
Visual Room Rearrangement

Luca Weihs1 Matt Deitke1,2 Aniruddha Kembhavi1,2 Roozbeh Mottaghi1,2

1PRIOR @ Allen Institute for AI 2University of Washington

ai2thor.allenai.org/rearrangement

Figure 1: An instance of the Room Rearrangement task. Objects begin in the positions indicated by the solid 3D bounding

boxes. An agent must walk through the room and record the objects it sees. The agent is then removed, and objects are moved

to the locations indicated by the dashed bounding boxes. The agent is then reintroduced into the room and must interact with

objects (moving or opening them) to return the room to its original state.

Abstract

There has been a significant recent progress in the field

of Embodied AI with researchers developing models and

algorithms enabling embodied agents to navigate and in-

teract within completely unseen environments. In this pa-

per, we propose a new dataset and baseline models for the

task of Rearrangement. We particularly focus on the task

of Room Rearrangement: an agent begins by exploring a

room and recording objects’ initial configurations. We then

remove the agent and change the poses and states (e.g.,

open/closed) of some objects in the room. The agent must

restore the initial configurations of all objects in the room.

Our dataset, named RoomR, includes 6,000 distinct rear-

rangement settings involving 72 different object types in 120

scenes. Our experiments show that solving this challenging

interactive task that involves navigation and object interac-

tion is beyond the capabilities of the current state-of-the-art

techniques for embodied tasks and we are still very far from

achieving perfect performance on these types of tasks.

1. Introduction

One of the longstanding goals of Embodied AI is to build

agents that interact with their surrounding world and per-

form tasks. Recently, navigation and instruction following

tasks have gained popularity [1, 2, 4] in the Embodied AI

community. These tasks are the building blocks of inter-

active embodied agents, and over the past few years, we

have observed remarkable progress regarding the develop-

ment of models and algorithms. However, a typical assump-

tion for these tasks is that the environment is static; namely,

the agent can move within the environment but cannot inter-

act with objects or modify their state. The ability to interact

with and change its environment is crucial for any artifi-

cial embodied agent and cannot be studied in static envi-

ronments. There is a general trend towards interactive tasks

[50, 41, 49]. These tasks focus on specific aspects of in-

teraction such as object manipulation, long-horizon plan-

ning and understanding pre-condition and post-conditions

of actions. In this paper, we address a more comprehensive

task in a visually rich environment that can subsume each

of these skills.

5922

https://ai2thor.allenai.org/rearrangement


We address an instantiation of the rearrangement prob-

lem, an interactive task, recently introduced by Batra et

al. [3]. The goal of the rearrangement task is to reach a

goal room configuration from an initial room configuration

through interaction. In our instantiation, an agent must re-

cover a scene configuration after we have randomly moved,

or changed the state of, several objects (e.g. see Fig. 1).

This problem has two stages: walkthrough and unshuf-

fle. During the walkthrough stage, the agent may explore

the scene and, through egocentric perception, record infor-

mation regarding the goal configuration. We then remove

the agent from the room and move some objects to other

locations or change their state (e.g. opening a closed mi-

crowave). In the unshuffle stage, the agent must interact

with objects in the room to recover the goal configuration

observed in the walkthrough stage.

Rearrangement poses several challenges such as infer-

ring the visual differences between the initial and goal con-

figurations, inferring the objects’ state, learning the post-

conditions and pre-conditions of actions, maintaining a

persistent and compact memory representation during the

walkthrough stage, and successful navigation. To establish

baseline performance for our task, we evaluate an actor-

critic model akin to the state-of-the-art models used for

long-horizon tasks such as navigation. We train our base-

lines using decentralized distributed proximal policy op-

timization (DD-PPO) [47, 40], a reward-based RL algo-

rithm, as well as with DAgger [37], a behavioral cloning

method. During the walkthrough stage, the agent uses a

non-parametric mapping module to memorize its observa-

tions along with any visible objects and their positions. In

the unshuffle stage the agent compares images that it ob-

serves against what it has observed in its map and may use

this information to inform which objects it should move

or open. As a proof-of-concept we also run experiments

with a model that includes a semantic mapping component

adapted from the Active Neural SLAM model [8].

To facilitate research in this challenging direction,

we compiled the Room Rearrangement (RoomR) dataset.

RoomR is built upon AI2-THOR [29], a virtual interac-

tive environment that enables interacting with objects and

changing their state. The RoomR dataset includes 6,000 re-

arrangement tasks that involve changing the pose and state

of multiple objects within an episode. The level of the dif-

ficulty of each episode varies depending on the differences

between the initial and the goal object configurations. We

have used 120 rooms and more than 70 unique object cate-

gories to create the dataset.

