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Abstract

We present a novel online depth map fusion approach

that learns depth map aggregation in a latent feature space.

While previous fusion methods use an explicit scene repre-

sentation like signed distance functions (SDFs), we propose

a learned feature representation for the fusion. The key idea

is a separation between the scene representation used for

the fusion and the output scene representation, via an addi-

tional translator network. Our neural network architecture

consists of two main parts: a depth and feature fusion sub-

network, which is followed by a translator sub-network to

produce the final surface representation (e.g. TSDF) for

visualization or other tasks. Our approach is an online

process, handles high noise levels, and is particularly able

to deal with gross outliers common for photometric stereo-

based depth maps. Experiments on real and synthetic data

demonstrate improved results compared to the state of the

art, especially in challenging scenarios with large amounts

of noise and outliers. The source code will be made available

at https://github.com/weders/NeuralFusion.

1. Introduction

Reconstructing the geometry of a scene is a central com-

ponent of many applications in 3D computer vision. Aware-

ness of the surrounding geometry enables robots to navigate,

augmented and mixed reality devices to accurately project

the information into the user’s field of view, and serves as

the basis for many 3D scene understanding tasks.

In this paper, we consider online surface reconstruction

by fusing a stream of depth maps with known camera cali-

bration. The fundamental challenge in this task is that depth

maps are typically noisy, incomplete, and contain outliers.

Depth map fusion is a key component in many 3D reconstruc-

tion methods, like KinectFusion [40], VoxelHashing [42],

InfiniTAM [23], and many others. The vast majority of meth-

ods builds upon the concept of averaging truncated signed

distance functions (TSDFs), as proposed in the pioneering

work by Curless and Levoy [9]. This approach is so popular

due to its simple, highly parallelizable, and real-time capable

TSDF Fusion [9] RoutedFusion [62] Ours

Figure 1. Results of our end-to-end depth fusion on real-world

MVS data [29]. Our method learns to separate outliers and true

geometry without the need of filtering heuristics.

way of fusing noisy depth maps into a surface. However,

it has difficulties with handling outliers and thin geometry,

which can be mainly attributed to the local integration of

depth values in the TSDF volume.

To tackle this fundamental limitation, existing methods

use various heuristics to filter outliers in decoupled pre- or

post-processing steps. Such filtering techniques entail the

usual trade-off in terms of balancing accuracy against com-

pleteness. Especially in an online fusion system, striking

this balance is extremely challenging in the pre-filtering

stage, because it is difficult to distinguish between a first sur-

face measurement and an outlier. Consequently, to achieve

complete surface reconstructions, one must use conservative

pre-filtering, which in turn requires careful post-filtering of

outliers by non-local reasoning on the TSDF volume or the

final mesh. This motivates our key idea to use different scene

representations for the fusion and final method output, while

all prior works perform depth fusion and filtering directly in

the output representation. In contrast, we perform the fusion

step in a latent scene representation, implicitly learned to

encode features like confidence information or local scene

information. A final translation step simultaneously filters

and decodes this learned scene representation into the final

output relevant to downstream applications.
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In summary, we make the following contributions:

• We propose a novel, end-to-end trainable network architec-

ture, which separates the scene representations for depth

fusion and the final output into two different modules.

• The proposed latent representation yields more accurate

and complete fusion results for larger feature dimensions

allowing to balance accuracy against resource demands.

• Our network architecture allows for end-to-end learnable

outlier filtering within a translation step that significantly

improves outlier handling.

• Although fully trainable, our approach still only performs

very localized updates to the global map which maintains

the online capability of the overall approach.

