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Abstract

Semi-supervised learning on class-imbalanced data, al-

though a realistic problem, has been under studied. While

existing semi-supervised learning (SSL) methods are known

to perform poorly on minority classes, we find that they still

generate high precision pseudo-labels on minority classes.

By exploiting this property, in this work, we propose Class-

Rebalancing Self-Training (CReST), a simple yet effec-

tive framework to improve existing SSL methods on class-

imbalanced data. CReST iteratively retrains a baseline

SSL model with a labeled set expanded by adding pseudo-

labeled samples from an unlabeled set, where pseudo-

labeled samples from minority classes are selected more

frequently according to an estimated class distribution. We

also propose a progressive distribution alignment to adap-

tively adjust the rebalancing strength dubbed CReST+. We

show that CReST and CReST+ improve state-of-the-art SSL

algorithms on various class-imbalanced datasets and con-

sistently outperform other popular rebalancing methods.

Code has been made available at https://github.

com/google-research/crest.

1. Introduction

Semi-supervised learning (SSL) utilizes unlabeled data

to improve model performance and has achieved promis-

ing results on standard SSL image classification bench-

marks [34, 25, 43, 2, 39, 47]. A common assumption, which

is often made implicitly during the construction of SSL

benchmark datasets, is that the class distribution of labeled

and/or unlabeled data are balanced. However, in many re-

alistic scenarios, this assumption holds untrue and becomes

the primary cause of poor SSL performance [5, 22].

Supervised learning on imbalanced data has been widely

explored. It is commonly observed that models trained on

imbalanced data are biased towards majority classes which

have numerous examples, and away from minority classes

which have few examples. Various solutions have been pro-

posed to help alleviate bias, such as re-sampling [3, 4], re-
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Figure 1. Experimental results on CIFAR10-LT. (a) Both labeled

and unlabeled sets are class-imbalanced, where the most major-

ity class has 100× more samples than the most minority class.

The test set remains balanced. (b) Precision and recall of a Fix-

Match [39] model. Although minority classes have low recall,

they obtain high precision. (c) & (d) The proposed CReST and

CReST+ improve the quality of pseudo-labels (c) and thus the re-

call on the balanced test set (d), especially on minority classes.

weighting [9, 6], and two-stage training [20, 52]. All these

methods rely on labels to re-balance the biased model.

In contrast, SSL on imbalanced data has been under-

studied. In fact, data imbalance poses further challenges in

SSL where missing label information precludes rebalancing

the unlabeled set. Pseudo-labels for unlabeled data gener-

ated by a model trained on labeled data are commonly lever-

aged in SSL algorithms. However, pseudo-labels can be

problematic if they are generated by an initial model trained

on imbalanced data and biased toward majority classes:

subsequent training with such biased pseudo-labels intensi-

fies the bias and deteriorates the model quality. Apart from

a few recent works [22, 48], the majority of existing SSL al-

gorithms [2, 1, 46, 39] have not been thoroughly evaluated

on imbalanced data distributions.

In this work, we investigate SSL in the context of class-

110857



imbalanced data in which both labeled and unlabeled sets

have roughly the same imbalanced class distributions, as il-

lustrated in Fig. 1(a). We observe that the undesired per-

formance of existing SSL algorithms on imbalanced data is

mainly due to low recall on minority classes. Our method is

motivated by the further observation that, despite this, pre-

cision on minority classes is surprisingly high. In Fig. 1(b),

we show predictions on a CIFAR10-LT dataset produced

by FixMatch [39], a representative SSL algorithm with

state-of-the-art performance on balanced benchmarks. The

model obtains high recall on majority classes but suffers

from low recall on minority classes, which results in low ac-

curacy overall on the balanced test set. However, the model

has almost perfect precision on minority classes, suggesting

that the model is conservative in classifying samples into

minority classes, but once it makes such a prediction we can

be confident it is correct. Similar observations are made on

other SSL methods, and on supervised learning [19].

With this in mind, we introduce a class-rebalancing self-

training scheme (CReST) which re-trains a baseline SSL

model after adaptively sampling pseudo-labeled data from

the unlabeled set to supplement the original labeled set. We

refer to each fully-trained baseline model as a generation.

After each generation, pseudo-labeled samples from the un-

labeled set are added into the labeled set to retrain an SSL

model. Rather than updating the labeled set with all pseudo-

labeled samples, we instead use a stochastic update strategy

in which samples are selected with higher probability if they

are predicted as minority classes, as those are more likely to

be correct predictions. The updating probability is a func-

tion of the data distribution estimated from the labeled set.