We consider two variations of the room rearrangement

task. In the first setting, which we call the 1-Phase task,

the agent completes the walkthrough and unshuffle stages

in parallel so that it is given aligned images from the walk-

through and unshuffle configurations at every step. In the

second setting, the 2-Phase task, the agent must complete

the walkthrough and unshuffle stages sequentially; this 2-

Phase variant is more challenging as it requires the agent to

reason over longer time spans. Highlighting the difficulty

of the rearrangement, our evaluations show that our strong

baselines struggle even in the easier 1-Phase task. Rear-

rangement poses a new set of challenges for the embodied-

AI community. Our code and dataset are publicly available.

A supplementary video1 provides the description of the task

and some qualitative results.

2. Related Work

Embodied AI tasks. In recent years, we have witnessed a

surge of interest in learning-based Embodied AI tasks. Var-

ious tasks have been proposed in this domain: navigation

towards objects [4, 51, 48, 7] or towards a specific point

[1, 38, 47, 36], scene exploration [9, 8], embodied question

answering [18, 13], task completion [55], instruction fol-

lowing [2, 41], object manipulation [16, 52], multi-agent

coordination [24, 23], and many others. Rearrangement

can be considered as a broader task that encompasses skills

learned through these tasks.

Rearrangement. Rearrangement Planning is an estab-

lished field in robotics research where the goal is to reach

a goal state from an initial state [5, 44, 27, 31, 53, 33].

While these methods have shown impressive performance,

they consider complete observability of the state from per-

fect visual perception [11, 27], a planar surface as the envi-

ronment [30, 42], a static robot [15, 32], same environment

for evaluation of generalization [39, 26], or a limited set of

object categories or limited variation within the categories

[10, 19]. Some works address some of these issues, such

as generalization to new objects or imperfect perception

[54, 6]. In this paper, we take a step further and relax these

assumptions by considering raw visual input instead of per-

fect perception, a visually and geometrically complex scene

as the configuration space, separate scenes for training and

evaluation, a variety of objects, and object state changes.

Task and motion planning. Our work can be considered

as an instance of joint task and motion planning [25, 43,

35, 17, 12] since solving the rearrangement task requires

low-level motion planning to plan a sequence of actions and

high-level task planning to recover the goal state from the

initial state of the scene. However, the focus of these works

is primarily on the planning problem rather than perception.

3. The Room Rearrangement Task

3.1. Definition

Our goal is to rearrange an initial configuration of a room

into a goal configuration. So that our agent does not have to

1https://youtu.be/1APxaOC9U-A
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reason about soft-body physics, we restrict our attention to

piece-wise rigid objects. Suppose a room contains n piece-

wise rigid objects. We define the state for object i as si =
(pi, oi, ci, bi) where

• pi 2 {3D rotations and translations} = SE(3) records

the pose of the object,

• if the object can be opened oi 2 [0, 1] specifies the

openness of an object (e.g. oi = 0.5 means a door is

half open) and if the object cannot be opened (e.g. a

mug) then oi = ;,

• ci records the 8 coordinates in R
3 of the corners of the

3D bounding box for object i, and

• bi 2 {0, 1} records if the ith object is “broken” (1 if

broken, otherwise 0).

While this definition of an object’s state is constrained (e.g.

objects can be more than just “broken” and “unbroken”) it

matches well the capabilities of our target embodied envi-

ronment (AI2-THOR) and can be easily enriched as embod-

ied environments become increasingly realistic. We now let

S = SE(3) ⇥ ([0, 1] [ {;}) ⇥ R
8·3 ⇥ {0, 1} be the set of

all possible poses for a single object and S =
Q

n

i=1
S the

set of all possible joint object poses. The agent’s goal is to

convert an initial configuration s0 2 S to a goal s⇤ 2 S .

Our task has two stages: (1) walkthrough and (2) unshuf-

fle. During the walkthrough stage, the agent is placed into a

room with goal state s⇤, and it should collect as much infor-

mation as needed for that particular state of the room in a

maximum number of actions (for us, 250). The agent is re-

moved from the room after the walkthrough stage. We then

select a random subset of the n objects and change their

state. The state change may be a change in p or o. This

state will be the initial state s0 that the agent observes at

the beginning of the unshuffle stage. The agent’s goal is to

convert s0 to s⇤ (s0 ! s⇤) via a sequence of actions.