2. Related Work

Representation Learning for 3D Reconstruction. Many

works proposed learning-based algorithms using implicit

shape representations. Ladicky et al. [31] learn to regress a

mesh from a point cloud using a random forest. The concur-

rent works OccupancyNetworks [38], DeepSDF [43], and

IM-NET [5] encode the object surface as the decision bound-

ary of a trained classification or regression network. These

methods only use a single feature vector to encode an en-

tire scene or object within a unit cube and are, unlike our

approach, not suitable for large-scale scenes. This was im-

proved in [3, 7, 21, 45] which use multiple features to encode

parts of the scene. [8, 19, 25, 50, 51] extract image features

and learn scene occupancy labels from single or multi-view

images. DISN [65] works in a similar fashion but regresses

SDF values. Chiyu et al. [22] propose a local implicit grid

representation for 3D scenes. However, they encode the

scene through direct optimization of the latent representa-

tion through a pre-trained neural network. More recently,

Scene Representation Networks [58] learn to reconstruct

novel views from a single RGB image. Liu et al. [33] learn

implicit 3D shapes from 2D images in a self-supervised man-

ner. These works also operate within a unit cube and are

difficult to scale to larger scenes. DeepVoxels [57] encodes

visual information in a feature grid with a neural network

to generate novel, high-quality views onto an observed ob-

ject. Nevertheless, the work is not directly applicable to

a 3D reconstruction task. Our method combines the con-

cept of learned scene representations with data fusion in a

learned latent space. Recently, several works proposed a

more local scene representation [1, 15, 16] that allows larger

scale scenes and multiple objects. Further, [34, 41] learn im-

plicit representations with 2D supervision via differentiable

rendering. Overall, none of all mentioned works consider

online updates of the shape representation as new informa-

tion becomes available and adding such functionality is by

no means straightforward.

Classic Online Depth Fusion Approaches. The majority

of depth map fusion approaches are built upon the semi-

nal “TSDF Fusion” work by Curless and Levoy [9], which

fuses depth maps using an implicit representation by av-

eraging TSDFs on a dense voxel grid. This approach es-

pecially became popular with the wide availability of low-

cost depth sensors like the Kinect and has led to works like

KinectFusion [40] and related works like sparse-sequence

fusion [66], BundleFusion [12], or variants on sparse grids

like VoxelHashing [42], InfiniTAM [46], Voxgraph [47],

octree-based approaches [14, 35, 60], or hierarchical hash-

ing [24]. However, the output of these methods usually

contains typical noise artifacts, such as surface thickening

and outlier blobs. Another line of works uses a surfel-based

representation and directly fuses depth values into a sparse

point cloud [27, 32, 36, 56, 61, 63]. This representation per-

fectly adapts to inhomogeneous sampling densities, requires

low memory storage, but also lacks connectivity and topo-

logical surface information. An overview of depth fusion

approaches is given in [73].

Classic Global Depth Fusion Approaches. While online

approaches only process one depth map at a time, global

approaches use all information at once and typically apply

additional smoothness priors like total variation [30, 67],

its variants including semantic information [6, 17, 18, 52,

53], or refine surface details using color information [72].

Consequently, their high compute and memory requirements

prevent their application in online scenarios unlike ours.

Learned Global Depth Fusion Approaches. Octnet [49]

and its follow-up OctnetFusion [48] fuse depth maps us-

ing TSDF fusion into an octree and then post-processes the

fused geometry using machine learning. RayNet [44] uses

a learned Markov random field and a view-invariant feature

representation to model view dependencies. SurfaceNet [20]

jointly estimates multi-view stereo depth maps and the fused

geometry, but requires to store a volumetric grid for each

input depth map. 3DMV [11] optimizes shape and semantics

of a pre-fused TSDF scene of given 2D view information.

Contrary to these methods, we learn online depth fusion and

can process an arbitrary number of input views.