In addition, we extend CReST to CReST+ by incorporating

distribution alignment [1] with a temperature scaling factor

to control its alignment strength over generations, so that

predicted data distributions are more aggressively adjusted

to alleviate model bias. As shown in Fig. 1(c) and 1(d), the

proposed strategy reduces the bias of pseudo-labeling and

improves the class-balanced test set accuracy as a result.

We show in experiments that CReST and CReST+ im-

prove over baseline SSL methods by a large margin. On

CIFAR-LT [9, 6], our method outperforms FixMatch [39]

under different imbalance ratios and label fractions by as

much as 11.8% in accuracy. Our method also outperforms

DARP [22], a state-of-the-art SSL algorithm designed for

learning from imbalanced data, on both MixMatch [2] and

FixMatch [39] by up to 4.0% in accuracy. To further test

the efficacy of the proposed method on large-scale data, we

apply our method on ImageNet127 [17], a naturally im-

balanced dataset created from ImageNet [11] by merging

classes based on the semantic hierarchy, and get 7.9% gain

on recall. Extensive ablation study further demonstrates that

our method particularly helps improve recall on minority

classes, making it a viable solution for imbalanced SSL.

2. Related work

2.1. Semisupervised learning

Recent years have observed a significant advancement

of SSL research [26, 25, 32, 2, 1, 47, 46, 39]. Many of

these methods share similar basic techniques, such as en-

tropy minimization [13], pseudo-labeling, or consistency

regularization, with deep learning. Pseudo-labeling [26, 39]

trains a classifier with unlabeled data using pseudo-labeled

targets derived from the model’s own predictions. Re-

latedly, [25, 2, 46, 1, 47] use a model’s predictive prob-

ability with temperature scaling as a soft pseudo-label.

Consistency regularization [36, 25, 32] learns a classifier

by promoting consistency in predictions between different

views of unlabeled data, either via soft [25, 32, 2, 46] or

hard [39] pseudo-labels. Effective methods of generating

multiple views include input data augmentations of varying

strength [12, 8, 1], standard dropout within network lay-

ers [40], and stochastic depth [16]. The performance of

most recent SSL methods relies on the quality of pseudo-

labels. However, none of aforementioned works have stud-

ied SSL in the class-imbalanced setting, in which the quality

of pseudo-labels is significantly threatened by model bias.

2.2. Classimbalanced supervised learning

Research on class-imbalanced supervised learning has

attracted increasing attention. Prominent works include re-

sampling [7, 3, 4, 14] and re-weighting [21, 9, 6, 41] which

re-balance the contribution of each class, while others fo-

cus on re-weighting each instance [27, 38, 35, 19]. Some

works [50, 44, 23, 28, 29] aim to transfer knowledge from

majority classes to minority classes. A recent trend of

work proposes to decouple the learning of representation

and classifier [52, 20, 42]. These methods assume all la-

bels are available during training and their performance is

largely unknown under SSL scenarios.

2.3. Classimbalanced semisupervised learning

While SSL has been extensively studied, it is under-

explored regarding class-imbalanced data. Recently, Yang

and Xu [48] argued that leveraging unlabeled data by SSL

and self-supervised learning can benefit class-imbalanced

learning. Hyun et al. [18] proposed a suppressed consis-

tency loss to suppress the loss on minority classes. Kim et

al. [22] proposed Distribution Aligning Refinery (DARP) to

refine raw pseudo-labels via a convex optimization. In con-

trast, we boost the quality of the model’s raw pseudo-labels

directly via an class-rebalancing sampling strategy and a

progressive distribution alignment strategy. DARP also dis-

cussed another interesting setting where labeled and unla-

beled data do not share the same class distribution, while in

this work we focus on the scenario when labeled and unla-

beled data have roughly the same distribution.
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Figure 2. Bias of a FixMatch [39] model on class-imbalanced data. Left: Per-class recall and precision on CIFAR10-LT. Right: Per-class

recall and precision on CIFAR100-LT. The class index is sorted by the number of examples in descending order. While the conventional

assumption might be that the performance of the majority classes is better than that of the minority classes, we find it only partially true.

The model obtains high recall but low precision on majority classes, while obtaining low recall but high precision on minority classes. See

more details in Sec. 3.2.

3. Class-Imbalanced SSL

In this section, we first set up the problem and introduce

baseline SSL algorithms. Next, we investigate the biased

behavior of existing SSL algorithms on class-imbalanced

data. Based on these observations, we propose a class-

rebalancing self-training framework (CReST) that takes ad-

vantage of, rather than suffers from, the model’s bias to al-

leviate the performance degeneration on minority classes.

In addition, we extend distribution alignment [1] and inte-

grate it as CReST+ to further improve the quality of online

pseudo-labeling.