3.2. Metrics

To quantify an agent’s performance, we introduce four

metrics below. Recall from the above that an agent begins

an unshuffle episode with the room in state s0 and has the

goal of rearranging the room to end in state s⇤. Suppose that

at the end of an unshuffle episode, the agent has reconfig-

ured the room so that it lies in state s = (s1, . . . , sn) 2 S .

In practice, we cannot expect that the agent will place ob-

jects in exactly the same positions as in s⇤. We instead

choose a collection of thresholds which determine if two

object poses are, approximately, equal. When two poses

(si, s
⇤

i
) are approximately equal we write si ⇡ s⇤

i
. Other-

wise we write si 6⇡ s⇤
i
.

Let s1
i
, s2

i
2 S be two possible poses for object i. As it

makes little intuitive sense to compare the poses of broken

objects, we will always assert that poses of broken objects

are unequal. Thus if b1
i
= 1 or b2

i
= 1 we define s1

i
6⇡ s2.

Now let’s assume that neither b1
i
= 1 nor b2

i
= 1. If ob-

ject i is pickupable, let IOU(s1
i
, s2

i
) be the intersection over

union between the 3D bounding boxes c1
i
, c2

i
. We then say

that s1
i
⇡ s2

i
if, and only if, IOU(s1

i
, s2

i
) � 0.5. If object

i is openable but not pickupable, we say that s1
i
⇡ s2 if,

and only if, |o1
i
� o2

i
|  0.2. The use of the IOU above

means that object poses can be approximately equal even

when their orientations are completely different. While this

can be easily made more stringent, our rearrangement task

is already quite challenging. Note also that our below met-

rics do not consider the case where there are multiple identi-

cal objects in a scene (as this does not occur in our dataset).

We now describe our metrics.

Success (SUCCESS) – This is the most unforgiving of our

metrics and equals 1 if all object poses in s and s⇤ are ap-

proximately equal, otherwise it equals 0.

% Fixed (Strict) (%FIXEDSTRICT) – The above SUCCESS

metric does not give any credit to an agent if it manages to

rearrange some, but not all, objects within a room. To this

end, let Mstart = {i | s0
i
6⇡ s⇤

i
} be the set of misplaced

objects at the start of the unshuffle stage and let Mend =
{i | si 6⇡ s⇤

i
} be the set of misplaced objects at the end of

the episode. We then let %FIXEDSTRICT equal 0 if |Mend \
Mstart| > 0 (i.e. the agent has moved an object that should

not have been moved) and, otherwise, let %FIXEDSTRICT

equal 1� |Mend|/|Mstart| (i.e. the proportion of objects that

were misplaced initially but ended in the correct pose).

% Energy Remaining (%E) – Missing from all of the

above metrics is the ability to give partial credit if, for ex-

ample, the agent moves an object across a room and to-

wards the goal pose, but fails to place it so that it has a

sufficiently high IOU with the goal. To allow for partial

credit, we define an energy function D : S ⇥ S ! [0, 1]
that monotonically decreases to 0 as two poses get closer

together (see the Appendix E for full details) and which

equals zero if two poses are approximately equal. The

%E metric is then defined as the amount of energy re-

maining at the end of the unshuffle episode divided by

the total energy at the start of the unshuffle episode, e.g.

%E = (
P

n

i=1
D(si, s

⇤

i
))/(

P
n

i=1
D(s0

i
, s⇤

i
)).

# Changed (#CHANGED) – To give additional insight as to

our agent’s behavior we also include the #CHANGED met-

ric. This metric is simply the the number of objects whose

pose has been changed by the agent during the unshuffle

stage. Note that larger or smaller values of this metric are

not necessarily “better” (both moving no objects and mov-

ing many objects randomly are poor strategies).

The above metrics are then averaged across episodes

when reporting results.

4. The RoomR Dataset

The Room Rearrangement (RoomR) dataset utilizes 120

rooms in AI2-THOR [29] and contains 6,000 unique rear-

rangements (50 rearrangements per training, validation, and

5924



Object Distance Moved

Ver cal

Horizontal

0m 2m 4m 6m 8m 10m

Figure 2: Distance distribution. The horizontal (Man-

hattan distance) and vertical distance distributions between

changed objects in their goal and initial positions.

testing room). Each datapoint consists of an initial room

state s0, the agent’s starting position, and the goal state s⇤.

4.1. Generating Rearrangements

The automatic generation of the dataset enables us to scale

up the number of rearrangements easily. We generate each

room rearrangement using the procedure that follows.