Learned Online Depth Fusion Approaches. In

the context of simultaneous localization and mapping,

CodeSLAM [2], SceneCode [69] and DeepFactors [10] learn

a 2.5D depth representation and its probabilistic fusion rather

than fusing into a full 3D model. The DeepTAM [70] map-

ping algorithm builds upon traditional cost volume compu-

tation with hand-crafted photoconsistency measures, which

are fed into a neural network to estimate depth, but full 3D

model fusion is not considered. DeFuSR [13] refines depth

maps by improving cross-view consistency via reprojection,

but it is not real-time capable. Similar to our approach,

Weder et al. [62] perform online reconstruction and learn

the fusion updates and weights. In contrast to our work,
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all information is fused into an SDF representation which

requires handcrafted pre- or post-filtering to handle outliers,

which is not end-to-end trainable. The recent ATLAS [39]

method fuses features from RGB input into a voxel grid and

then regresses a TSDF volume. While our method learns

the fusion of features, they use simple weighted averaging.

Their large ResNet50 backbone limits real-time capabilities.

Sequence to Vector Learning. On a high-level, our

method processes a variable length sequence of depth maps

and learns a 3D shape represented by a fixed length vector.

It is thus loosely related to areas like video representation

learning [59] or sentiment analysis [37, 68] which processes

text, audio or video to estimate a single vectorial value. In

contrast to these works, we process 3D data and explicitly

model spatial geometric relationships.

3. Method

Overview. Given a stream of input depth maps Dt : R2 →

R with known camera calibration for each time step t ∈ N,

we aim to fuse all surface information into a globally con-

sistent scene representation g : R3 → R
N while removing

noise and outliers as well as complete potentially missing

observations. The final output of our method is a TSDF map

s : R3 → R, which can be processed into a mesh with stan-

dard iso-surface extraction methods as well as an occupancy

map o : R3 → R. Figure 2 provides an overview of our

method. The key idea is to decouple the scene representation

for geometry fusion from the output scene representation.

This decoupling is motivated by the difficulty for existing

methods to handle outliers within an online fusion method.

Therefore, we propose to fuse geometric information into

a latent feature space without any preliminary outlier pre-

filtering. A subsequent translator network then decodes the

latent feature space into the output scene representation (e.g.,

a TSDF grid). This approach allows for better and end-to-

end trainable handling of outliers and avoids any handcrafted

post-filtering, which is inherently difficult to tune and typi-

cally decreases the completeness of the reconstruction. Fur-

thermore, the learned latent representation also enables to

capture complex and higher resolution shape information,

leading to more accurate reconstruction results.

Our feature fusion pipeline consists of four key stages

depicted as networks in Figure 2. The first stage extracts

the current state of the global feature volume into a local,

view-aligned feature volume using an affine mapping de-

fined by the given camera parameters. After the extraction,

this local feature volume is passed together with the new

depth measurement and the ray directions through a feature

fusion network. This feature fusion network predicts optimal

updates for the local feature volume, given the new measure-

ment and its old state. The updates are integrated back into

the global feature volume using the inverse affine mapping

defined in the first stage. These three stages form the core of

the fusion pipeline and are executed iteratively on the input

depth map stream. An additional fourth stage translates the

feature volume into an application-specific scene represen-

tation, such as a TSDF volume, from which one can finally

render a mesh for visualization. We detail our pipeline in

the following and we refer to the supplementary material for

additional low-level architectural details.

Feature Extraction. The goal of iteratively fusing depth

measurements is to (a) fuse information about previously

unknown geometry, (b) increase the confidence about al-

ready fused geometry, and (c) to correct wrong or erroneous

entries in the scene. Towards these goals, the fusion process

takes the new measurements to update the previous scene

state gt−1, which encodes all previously seen geometry. For

a fast depth integration, we extract a local view-aligned fea-

ture subvolume vt−1 with one ray per depth measurement

centered at the measured depth via nearest neighbor search

in the grid positions. Each ray of features in the local feature

volume is concatenated with the ray direction and the new

depth measurement. This feature volume is then passed to

the fusion network.