3.1. Problem setup and baselines

We first set up the problem of class-imbalanced semi-

supervised learning. For an L-class classification task, there

is a labeled set X =
{

(xn, yn) :n∈ (1, . . . , N)
}

, where

xn ∈R
d are training examples and yn ∈{1, . . . , L} are cor-

responding class labels. The number of training examples

in X of class l is denoted as Nl, i.e.,
∑L

l=1 Nl =N . Without

loss of generality, we assume that the classes are sorted by

cardinality in descending order, i.e., N1 ≥N2 ≥ · · · ≥NL.

The marginal class distribution of X is skewed, i.e.,

N1 ≫NL. We measure the degree of class imbalance by

imbalance ratio, γ= N1

NL

. Besides the labeled set X , an

unlabeled set U =
{

um ∈R
d :m∈ (1, . . . ,M)

}

that shares

the same class distribution as X is also provided. The label

fraction β= N
N+M

measures the percentage of labeled data.

Given class-imbalanced sets X and U , our goal is to learn a

classifier f :Rd →{1, . . . , L} that generalizes well under a

class-balanced test criterion.

Many state-of-the-art SSL methods [39, 47] utilize unla-

beled data by assigning a pseudo-label with the classifier’s

prediction ŷm = f(um). The classifier is then optimized on

both labeled and unlabeled samples with their correspond-

ing pseudo-labels. Therefore, the quality of pseudo-labels

is crucial to the final performance. These algorithms work

successfully on standard class-balanced datasets since the

quality of the classifier — and thus its online pseudo-labels

— improves for all classes over the course of training. How-

ever, when the classifier is biased at the beginning due to a

skewed class distribution, the online pseudo-labels of unla-

beled data can be even more biased, further aggravating the

class-imbalance issue and resulting in severe performance

degradation on minority classes.

3.2. A closer look at the model bias

Previous works [9, 6] introduce long-tailed versions of

CIFAR [24] datasets with various class-imbalanced ratios

to evaluate class-imbalanced fully-supervised learning al-

gorithms. We extend this protocol by retaining a fraction

of training samples as labeled and the remaining as unla-

beled. We test FixMatch [39], one of the state-of-the-art

SSL algorithms designed for class-balanced data. Fig. 2

shows test recall and precision of each class on CIFAR10-

LT with imbalance ratio γ=100, label fraction β=10%,

and CIFAR100-LT with imbalance ratio γ=50, label frac-

tion β=30%.

First, as shown in the first and third plots of Fig. 2, Fix-

Match achieves very high recall on majority classes and

poor recall on minority classes, which is consistent with the

conventional wisdom. For example, the recall of the most

and second most majority classes of CIFAR10-LT is 98.5%

and 99.7%, respectively, while the model recognizes only

8.4% of samples correctly from the most minority class. In

other words, the model is highly biased towards majority

classes, resulting in poor recall averaged over all classes

which is also known as accuracy as the test set is balanced.

Despite the low recall, the minority classes maintain sur-

prisingly high precision as in the second and fourth plots of

Fig. 2. For example, the model achieves 97.7% and 98.3%

precision, respectively, on the most and the second most

minority classes of CIFAR10-LT, while only achieving rel-

atively low precision on majority classes. This indicates

that many minority class samples are predicted as one of

the majority classes.

While the conventional wisdom may suggest that the per-

formance of the majority classes is better than that of the
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minority classes, we find that it is only partly true: the bi-

ased model learned on class-imbalanced data indeed per-

forms favorably on majority classes in terms of recall, but

favors minority classes in terms of precision. Similar ob-

servations are made on other SSL algorithms, and also on

fully-supervised class-imbalanced learning [19]. This em-

pirical finding motivates us to exploit the high precision of

minority classes to alleviate their recall degradation. To

achieve this goal, we introduce CReST, a class-rebalancing

self-training framework illustrated in Fig. 3.

3.3. Classrebalancing selftraining

Self-training [37, 49] is an iterative method widely used

in SSL. It trains the model for multiple generations, where

each generation involves two steps. First, the model is

trained on the labeled set to obtain a teacher model. Second,

the teacher model’s predictions are used to generate pseudo-

labels ŷm for unlabeled data um. The pseudo-labeled set

Û =
{

(um, ŷm)
}M

m=1
is included into the labeled set, i.e.,

X ′ =X ∪ Û , for the next generation.

To accommodate the class-imbalance, we propose two

modifications to the self-training strategy. First, instead of

solely training on the labeled data, we use SSL algorithms

to exploit both labeled and unlabeled data to get a better

teacher model in the first step. More importantly, in the

second step, rather than including every sample in Û in the

labeled set, we instead expand the labeled set with a se-

lected subset Ŝ ⊂ Û , i.e., X ′ =X ∪ Ŝ . We choose Ŝ follow-

ing a class-rebalancing rule: the less frequent a class l is,

the more unlabeled samples that are predicted as class l are

included into the pseudo-labeled set Ŝ .