Place agent. We randomize the agent’s position on the

floor. The position is restricted to lie on a grid, where

each cell is of size 0.25m ⇥ 0.25m. The agent’s rotation is

then randomly chosen amongst {0�, 90�, 180�, 270�}. The

agent’s starting pose is the same for both s0 and s⇤.

Shuffle background objects. To obtain different configu-

rations of objects for each task in the dataset, we randomly

shuffle each movable object, ensuring background objects

do not always appear in the same position. Shuffled objects

are never hidden inside other receptacles (e.g. fridges, cab-

inets), which reduces the task’s complexity.

Sample objects. We now randomly sample a set of N � 0
openable but non-pickupable objects and a set of M � 0
pickupable objects. These objects and counts are chosen

randomly with N 2 {0, 1} and M 2 {1�N, ..., 5�N}.

Goal (s⇤) setup. We open the N objects sampled in the

last step to some randomly chosen degree of openness in

[0, 1] and move the other M pickupable objects to arbitrary

locations within the room. The room’s current state is now

s⇤, the start state for the walkthrough stage.

Initial (s0) setup. We randomize the N sampled openable

objects’ openness and shuffle the position of each of the M
sampled pickupable objects once more. We are now in s0,

the start state for the unshuffle stage.

In the above process, we ensure that no broken objects are

in s0 or s⇤. While we provide a fixed number of datapoints

per room, this process can be used to sample a practically

unbounded number of rearrangements.

4.2. Dataset Properties

Rooms. There are 120 rooms across the categories of

kitchen, living room, bathroom, and bedroom (30 rooms

for each category). We designate 20 rooms for training, 5

rooms for validation, and 5 rooms for testing, across each

room category. Of the 6,000 unique rearrangements in our

dataset, 4000 are designated for training, 1000 are set in
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Figure 3: Distribution of object size. Each column con-

tains the cube root of every object’s bounding box volume

that may change in openness (red) or position (blue) for a

particular room. Notice that, across room categories, ob-

jects that change in position are significantly smaller than

objects that change in openness.

validation rooms, and 1000 are set in test rooms. For each

such split, there are 50 rearrangements per room.

Objects. There are 118 object categories (listed in Ap-

pendix F), among which 62 are pickupable (e.g. cup) and

10 are openable and non-pickupable (e.g. fridge). The set

of object categories that appear in the validation and testing

rooms is a subset of the object categories that appear during

training. Thus, if a plant appears in a validation or test-

ing room, then a plant is also present in one of the training

rooms. While all object categories are seen during training,

the physical appearance of object instances are often unique

in training, validation, and testing rooms. AI2-THOR pro-

vides annotation as to if an object is pickupable, openable,

movable, or static.

Across the dataset, there are 1895 pickupable object in-

stances and 1262 openable non-pickupable object instances

(an average of 15.7 and 10.5, respectively, per room). Fig. 2

shows the distance distribution (horizontal and vertical) of

objects between their initial and goal positions. It illustrates

the complexity of the problem, where the agent must travel

relatively far to recover the goal configuration. Fig. 3 shows

the distribution of these object groups and their sizes within

every room. Note that pickupable objects (e.g. apple, fork)

tend to be relatively small and hard to find, compared to

openable non-pickupable objects (e.g. cabinets, drawers).

Further, across room categories, the number of openable

non-pickupable objects varies considerably.

5. Model

In our experiments, Sec. 6, we consider two RoomR task

variants: 1-Phase and 2-Phase. In the 1-Phase task, the

agent completes the unshuffle and walkthrough stages si-
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Figure 4: Model overview. The model is used for both the unshuffle and walkthrough stages. The connections specific to

the walkthrough and unshuffle stages are shown in blue and red, respectively. The dashed lines represent connections from

the previous time step. The model’s trainable parameters, inputs and outputs, and intermediate features are shown in yellow,

pink, and blue, respectively.

multaneously in lock step. The model we employ for this

1-Phase task is a simplification of the model used when

performing the 2-Phase task (in which both stages must be

completed sequentially and so longer-term memory is re-

quired). For space we only describe the 2-Phase model be-

low, see our codebase for all architectural details.

Our network architecture, see Fig. 4, follows the same

basic structure as is commonly employed within Embod-

ied AI tasks [38, 47, 14, 45, 23]: a combination of a con-

volutional neural network to process input egocentric im-

ages, a collection of embedding layers to encode discrete

inputs, and an RNN to enable the agent to reason through

time. In addition to this baseline architecture, we would

like our agent to have two capabilities relevant to the rear-

rangement task, namely the abilities to, during the unshuffle

stage, (a) explicitly compare images seen during the walk-

through stage against those seen during the unshuffle stage,

and (b) reference an implicit representation of the walk-

through stage. We now describe the details of our archi-

tecture and how we enable these additional capabilities.