Feature Fusion. The fusion network fuses the new depth

measurements Dt into the existing local feature representa-

tion vt−1. Therefore, we pass the feature volume through

four convolutional blocks to encode neighborhood informa-

tion from a larger receptive field. Each of these encoding

blocks, consists of two convolutional layers with a kernel

size of three. These layers are followed by layer normaliza-

tion and tanh activation function. We found layer normal-

ization to be crucial for training convergence. The output

of each block is concatenated with its input, thereby gener-

ating a successively larger feature volume with increasing

receptive field. The decoder then takes the output of the

four encoding blocks to predict feature updates.The decoder

consists of four blocks with two convolutional layers and

interleaved layer normalization and tanh activation. The out-

put of the final layer is passed through a single linear layer.

Finally, the predicted feature updates are normalized and

passed as vt to the feature integration.

Feature Integration. The updated feature state is inte-

grated back into the global feature grid by using the inverse

global-local grid correspondences of the extraction mapping.

Similar to the extraction, we write the mapped features into

the nearest neighbor grid location. Since this mapping is

not unique, we aggregate colliding updates using an average

pooling operation. Finally, the pooled features are combined

with old ones using a per-voxel running average operation,

where we use the update counts as weights. This residual

update operation ensures stable training and a homogeneous

latent space, as compared to direct prediction of the global

features. Both the feature extraction and integration steps are

inspired by [62], but they use tri-linear interpolation instead

of nearest-neighbor sampling. When extracting and integrat-
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Figure 2. Proposed online reconstruction approach. Our pipeline consists of two main parts: 1) A fusion network with its extraction and

integration layers, and 2) A translator network that translates the feature representation into an interpretable TSDF representation. For any

new depth map Dt a local, view-aligned feature grid vt−1 is extracted from the previous global feature grid gt−1. The fusion network

updates the local feature grid vt which is then integrated back into an updated global feature grid gt. The translator network is independent

of the fusion process and can be used asynchronously for an efficient fusion process.

ing features instead of SDF values, we empirically found

that nearest-neighbor interpolation produces better results

and leads to more stable convergence during training.

Feature Translation. In the final and possibly asyn-

chronous step, we translate the latent scene representation

gt into a representation usable for visualization of the scene

(e.g., signed distance field or occupancy grid). The network

architecture in this step is inspired by IM-Net [5]. For effi-

cient and complete translation, we sample a regular grid of

world coordinates. Then, at each of these sampled points pi,

the translator aggregates the information stored in the fea-

tures of the local neighborhood and predicts the TSDF s(pi)
as well as occupancy o(pi) for this specific grid location. To

this end, the translator concatenates the feature vectors of

the 5 × 5 × 5 neighborhood and compresses them into a

single feature vector using a linear layer followed by tanh

activation. Next, the so combined features are concatenated

with the query point feature gt(pi) and passed through the

remaining translation network, which consists of four linear

layers interleaved with tanh activations and channel-wise

dropout preventing the network from overfitting to a single

feature channel. According to the desired output ranges, the

TSDF head is activated using tanh, while the occupancy head

uses a sigmoid activation. After each layer, we concatenate

the output with the original query point feature gt(pi).

Training Procedure and Loss Function. All networks

are jointly trained end-to-end. In each training epoch, we

randomly shuffle the input depth maps and iteratively fuse

them one by one into the corresponding latent feature grid

g : R3 → R
N . After integrating the depth map into the

latent feature grid, we query the translator network, where

the latent feature grid was just updated, and render the TSDF

s : R3 → R and occupancy o : R3 → [0, 1]3. The entire

pipeline is optimized using the following loss function:

L =
1

n

∑

i

λ1L1(si, ŝi) + λ2L2(si, ŝi)

+ λoLo(oi, ôi) + λgσ
2

ch(g) , (1)

where L1 and L2 denote the L1 and L2 norms, and Lo is the

binary cross-entropy on the predicted occupancy. The L2

loss is helpful with outliers, whereas the L1 loss improves

the reconstruction of fine details. In each step, n denotes the

number of all updated feature grid locations. When training

with outlier contaminated data, we found that setting n equal

to all visited feature grid locations yields the best results.