We estimate the class distribution from the labeled set.

Specifically, unlabeled samples that are predicted as class l
are included into Ŝ at the rate of

µl =
(NL+1−l

N1

)α
, (1)

where α≥ 0 tunes the sampling rate and thus the

size of Ŝ . For instance, for a 10-class imbalanced

dataset with imbalance ratio of γ= N1

N10
=100, we keep

all samples predicted as the most minority class since

µ10 =(N10+1−10

N1
)α =1. While for the most majority class,

µ1 =(N10+1−1

N1
)α =0.01α of samples are selected. When

α=0, µl =1 for all l, then all unlabeled samples are

kept and the algorithm falls back to the conventional self-

training. When selecting pseudo-labeled samples in each

class, we take the most confident ones.

The motivation of our CReST strategy is two-fold. First,

as observed in Sec. 3.2, the precision of minority classes is

much higher than that of majority classes, hence minority

class pseudo-labels are less risky to include in the labeled

set. Second, adding samples to minority classes is more crit-

ical due to data scarcity. With more samples from minority
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Figure 3. CReST (Class-Rebalancing Self-Training) alternatingly

trains a baseline SSL algorithm on both labeled and unlabeled data

and expands the labeled set by sampling pseudo-labeled unlabeled

data. Sampling rates for majority and minority classes are adap-

tively determined based on the quality of pseudo-labels. See text

for details.

classes added, the labeled set is more class-balanced, which

leads to a less biased classifier for online pseudo-labeling in

the subsequent generation. Note that there are other ways

of sampling the pseudo-labels in a class-balancing fashion

and we provide a practical and effective example.

3.4. Progressive distribution alignment

We further improve the quality of online pseudo-labels

by additionally introducing progressive distribution align-

ment into CReST and distinguish it as CReST+.

While first introduced for class-balanced SSL, Distribu-

tion Alignment (DA) [1] fits with class-imbalanced sce-

narios particularly well. It aligns the model’s predictive

distribution on unlabeled samples with the labeled train-

ing set’s class distribution p(y). Let p̃(y) be the mov-

ing average of the model’s predictions on unlabeled exam-

ples. DA first scales the model’s prediction q= p(y|um; f)

for an unlabeled example um by the ratio
p(y)
p̃(y) , aligning

q with the target distribution p(y). It then re-normalizes

the scaled result to form a valid probability distribution:

q̃=Normalize(q p(y)
p̃(y) ), where Normalize(x)i =xi/

∑

j xj .

q̃ is used as the label guess for um instead of q.

To further enhance DA’s ability to handle class-

imbalanced data, we extend it with temperature scaling.

Specifically, we add a tuning knob t∈ [0, 1] that controls

the class-rebalancing strength of DA. Instead of directly

taking p(y) as target, we use a temperature-scaled distri-

bution Normalize(p(y)t). When t=1, we recover DA.

When t< 1, the temperature-scaled distribution becomes

smoother and balances the model’s predictive distribution

more aggressively. When t=0, the target distribution be-
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CIFAR10-LT CIFAR100-LT

β=10% β=30% β=10% β=30%

Method γ=50 γ=100 γ=200 γ=50 γ=100 γ=200 γ=50 γ=100 γ=50 γ=100

FixMatch [39] 79.4±0.65 66.3±1.74 59.7±0.74 81.9±0.30 73.1±0.58 64.7±0.69 33.7±0.94 28.3±0.66 43.1±0.24 38.6±0.45

w/ CReST 83.8±0.45 75.9±0.62 64.1±0.23 84.2±0.13 77.6±0.86 67.7±0.82 37.4±0.29 32.1±1.52 45.6±0.19 40.2±0.53

w/ CReST+ 84.2±0.39 78.1±0.84 67.7±1.39 84.9±0.27 79.2±0.20 70.5±0.56 38.8±1.03 34.6±0.74 46.7±0.34 42.0±0.44

Table 1. Classification accuracy (%) on CIFAR10-LT and CIFAR100-LT under various label fraction β and imbalance ratio γ. The numbers

are averaged over 5 different folds. Models with CReST are trained for 15 generations. Models with CReST+ are trained for 6 generations.

comes uniform.

While using a smaller t can benefit a single generation

under a class-balanced test criterion, it is less desirable

for multiple generations of self-training since it affects the

quality of pseudo-labels. Specifically, applying a t< 1 en-

forces the model’s predictive distribution to be more bal-

anced than the class distribution of the training set, lead-

ing the model to predict minority classes more frequently.