Our agents are of the actor-critic [34] variety and thus, at

each timestep t � 0, given observations ωt (e.g. an egocen-

tric RGB image) and a summary ht�1 of the agent’s history,

we require that an agent produces a policy πθ(ωt | ht�1)
(i.e. a distribution over the agent’s actions) and a value

vθ(ωt | ht�1) (i.e. an estimate of future rewards). Here

we let θ 2 Θ be a catch-all parameter representing all of

the trainable parameters in our network. As we wish for

our agent to have characteristically different behavior in the

walkthrough and unshuffle stages, we have two separate

policies πwalk
θ

and π
unsh.
θ

(and similarly for vθ).

To encode input 224⇥224⇥3 RGB egocentric images,

we use a ResNet18 [21] model (pretrained on ImageNet)

with frozen model weights with the final average pooling

and classification layers removed. This ResNet18 model

transforms input images into 7⇥7⇥512 tensors. For our

RNN, we leverage a 1-layer LSTM [22] with 512 hidden

units. To produce the policies π
walk and π

unsh. we use two

512 ⇥ 84 linear layers, each applied to the output from the

LSTM, and each followed by a softmax nonlinearity. Simi-

larly, to produce the two values vwalk and vunsh. we use two

distinct 512 ⇥ 1 linear layers applied to the output of the

LSTM with no additional nonlinearity. We now describe

how we enable agents the abilities (a) and (b) above.

Mapping and image comparison. Our model includes a

non-parametric mapping module. The module saves the

RGB images seen by the agent during the walkthrough

stage, along with the agent’s pose. During the unshuffle

stage, the agent (i) queries the metric map for all poses

visited during the walkthrough stage, (ii) chooses the pose

closest to the agent’s current pose, and then (iii) retrieves

the image saved by the walkthrough agent at that pose. Us-

ing an attention mechanism, the agent can then compare

this retrieved image against its current observation to decide

which objects to target.

Implicit representations of the walkthrough stage. In

addition to explicitly storing the images seen during the

walkthrough stage, we also wish to enable our agent to pro-

duce an implicit representation of its experiences during the

walkthrough stage. To this end, at every timestep t during

the walkthrough stage we pass ht, the output of the 1-layer

LSTM described above, to a 1-layer GRU with 512 hid-

den units to produce the walkthrough encoding wt. During

the unshuffle stage this walkthrough encoding is no longer

updated and is simply taken as the encoding from the last

walkthrough step. The walkthrough encoding is passed as
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an input to the LSTM in a recurrent fashion.

6. Experiments

This section provides the results for several baseline ap-

proaches that achieve state-of-the-art performance on other

embodied tasks (e.g. navigation). The room rearrangement

task and the RoomR dataset are very challenging. To make

the problem more manageable, we simplify assumptions in

choosing the action space and the sensor modalities. Sec.

6.1 and Sec. 6.2 explain the details of the action space

and sensor modalities, respectively. We show that even with

these simplifications, the baseline models struggle.

6.1. Action Space

AI2-THOR offers a wide variety of means by which

agents may interact with their environment ranging from

“low-level” (e.g. applying forces to individual objects) to

“high-level” (e.g. open an object of the given type) inter-

actions. Prior work, e.g. [24, 45, 23, 18, 41] has primarily

used higher-level actions to abstract away some details that

would otherwise distract from the problem of interest. We

follow this prior work and define our agent’s action space as

A = ANav. [ARotate [ALook [AUpDown [APickup [AOpen [
{PLACEOBJECT, DONE} where taking action:

• a 2 ANav. = {MOVEX | X 2 {AHEAD, LEFT, RIGHT,

BACK}} results in the agent moving 0.25m in the direc-

tion specified by X in the agent’s coordinate frame (unless

this would result in the agent colliding with an object).

• a 2 ARotate = {ROTATELEFT, ROTATERIGHT} results in

the agent rotating 90� clockwise if a = ROTATERIGHT

and 90� counter-clockwise if a = ROTATELEFT.