Therefore, n is a crucial hyperparameter when training the

pipeline. Moreover, ŝi and ôi denote the ground-truth TSDF

and occupancy value, respectively. To avoid large deviations

for a single feature in the latent space, we regularize the

feature grid g by penalizing the mean of the channel-wise

variance by σ2

ch(g). We empirically set the loss weights to

λ1 = 1., λ2 = 10., λo = 0.01, and λg = 0.05.

4. Experiments

We first discuss implementation details and evaluation

metrics before evaluating our method on synthetic and real-

world data in comparison to other methods. We further

analyze our method for varying numbers of features N in

an ablation study. We provide additional experiments and

results in the supplementary material.

Implementation Details. Our pipeline is implemented in

PyTorch and trained on an NVIDIA RTX 2080. All net-

works were trained using the Adam optimizer [28] with an

initial learning rate of 0.01, which was adapted using an

exponential learning rate scheduler at a rate of 0.998. For

momentum and beta, we empirically found the default pa-

rameters to yield the best results. We trained all networks

on synthetic data being augmented with artificial noise and

outliers. The batch-size is set to one due to the nature of

the sequential fusion process. However, we accumulate the

gradients across 8 scene update steps and then update the
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Figure 3. Left: The feature fusion network consists of a latent space encoder that fuses information from neighboring rays. This is followed

by a latent updated predictor that predicts the updates for the latent space. Finally, the predicted features are normalized along the feature

vector dimension. Right: The translator network consists of a series of neural blocks with linear layers, channel-wise dropout, and tanh

activations. The first block extracts neighborhood information that is concatenated with the central feature vector. From the concatenated

features the TSDF value is then predicted. All joining arrows correspond to a concatenation operation.

network parameters. Our un-optimized implementation runs

at ∼ 7 frames per seconds with a depth map resolution of

240× 320 on an NVIDIA RTX 2080. This demonstrates the

real-time applicability of our approach.

Evaluation Metrics. We use the following evaluation met-

rics to quantify the performance of our approach: Mean

Squared Error (MSE), Mean Absolute Distance (MAD), Ac-

curacy (Acc.), Intersection-over-Union (IoU), Mesh Com-

pleteness (M.C.) Mesh Accuracy (M.A.), and F1 score. Fur-

ther details are in the supplementary material.

4.1. Results on Synthetic Data

Datasets. We used the synthetic ShapeNet [4] and

ModelNet [64] datasets for performance evaluation. From

ShapeNet, we selected 13 classes for training and evaluate

on the same test set as [62] consisting of 60 objects from six

classes, for which pretrained models [43] are available. For

ModelNet [64], we trained and tested on 10 classes using

the train-test split from [62]. We first generated watertight

models using the mesh-fusion pipeline used in [38] and com-

puted TSDFs using the mesh-to-sdf1 library. Additionally,

we render depth frames for 100 randomly sampled camera

views for each mesh. These depth maps are the input to our

pipeline and existing methods. For both datasets, we found

that training on one single object per class is sufficient for

generalization to any other object and class.

Comparison to Existing Methods. For performance

comparisons, we fuse depth maps and augment them with

artificial depth-dependent noise as in [48]. We compare

to state-of-the-art learned scene representation methods

DeepSDF [43], OccupancyNetworks [38], and IF-Net [7],

as well as to the online fusion methods TSDF Fusion [9]

and RoutedFusion [62]. We further implemented two addi-

tional baselines to demonstrate the benefits of a fully learned

scene representation for depth map fusion: (1) one base-

line performs a learned 2D noise filtering before fusing the

frames using TSDF Fusion [9], and (2) a baseline that post-

1https://github.com/marian42/mesh_to_sdf

Method MSE↓ MAD↓ Acc.↑ IoU↑ F1↑

[e-05] [e-02] [%] [0,1] [0,1]