However, on an imbalanced training set with few samples

of minority classes, such pseudo-labeling tends to be over-

balanced, i.e., more samples are wrongly predicted as mi-

nority classes. This decreases the high precision of minority

classes, interfering with our ability to exploit it to produce

better pseudo-labels.

To handle this, we propose to progressively increase the

strength of class-rebalancing by decreasing t over genera-

tions. Specifically, we set t by a linear function of the cur-

rent generation g which indexes from 0:

tg = (1−
g

G
) · 1.0 +

g

G
· tmin , (2)

where G+1 is the total number of generations and tmin is

the temperature used for the last generation. This progres-

sive schedule for t enjoys both high precision of pseudo-

labels in early generations, and stronger class-rebalancing

in late generations. It also speeds up the iterative training,

obtaining better results with fewer generations of training.

See Sec. 4.3 for empirical analysis.

4. Experiments

4.1. CIFARLT

Datasets. We first evaluate the efficacy of the proposed

method on long-tailed CIFAR10 (CIFAR10-LT) and long-

tailed CIFAR100 (CIFAR100-LT) introduced in [9, 6]. On

these datasets, training images are randomly discarded

per class to maintain a pre-defined imbalance ratio γ.

Specifically, Nl = γ−
l−1

L−1 ·N1 while N1 =5000, L=10 for

CIFAR10-LT and N1 =500, L=100 for CIFAR100-LT.

We randomly select β=10% and 30% of samples from

training data to create the labeled set, and test imbalance

ratio γ=50, 100 and 200 for CIFAR10-LT and γ=50 and

100 for CIFAR100-LT. The test set remains untouched and

balanced, so that the evaluated criterion, accuracy on the

test set, is class-balanced.

Setup. We use Wide ResNet-28-2 [51] following [33, 39]

as the backbone. We evaluate our method on FixMatch and

MixMatch. For each generation, the model is trained for 216

steps when using FixMatch as the baseline SSL algorithm

and 217 steps for MixMatch. We use a cosine learning rate

decay [30, 39] whose formulation is provided in the supple-

mentary material. Other hyper-parameters for each training

generation are untouched. For CReST and CReST+ related

hyper-parameters, we set α=1 / 3, tmin =0.5 for FixMatch

and α=1 / 2, tmin =0.8 for MixMatch. CReST takes 15

generations, while CReST+ only takes 6 generations accel-

erated by progressive distribution alignment. The hyper-

parameters are selected based on a single fold of CIFAR10-

LT with γ=100 and β=10%. We evaluate the model on

the test dataset every 210 steps and report the average test

accuracy of the last 5 evaluations. Each algorithm is tested

under 5 different folds of labeled data and we report the

mean and the standard deviation of accuracy on the test set.

Following [2] and [39], we report final performance using

an exponential moving average of model parameters.

Main results. First, we compare our model with baseline

FixMatch, and present the results in Table 1. Although Fix-

Match performs reasonably well on imbalance ratio γ=50,

its accuracy decreases significantly with increasing imbal-

ance ratio. In contrast, CReST improves the accuracy of

FixMatch on all evaluated settings and achieves as much as

9.6% absolute performance gain. When incorporating pro-

gressive distribution alignment, our CReST+ model is able

to further boost the performance on all settings by another

few points, resulting in 3.0% to 11.8% absolute accuracy

improvement compared to baseline FixMatch.

The accuracy of all compared methods improves with

increasing number of labeled samples, but CReST consis-

tently outperforms the baseline. This indicates that CReST

can better utilize labeled data to reduce model bias under

imbalanced class-distribution.

We also observe that our model works particularly well

and achieves 11.8% and 6.1% accuracy gain for imbalance

ratio γ=100 with 10% and 30% labeled data, respectively.

We hypothesize the reason is that our model finds more cor-
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rectly pseudo-labeled samples to augment the labeled set

when the imbalance ratio is moderate. However, when im-

balance ratio is very high, e.g., γ=200, our model’s capa-

bility is constrained by insufficient number of training sam-

ples from minority classes.

Comparison with baselines. We further report the perfor-

mance of other SSL baselines in Table 2. For fair compari-

son, all algorithms are trained for 6× 216 steps. This leads

to 6 generations for CReST and CReST+ on a FixMatch

base with 216 steps each generation, and 3 generations for

CReST and CReST+ on a MixMatch base with 217 steps

each generation. Other models that do not use self-training

are trained for a single generation with 6× 216 steps.

