on UCF, using

pre-set trajectories achieves significantly better results than

the other two choices. It suggests that accurate ground-

truths might be more crucial than realistic pictures for the

tracking proxy task.

We also compare between using synthetic data with pre-

set trajectories and real data with human annotations. Since

there is only one annotated object in each video, we also

tested a setting that only uses one image patch per video,

which is denoted by “Pre-set ×1”. We are surprised to find

that even with this setting, there is no disadvantage in us-

ing synthetic data. The good performance may attribute to

the fact that both the image patches and their trajectories

can change in every training epoch. Furthermore, if we use

more pre-set trajectories per video (3 as default), the perfor-

mance is even better.

5.3. Ablation analysis

We analyze several design choices in the Catch-the-

Patch framework. For time efficiency, models evaluated in

this subsection are trained on a subset (about 25%) of K400.

The pretrained models are transferred to the action recogni-

tion task on UCF [34] and H51 [23].

Number of pre-set trajectories. For each video clip,

we generate different numbers of pre-set trajectories. The
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Table 2: Ablation analysis of our proposed CtP. The model

is pretrained on a subset of K400 and transferred to the ac-

tion recognition task.

(a) Num of trajectories.

Num of Top-1 Acc. (%)

trajs UCF H51

1 81.7 49.1

2 83.0 51.9

3 82.8 53.2

4 82.2 54.1

(b) Masked region model.

Backbone MRM
Top-1 Acc. (%)

UCF H51

R3D 82.8 53.2

R3D X 84.0 55.3

R(2+1)D 85.1 55.9

R(2+1)D X 87.2 57.8

Table 3: Comparison with baseline pretraining approaches.

We report the top-1 accuracy of transferred video repre-

sentation models on UCF-101, HMDB-51 and Something-

Something-V1 (SS) datasets.

Backbone
Pretraining Top-1 Acc. (%)

Method Dataset UCF H51 SS

R3D None None 65.0 30.9 39.2

R3D Supervised ImageNet 79.5 40.0 42.9

R3D Supervised K400 91.6 60.5 43.3

R3D CtP K400 86.2 57.0 44.2

R(2+1)D None None 67.0 29.5 40.6

R(2+1)D Supervised K400 92.7 64.5 43.9

R(2+1)D CtP K400 88.4 61.7 48.3

ablation results are presented in Table 2 (a). As the number

of trajectories increases from 1 to 2, the top-1 accuracy of

the transferred model is significantly improved. We believe

that, under single-trajectory supervision, the model tends

to learn only a global motion. Using multiple trajectories

simulates a situation where each region can have its own

motion state. The extracted features should contain enough

information for the tracking head to simultaneously capture

the motion and distinguish between different trajectories.

When the number of trajectories exceeds 3, the performance

starts to saturate. Therefore, we use 3 trajectories in the rest

of our experiments.

Masked region model. When generating synthetic

videos, some overlaid patches are masked out with a ran-

dom probability. To predict the virtual positions of masked

patches, the model needs to exploit the temporal context

information. In Table 2 (b), we present the experimental

results of training with and without MRM. It clearly shows

that MRM helps to improve the video representation learn-

ing in both R3D and R(2+1)D backbones.

5.4. Comparison with baseline approaches

We compare our pretraining method with two baseline

approaches: random initialization and supervised pretrain-

ing on Kinetics or ImageNet. After supervised pretraining

Table 4: Comparison with state-of-the-art video represen-

tation learning approaches. The downstream task is action

recognition on UCF-101 and HMDB-51 datasets. The col-

umn “Arch.” denote the input spatial resolution and the en-

coder architecture. The mark † means that the results are

produced by our re-implementation.

Method Dataset Arch.
Top-1 Acc. (%)

UCF H51

DPC [11] K400 R-2D3D 75.7 35.7

CBT [35] K600 S3D 79.5 44.6

MemDPC [12] K400 R-2D3D 78.1 41.2

SpeedNet [1] K400 S3D-G 81.1 48.8

CEP [46] K400 SlowFast 77.0 36.8

CoCLR [13] K400 S3D 87.9 54.6

VCP [27] UCF R3D 66.0 31.5

PRP [47] UCF R3D 66.5 29.7

TempTrans [19] UCF R3D 77.3 47.5

Ours UCF R3D 83.9 53.6

TempTrans [19] K400 R3D 79.3 49.8

MoCo †[14] K400 R3D 77.0 43.4

VCOP †[44] K400 R3D 73.3 41.4

3DRotNet †[20] K400 R3D 77.5 41.4

MemDPC †[12] K400 R3D 75.3 41.2

SpeedNet †[1] K400 R3D 83.5 50.6

Ours K400 R3D 86.2 57.0

Pace [40] UCF R(2+1)D 75.9 35.9

VCOP [44] UCF R(2+1)D 72.4 30.9

VCP [27] UCF R(2+1)D 66.3 32.2

PRP [47] UCF R(2+1)D 72.1 35.0

TempTrans [19] UCF R(2+1)D 81.6 46.4

Ours UCF R(2+1)D 86.2 57.1

Pace [40] K400 R(2+1)D 77.1 36.6

Ours K400 R(2+1)D 88.4 61.7

on ImageNet, we inflate the 2D convolutional kernels to 3D

as in I3D [2]. The results of the action recognition task are

presented in Table 3.