DeepSDF [43] 464.0 4.99 66.48 0.538 0.66

Occ.Net. [38] 56.8 1.66 85.66 0.484 0.62

IF-Net [7] 6.2 0.47 93.16 0.759 0.86

TSDF Fusion [9] 11.0 0.78 88.06 0.659 0.79

TSDF + 2D denoising 27.0 0.84 87.48 0.650 0.78

TSDF + 3D denoising 8.2 0.61 94.76 0.816 0.89

RoutedFusion [62] 5.9 0.50 94.77 0.785 0.87

Ours 2.9 0.27 97.00 0.890 0.94

DeepSDF [43] Occ.Net. [38] IF-Net [7] TSDF Routed- Ours

Fusion [9] Fusion [62]

Figure 4. Quantitative and qualitative results on ShapeNet [4].

Our fusion approach consistently outperforms all baselines and

state of the art in both, scene representation and depth map fusion.

The performance differences to [62] are also visualized in Figure 5.

processes models fused by TSDF Fusion using a simplifica-

tion of our translation network - the principle is similar to

OctnetFusion [48], but on a dense grid. Further details on

these baselines is given in the supplementary material. We

compare all baselines on the test set of Weder et al. [62] in

Figure 4. For input data augmentation, we used the same

scale 0.005 as in [62]. Figure 4 shows that our method signif-

icantly outperforms all existing depth map fusion as well as

learned scene representations. We especially emphasize the

increase in IoU by more than 10%. This significant increase

is due to many fine-grained improvements, where Routed-

Fusion [62] wrongly predicts the sign, as shown in Figure 5.

In all experiments, we set the truncation distance of TSDF

Fusion to 4cm, which is similar to the receptive field of our

fusion network.
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Figure 5. Mesh Accuracy (M.A.) visualization on ShapeNet

meshes. Our method consistently reconstructs more accurate

meshes than the baseline depth fusion methods. Especially thin

geometries (table/chair legs, lamp cable) are reconstructed with

better accuracy.
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Figure 6. Reconstruction from Noisy Depth Maps. Our method

outperforms existing depth fusion methods for various input noise

levels. The performance can be further boosted by preprocessing

the depth maps with the routing network from [62] leading to better

robustness to high input noise levels, while it over-smoothes in the

absence of noise.

Higher Input Noise Levels. We also assess our method

in fusing depth maps corrupted with higher noise levels on

the ModelNet dataset [64] in Figure 6. For this experiment,

we augment the input depth maps with three different noise

levels. We fuse the corrupted depth maps using standard

TSDF Fusion [9] and RoutedFusion [62]. Since Weder et

al. [62] showed that their proposed routing network signifi-

cantly improved the robustness to higher input noise levels,

we also tested our method with depth maps pre-processed

by a routing network. For these experiments, we use the

pre-trained routing network provided by [62].

Outlier Handling. A main drawback of [62] is its limita-

tion in handling outliers. To this end, we run an experiment,

where we augment the input depth maps with random outlier

blobs. We create this data by sampling an outlier map from a

fixed distribution scaled by a fixed outlier scale. Additionally,

we sample three masks with a given probability (outlier frac-

tion) and dilate it once, twice, and three times, respectively.

Then, these masks are used to select the outliers from the out-

lier map. We report the results of this experiment in Figure 7.

Note that the results might be better with even higher outlier

fractions since we only evaluate on updated grid locations.

The consistency in outlier filtering and increase in updated

grid locations improves the metrics.

N MSE↓ MAD↓ Acc.↑ IoU↑

[e-05] [e-02] [%] [0,1]

1 - - - -

2 9.45 0.64 94.67 0.717

4 4.03 0.30 97.51 0.863

8 3.99 0.29 97.46 0.862

16 3.91 0.29 97.50 0.863

Table 1. Ablation Study. We

assess our method for different

numbers of feature dimensions

N . The performance saturates

around N = 8. Note that N = 1

did not converge.

4.2. Ablation Study

In a series of ablation studies, we discuss several benefits

of our pipeline and justify design choices.