Method γ=50 γ=100 γ=200

Pseudo-Labeling [26] 52.5±0.74 46.5±1.29 42.0±1.39

Mean Teacher [43] 57.1±3.00 48.1±0.71 45.1±1.28

MixMatch [2] 69.1±1.18 60.4±2.24 54.5±1.87

w/ CReST 69.8±1.06 60.5±1.56 55.2±2.25

w/ CReST+ 76.7±0.35 66.1±0.79 57.6±1.30

FixMatch [39] 80.1±0.44 67.3±1.19 59.7±0.63

w/ CB [9] 80.2±0.45 67.6±1.88 60.8±0.26

w/ RS [3, 4] 80.2±0.78 69.6±1.30 60.9±1.25

w/ DA [1] (t=1.0) 80.2±0.45 69.7±1.27 62.0±0.84

w/ DA [1] (t=0.5) 82.4±0.33 73.6±0.63 63.7±1.17

w/ LA [31] 83.2±0.87 70.4±2.90 62.4±1.24

w/ CReST 83.2±0.37 74.8±1.09 63.4±0.32

w/ CReST+ 84.2±0.39 78.1±0.84 67.7±1.39

w/ CReST+ & LA 85.6±0.36 81.2±0.70 71.9±2.24

Table 2. We compare CReST and CReST+ with baseline methods

including different SSL algorithms and typical class-rebalancing

techniques designed for fully-supervised learning. For fair com-

parison, all models are measured at the same number of training

steps. See text for details. Three imbalance ratios γ with β=10%

labels are evaluated. Numbers are averaged over 5 different folds.

Method γ=50 γ=100 γ=150

Supervised 65.2±0.05 58.8±0.13 55.6±0.43

MixMatch [2] 73.2±0.56 64.8±0.28 62.5±0.31

w/ DARP [22] 75.2±0.47 67.9±0.14 65.8±0.52

w/ CReST 78.4±0.36 70.0±0.49 64.7±0.96

w/ CReST+ 79.0±0.26 71.9±0.33 68.3±0.57

FixMatch [39] 79.2±0.33 71.5±0.72 68.4±0.15

w/ DARP [22] 81.8±0.24 75.5±0.05 70.4±0.25

w/ CReST 83.0±0.39 75.7±0.38 70.8±0.25

w/ CReST+ 83.9±0.14 77.4±0.36 72.8±0.58

Table 3. Accuracy (%) under DARP’s protocol [22] on CIFAR10.

See the supplementary material for dataset details. Three imbal-

ance ratios γ are evaluated. Numbers are averaged over 5 runs.

Method Gen1 Gen2 Gen3

Supervised (100% labels) 75.8 - -

Supervised (10% labels) 46.0 - -

FixMatch (10% labels) 65.8 - -

w/ DA (t=0.5) 69.1 - -

w/ CReST 65.8 67.6 67.7

w/ CReST+ 68.3 70.7 73.7

Table 4. Evaluating the proposed method on ImageNet127 with

β=10% samples are labeled. We retrain FixMatch models for 3

generations with our CReST and CReST+.

We first directly evaluate several classic SSL methods on

class-imbalanced datasets, including Pseudo-Labeling [26],

Mean Teacher [43], MixMatch [2] and FixMatch [39]. All

the SSL baselines suffer from low accuracy due to im-

balanced data, and the accuracy drop becomes more pro-

nounced with increasing imbalance ratio. On MixMatch,

the improvement provided by CReST is modest mainly due

to the schedule constraint. Providing more generation bud-

get, the results of MixMatch with CReST can be further

improved. Among these algorithms, FixMatch achieves the

best performance, so we take it as the baseline for various

rebalancing methods.

We consider typical class-rebalancing methods designed

for fully-supervised learning that can be directly applied in

SSL algorithms including 1) Class-Balanced loss (CB) [9],

a representative of re-weighting strategies in which labeled

examples are re-weighted according to the inverse of the ef-

fective number of samples in each class; 2) Re-Sampling

(RS) [3, 4], a representative of re-sampling strategies in

which each labeled example is sampled with probability

proportional to the inverse sample size of its class. We

also consider Distribution Alignment (DA) [1] as described

in Sec. 3.4 and Logit Adjustment (LA) [31], an ad-hoc

post-processing technique to enhance models’ discrimina-

tive ability on minority classes by adjusting the logits of

model predictions. While CB, RS, DA and LA all improve

accuracy over SSL baselines, the gain is relatively small.

With CReST and CReST+, we successfully improve the

accuracy for all imbalance ratios by at most 10.8% over

FixMatch, outperforming all compared SSL baselines and

class-rebalancing methods. Finally, applying LA as the

post-processing correction of our CReST+ models further

gives consistent accuracy gains, producing the best results.