CtP Pretraining achieves much higher accuracy than ran-

dom initialization and ImageNet pretraining on all three

datasets. On UCF-101, CtP-pretrained R3D-18 model gets

an absolute gain of 20.4% over the random baseline and 5.9

% over the ImageNet baseline. Unsurprisingly, the model

pretrained with action recognition labels on K400 achieves

the highest accuracy on UCF and H51. It is encourag-

ing that the performance gap between our model and this

K400-supervised model is not large. Interestingly, when

both models are evaluated on the Something-Something

[10] dataset, our model achieves a better performance. This

may due to the fact that accurate classification of the fine-

grained actions in SS relies on the quality of local features,
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Table 5: Comparison with state-of-the-art video representa-

tion learning approaches in video clip retrieval task. In this

experiment, we use R3D-18 as the CNN encoder.

Method Dataset
UCF Acc. (%) H51 Acc. (%)

Top-1 Top-5 Top-1 Top-5

VCOP [44] UCF 14.1 30.3 7.6 22.9

VCP [27] UCF 18.6 33.6 7.6 24.4

PRP [47] UCF 22.8 38.5 8.2 25.8

Pace [40] UCF 19.9 36.2 8.2 24.2

Ours UCF 23.4 40.9 11.4 30.2

SpeedNet [1] K400 13.0 28.1 - -

TempTrans [19] K400 26.1 48.5 - -

Ours K400 29.0 47.3 11.8 30.1

which is the advantage of our method.

5.5. Comparison with stateoftheart approaches

Following common practices, we compare our method

with the state-of-the-art (SOTA) approaches by transferring

the learned representations to two downstream tasks.

Action recognition. The evaluation results are pre-

sented in Table 4. It should be noted that the finetuning set-

tings, including input resolution, training epochs, and data

augmentations, can dramatically affect the final accuracy.

Unfortunately, there is no standard setting exists. In order

to present an apple-to-apple comparison, we have tried our

best to integrate the existing open-sourced work with our

finetuning pipeline (marked as † in Table 4).

Overall, the CtP learning framework significantly out-

performs existing approaches under the same training con-

figurations. For example, when an R3D-18 encoder is pre-

trained on K400 dataset, CtP improves the very recent ap-

proach SpeedNet [1] by an absolute gain of 2.7 % on UCF-

101. Meanwhile, we also benchmark MoCo [14], a rep-

resentative method designed for the image representation

learning, on the action recognition task. Experimental re-

sults demonstrate that it cannot work well for video. Com-

pared with other methods trained with different architec-

tures or resolutions, our method achieves a vastly higher

accuracy of 88.4 % on UCF-101 and 61.7 % on HMDB-51.

Video clip retrieval. We use the exact same evaluation

protocol as in VCOP [44] and report the retrieval accuracy

on UCF-101 and HMDB-51 datasets. The results in Table 5

clearly shows that our pretraining method achieves superior

performances on both datasets.

5.6. Data efficiency

We plot the data efficiency curve in Fig. 4. Two mod-

els are trained with different percentages of labeled data on

UCF-101. One is initialized by CtP-pretrained representa-

tions while the other is trained from scratch. The advantage

of CtP-pretraining is more significant when there are fewer
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Figure 4: Data efficiency of representations. The pretrain-

ing is conducted on K400 dataset.

Frames Pretrain Random Frames Pretrain Random

Figure 5: Visualization of important pixels by GradCAM

number of labeled data. Notably, under the help of pre-

training, with only 20% of the labeled data, we can achieve

a similar performance as a randomly initialized classifier

trained on the entire labeled dataset.

5.7. Visualization

We use guided GradCAM [32] to highlight the impor-

tant pixels that contribute to the final classification decision.

The classifier is pretrained and then finetuned on UCF-101.

We also visualize the results of the classifier trained from

scratch. Fig. 5 shows that pretrained classifier success-

fully captures the salient regions, while the results of the

random baseline are noisy, especially for complex scenes.

This further verifies that our pretraining enhances the net-

work’s ability to follow moving targets.

6. Conclusion

In this paper, we have proposed Catch-the-Patch learn-

ing framework which uses tracking as a proxy task to learn

video feature extraction. It is an unsupervised framework

without access to any human annotations. Comprehensive

experiments have proved the rationality and effectiveness

of our approach. In the future, we plan to explore semi-

supervised approaches and design a bootstrap process to

create more realistic training data. We also plan to train the

model using the sheer amount of video data on the Internet.

After all, that is what unsupervised learning is all about.
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