Iterative Fusion. Ideally, fusion algorithms should be inde-

pendent from the number of integrated frames and steadily

improve the reconstruction as new information becomes

available. In Figure 8, we show that our method is not only

better than competing algorithms from the start, but also con-

tinuously improves the reconstruction as more data is fused.

The metrics are averaged at every fusion step over all scenes

in the test set used for all experiments on ShapeNet [4].

Frame Order Permutation. Our method does not leverage

any temporal information from the camera trajectory apart

from the previous fusion result. This design choice allows

to apply the method also to a broader class of scenarios (e.g.

Multi-View Stereo). Ideally, an online fusion method should

be invariant to permutations of the fusion frame order. To

verify this property, we evaluated the performance of our

method in fusing the same set of frames in ten different

random frame orders. Figure 9 shows that our method con-

verges to the same result for any frame order and thus seems

to be invariant to frame order permutations.

Feature Dimension. An important hyperparameter of our

method is the feature dimension N . Therefore, we show

quantitative results for the reconstruction from noisy and

outlier contaminated depth maps using varying N in Table 1.

We observe that a larger N clearly improves the results, but

the performance eventually saturates, which justifies our

choice of N = 8 features throughout the paper.

Latent Space Visualization. In order to verify our hy-

pothesis that the translator network mostly filters outliers,

since the fusion network can hardly distinguish between first

entries and outliers, we visualize the fused latent space in

Figure 10. While the translated end result is outlier free,

the latent space clearly shows that the fusion network keeps

track of most measurements.

4.3. RealWorld Data

We also evaluate on real-world data and large-scale scenes

to demonstrate scalability and generalization.

Scene3D Dataset. For real-world data evaluation, we

use the lounge and stonewall scenes from the Scene3D

dataset [71]. For comparability to [62], we only fuse every

10th frame from the trajectory using a model solely trained

on synthetic ModelNet [64] data augmented with artificial

noise and outliers.
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Outlier Method MSE↓ MAD↓ Acc.↑ IoU↑

Fraction [e-05] [e-02] [%] [0,1]

0.01

TSDF

Fusion
34.51 1.17 85.17 0.645

Routed-

Fusion
5.43 0.57 95.21 0.837

Ours 2.27 0.29 97.57 0.884

0.05

TSDF

Fusion
80.72 2.02 73.86 0.432

Routed-

Fusion
9.84 0.68 94.46 0.803

Ours 4.91 0.22 98.05 0.851

0.1

TSDF

Fusion
102.50 2.43 67.47 0.341

Routed-

Fusion
14.25 0.77 92.95 0.764

Ours 3.35 0.22 98.48 0.865

Reconstructed Geometry Outlier Projection onto XY-Plane

TSDF Routed- TSDF Routed-
Fusion [9] Fusion [62] Ours Fusion [9] Fusion [62] Ours

Figure 7. Reconstruction from Outlier-Contaminated Data. The left table states performance measures for various outlier fractions. The

figures on the right show corresponding reconstruction results and errors projected on the xy-plane for an exemplary ModelNet [64] model.

Our method outperforms state-of-the-art depth fusion methods regardless of the outlier fraction, but in particular with larger outlier amounts.

Note that high outlier rates are common in multi-view stereo as shown in the supp. material of [29].

Figure 8. Performance of iterative fusion over time. Our method

consistently outperforms both baselines [9, 62] at every step of the

fusion procedure.
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Figure 9. Random frame order permutations. The proposed

method seems to be largely invariant to the frame integration order,

since it always converges to the same result.

XY-Plane XZ-Plane YZ-Plane Output Mesh

Figure 10. Visualization of our learned latent space encoding.

Our asynchronous fusion network integrates all measurements in-

cluding outliers, but the translator effectively filters the outliers to

generate a clean output mesh.

Burghers Stonewall Lounge Copyroom Cactusgarden

Method M.A. M.C. M.A. M.C. M.A. M.C. M.A. M.C. M.A. M.C.