Comparison with DARP. We directly compare with

DARP [22], the most recent state-of-the-art SSL algorithm

specifically designed for imbalanced data. Both DARP and

our method are built upon MixMatch and FixMatch as drop-

in additions to standard SSL algorithms. We apply our

method on exactly the same datasets used in DARP and

present the results in Table 3. Details of the dataset con-

struction are provided in the supplementary material. For
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all three imbalance ratios, our model consistently achieves

up to 4.0% accuracy gain over DARP on MixMatch, and up

to 2.4% accuracy gain on FixMatch.

4.2. ImageNet127

Datasets. We also evaluate CReST on ImageNet127 [17,

45] to verify its performance on large-scale datasets. Im-

ageNet127 is originally introduced in [17], where the 1000

classes of ImageNet [11] are grouped into 127 classes based

on their top-down hierarchy in WordNet. It is a naturally

imbalanced dataset with imbalance ratio γ=286. Its most

majority class “mammal” consists of 218 original classes

and 277,601 training images. While its most minority class

“butterfly” is formed by a single original class with 969

training examples. We randomly select β=10% training

samples as the labeled set and keep the test set unchanged.

Due to class grouping, the test set is not balanced. There-

fore, we compute averaged class recall instead of accuracy

to achieve a balanced metric.

We note that there are other large-scale datasets like

iNaturalist [10] and ImageNet-LT [29] which often serve as

testbeds for fully-supervised long-tailed recognition algo-

rithms. However, these datasets contain too few examples

of minority classes to form a statistically meaningful dataset

and draw reliable conclusions for semi-supervised learning.

For example, there are only 5 examples in the most minority

class of the ImageNet-LT dataset.

Setup. We use ResNet50 [15] as the backbone. The hyper-

parameters for each training generation are adopted from

the original FixMatch paper. The model is self-trained for 3

generations with α=0.7 and tmin =0.5.

Results. We report results in Table 4. Supervised learn-

ing with 100% and 10% labeled training examples and DA

with temperature scaling are also presented as reference.

Comparing with the baseline FixMatch, both CReST and

CReST+ progressively improve over 3 generations of self-

training, while CReST+ provides 7.9% absolute gain in the

end, which verifies the efficacy of our proposed method.

4.3. Ablation study

We perform an extensive ablation study to evaluate and

understand the contribution of each critical component in

CReST and CReST+. The experiments in this section are all

performed with FixMatch on CIFAR10-LT with imbalance

ratio γ=100, label fraction β=10% and a single fold of

labeled data.

Effect of sampling rate. CReST introduces the sampling

rate hyper-parameter α that controls the per-class sampling

rate and the number of selected pseudo-labeled samples to

be included in the labeled set. In Fig. 4 we show how α
influences performance over generations.

When α=0, our method falls back to conventional self-

training, which expands the labeled set with all unlabeled
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Figure 4. Effect of α across multiple generations on CIFAR10-

LT (γ=100, β=10%) in CReST. (a) Illustration of how α in-

fluences sampling rate. (b) Test accuracy over generations with

different α. When α=0, the method falls back to conventional

self-training with all the unlabeled examples and corresponding

pseudo-labels added into the labeled set, showing no improvement

after generations of retraining, whereas our class-rebalancing sam-

pling (α> 0) helps.
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Figure 5. Effect of temperature t across multiple generations on

CIFAR10-LT (γ=100, β=10%). (a) Illustration of how t con-

trols the target distribution of distribution alignment. (b) Test ac-

curacy over generations with different constant t and our CReST+

using progressive t. Compared to using a constant t, CReST+

achieves the best final accuracy by progressing from t=0 to

tmin =0.5 over 6 generations.

examples and their corresponding predicted labels. How-

ever, conventional self-training does not produce a perfor-

mance gain over multiple generations, showing that sim-

ply applying self-training can not provide performance im-

provement. In contrast, with our class-rebalancing sam-

pling strategy (α> 0), the accuracy can be improved by it-

erative model retraining.

As illustrated in Fig. 4(a), smaller α means more pseudo-

labeled samples are added into the labeled set, which en-

larges the labeled set but adversely introduces more low-

quality pseudo-labels. On the other hand, larger α biases

pseudo-labeled samples towards minority classes. As a re-

sult, the class-rebalancing sampling can be too strong with

large α, leading to imbalance in the reversed direction, to-

wards the original minority classes. This is the case for

α=1 where, after the 10-th generation, the model becomes

increasingly biased towards minority classes and suffers

from performance degradation on majority classes, result-
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Method / Class Split 1 2 3 4 5 6 7 8 9 10 Avg.

FixMatch [39] test 98.7 99.5 90.0 83.5 85.0 47.6 69.9 59.0 8.9 7.2 64.9

w/ CReST test 97.7 98.3 88.8 81.9 88.2 59.7 79.5 61.2 47.0 47.9 75.0

-1.0 -1.2 -1.2 -1.6 +3.2 +12.1 +9.6 +2.2 +38.1 +40.7 +10.1

w/ CReST+ test 93.8 97.7 87.3 76.9 87.5 69.2 84.9 67.9 60.3 70.8 79.6

-4.9 -1.8 -2.7 -6.6 +2.5 +21.6 +15.0 +8.9 +51.4 +63.6 +14.7

FixMatch [39] unlabeled 98.5 99.1 90.0 84.0 84.7 49.7 64.9 65.6 14.9 22.2 67.4

w/ CReST unlabeled 97.8 96.8 90.0 82.9 87.4 62.4 79.3 64.8 60.8 66.7 78.9

-0.7 -2.3 0 -1.1 +2.7 +12.7 +14.4 -0.8 +45.9 +44.5 +11.5

w/ CReST+ unlabeled 92.2 95.7 86.1 76.7 87.6 68.1 85.1 71.2 75.7 75.6 81.4

-6.3 -3.4 -3.9 -7.3 +2.9 +18.4 +20.2 +5.6 +60.8 +53.4 +14.0

Table 5. Per-class recall (%) on the balanced test set and the imbalanced unlabeled set of CIFAR10-LT (γ=100, β=10%). Our strategies

compromise small loss on majority classes for significant gain on minority classes, leading to improved averaged recall over all classes.

ing in decreased accuracy. For example, from the 10-th gen-

eration to the last generation, the recall of the most minority

classes increases by a large margin from 55.0% to 71.1%,

while 7 of the other 9 classes suffer from severe recall

degradation, resulting in 3.0% drop of the class-balanced

test set accuracy. Empirically, we find α=1 / 3 achieves a

balance between the quality of pseudo-labels and the class-

rebalancing strength across different imbalance ratios and

label fractions on long-tailed CIFAR datasets.

Effect of progressive temperature scaling. The proposed

adaptive distribution alignment used in CReST+ introduces

another hyper-parameter, temperature t, that scales the tar-

get distribution. We first illustrate in Fig. 5(a) how tem-

perature t smooths the target distribution in distribution

alignment so that smaller t provides stronger re-balancing

strength. In Fig. 5(b), we study the effect of using a constant

temperature and our proposed progressive temperature scal-

ing in which t gradually decreases from 1.0 to tmin =0.5
across generations of self-training.

First, we notice that t=0.5 provides the best single gen-

eration accuracy of 75.1% among all tested temperature val-

ues. This suggests that the model can benefit from class

re-balancing with a properly “smoothed” target distribu-

tion compared with 70.0% accuracy of the original distri-

bution alignment whose temperate t is fixed to 1.0. Fur-

ther decreasing t to 0.1 results in lower accuracy, as the tar-

get distribution is overly smoothed, which introduces more

pseudo-labeling errors.

Over multiple generations of self-training, using a con-

stant t is not optimal. Although a relatively small t (e.g.,

0.5) can give better performance in early generations, it can

not provide further gains through continuing self-training

due to the decreased pseudo-label quality. When t is lower

than 0.5, performance can even degrade after certain later

generations. In contrast, the proposed CReST+, which

progressively enhances the distribution alignment strength,

provides the best accuracy at the last generation.

Per-class performance. To show the source of accuracy

improvements, in Table 5 we present per-class recall on the

balanced test set of CIFAR10-LT with imbalance ratio 100

and label fraction 10%. Both CReST and CReST+ sacrifice

a few points of accuracy on four majority classes but pro-

vide significant gains on the other six minority classes, ob-

taining better performance over all classes. We also include

the results on the imbalanced unlabeled set. The results are

particularly similar to those of the test set with mild drop on

majority classes and remarkable improvement on minority

classes. This suggests that our method indeed improves the

quality of pseudo-labels, which can be transferred to better

generalization on a balanced test criterion.

5. Conclusion

In this work, we present a class-rebalancing self-training

framework, named CReST, for imbalanced semi-supervised

learning. CReST is motivated by the observation that exist-

ing SSL algorithms produce high precision pseudo-labels

on minority classes. CReST iteratively refines a baseline

SSL model by supplementing the labeled set with high qual-

ity pseudo-labels, where minority classes are updated more

aggressively than majority classes. Over generations of

self-training, the model becomes less biased towards ma-

jority classes and focuses more on minority classes. We

also extend distribution alignment to progressively increase

its class-rebalancing strength over generations and denote

the combined method CReST+. Extensive experiments

on long-tailed CIFAR datasets and ImageNet127 dataset

demonstrate that the proposed CReST and CReST+ im-

prove baseline SSL algorithms by a large margin, and con-

sistently outperform state-of-the-art rebalancing methods.
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