TSDF Fusion [9] 21.01 22.58 17.67 21.16 21.88 26.31 39.56 42.57 18.91 18.63

RoutedFusion [62] 20.50 41.32 19.44 80.54 22.63 53.45 38.07 57.35 19.20 41.41

Ours 18.19 18.88 17.01 20.27 16.45 17.96 19.06 20.25 15.87 16.96

Table 2. Quantitative evaluation on Scene3D [71]. Evaluated are

mesh accuracy (M.A.) [mm] & mesh completeness (M.C.) [mm].

In Figure 11, we present qualitative results of reconstruc-

tions from real-world depth maps compared to RoutedFu-

sion [62] and TSDF Fusion [9]. We note that our method

reconstructs the scene with significantly higher complete-

ness than [62]. This is due to our learned translation from

feature to TSDF space, which allows to better handle noise

artifacts and outliers without the need for hand-tuned, heuris-

tic post-filtering. Further, we show improved outlier and

noise artefact removal compared to TSDF Fusion [9] while

being on par with respect to completeness. These results are

also quantitatively shown in Table 2.

Tanks and Temples Dataset. In order to demonstrate our

methods outlier handling capability, we also run experiments

on the Tanks and Temples dataset [29]. We computed stereo

depth maps using COLMAP [54, 55] and fused this data

using our method, PSR [26], TSDF Fusion [9], and Routed-

Fusion [62]. To demonstrate the easy applicability to new

datasets in scenarios with limited ground-truth, we train our

method on one single scene (Ignatius) from the Tanks and

Temples training set. We reconstructed a dense mesh us-

ing Poisson Surface Reconstruction (PSR) [26], rendered

artificial depth maps, and used TSDF Fusion to generate a

ground-truth SDF. Then, we used this ground-truth to train
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Figure 11. Depth map fusion results on Scene3D [71]. Our method yields significantly better completeness than RoutedFusion [62] (see

stonewall) and is on par with TSDF Fusion [9]. However, our method better removes noise and outlier artifacts (see lounge reconstruction).
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Figure 12. Results on Tanks and Temples [29]. Our method significantly reduces the number of outliers compared to the other methods

without using any outlier filtering heuristic and solely learning it from data. We especially highlight the results on the caterpillar scene,

where our proposed method filters most outliers while the reconstructions of competing methods are heavily cluttered with outliers.

the fusion of stereo depth maps. Figure 12 shows the recon-

structions of the unseen Caterpillar, Truck, and M60 scene

from [29]. Our proposed method significantly reduces the

amount of outliers in the scene across all models. While [62]

shows comparable results on some scenes, it is heavily de-

pendent on its outlier post-filter, which fails as soon as there

are too many outliers in the scene (see also Figure 1). Further,

they also pre-process the depth maps using a 2D denoising

network while our network uses the raw depth maps.

Limitations. While our pipeline shows excellent gener-

alization capabilities (e.g. generalizing from a single MVS

training scene), it is biased to the number of observations

integrated during training leading to less complete results on

some test scene parts with very few observations. However,

this issue can be overcome by a more diverse set of training

sequences with different number of observations.

5. Conclusion

We presented a novel approach to online depth map fu-

sion with real-time capability. The key idea is to perform

the fusion operation in a learned latent space that allows to

encode additional information about undesired outliers and

super-resolution complex shape information. The separation

of scene representations for fusion and final output allows

for an end-to-end trainable post-filtering as a translator net-

work, which takes the latent scene encoding and decodes

it into a standard TSDF representation. Our experiments

on various synthetic and real-world datasets demonstrate

superior reconstruction results, especially in the presence of

large amounts of noise and outliers.
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[56] Thomas Schöps, Torsten Sattler, and Marc Pollefeys. Sur-

felmeshing: Online surfel-based mesh reconstruction. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

pages 1–1, 2019.
[57] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias

Nießner, Gordon Wetzstein, and Michael Zollhöfer. Deep-
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