• a 2 ALook = {LOOKUP, LOOKDOWN} results in the

agent lowering/raising its camera angle by 30�,

• a 2 APickup = {PICKUPX | X 2 {the 62 pickupable

object types}} results in the agent picking up a visible

object of type X if: (a) the agent is not already holding an

object, (b) the agent is close enough to the object (within

1.5m), and (c) picking up the object would not result in

it colliding with objects in front of the agent. If there are

multiple objects of type X then the closest is chosen.

• a 2 AUpDown = {STAND, CROUCH} results in the agent

raising or lowering the agent’s camera to one of two fixed

heights allowing it to, e.g., see objects under tables.

• a 2 AOpen = {OPENX | X 2 {the 10 openable object

types that are not pickupable}}, if an object whose open-

ness is different from the openness in the goal state is vis-

ible and within 1.5m of the agent, this object’s openness

is changed to its value in the goal state.

• a = PLACEOBJECT results in the agent dropping its held

object. If the held object’s goal state is visible and within

1.5m of the agent, it is placed into that goal state. Oth-

erwise, a heuristic is used to place the object on a nearby

surface.

• a = DONE results in the walkthrough or unshuffle stage

immediately terminating.

In total, there are |A| = 84 possible actions. Some of the

above actions have been designed to be fairly abstract or

“high-level,” e.g. the PLACEOBJECT action abstracts away

all object manipulation complexities. As we discuss in Ap-

pendix C, we have implemented “lower-level” actions. Still,

we stress that, even with these more abstract actions, the

planning and visual reasoning required in RoomR already

makes the task very challenging.

6.2. RoomR Variants

We will now detail the 1-Phase and, more difficult, 2-

Phase variants of our RoomR task. These variants are, in

part, defined by the sensors available to the agent. We begin

by listing all sensors (note that only a subset of these will

be available to any given agent in the below variants):

• RGB – An egocentric 224⇥224⇥3 RGB image corre-

sponding to the agent’s current viewpoint (90� FOV). In the

1-Phase task this corresponds to the RGB image from the

unshuffle stage.

• WALKTHROUGHRGB – This sensor is only available in

the 1-Phase task and is identical to RGB except it shows

the egocentric image as though the agent was in the Walk-

through stage, i.e. all objects were in their goal positions.

It is this sensor that makes it possible, during the 1-Phase

task, for the agent to perform pixel-to-pixel comparisons

between the environment as it should be in the walkthrough

stage and as it is during the unshuffle stage.

• AGENTPOSITION – The agent’s position relative to its

starting location (this is equivalent to the assumption of per-

fect egomotion estimation).

• INWALKTHROUGH – Only relevant during the 2-Phase

task, this sensor returns “true” if the agent is currently in

the walkthrough stage and otherwise returns “false”.

1-Phase Task – In this variant, the agent takes actions

within the walkthrough and unshuffle stages simultaneously

in lock step. That is, if the agent takes a MOVEAHEAD

action, the agent moves ahead in both stages simultane-

ously; as the agent begins in the same starting position in

both stages, the agent’s position will always be the same

in both stages. As only navigational actions are allowed

during walkthrough, all actions of type APickup [ AOpen [
{PLACEOBJECT} are not executed by the agent in the walk-

through stage. During the unshuffle stage, the agent has ac-

cess to the RGB, WALKTHROUGHRGB, and AGENTPOSI-

TION sensors to complete its task.

2-Phase Task – In this task, the agent must complete both

the walkthrough and unshuffle stages sequentially. In this
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Figure 5: Performance over training. The (training-set) performance of our models over ⇠75Mn training steps. We

report the #CHANGED and %FIXEDSTRICT metrics, shown values and 95% error bars are generated using locally weighted

scatterplot smoothing. Notice that the PPO models quickly saturate suggesting that they become stuck in local optima. IL

continue to improve throughout training although Tab. 1 suggests that these models begin to overfit on the training scenes.

100· SUCCESS " 100 · %FIXEDSTRICT " %E # #CHANGEDl
Experiment Train Val. Test Train Val. Test Train Val. Test Train Val. Test

1-Phase (Simple, IL) 2.2 1.3 1.8 7.3 4.7 4.8 1.17 1.10 1.08 1.1 0.7 0.6

1-Phase (Simple, PPO) 1.8 2.1 0.7 6.7 6.7 4.6 0.95 0.96 0.99 0.3 0.4 0.4

1-Phase (RN18, IL) 8.2 1.7 2.8 17.9 5.0 6.3 0.93 1.14 1.11 1.3 0.9 0.9

1-Phase (RN18, PPO) 1.4 1.5 1.1 6.6 6.0 5.3 0.94 0.96 0.98 0.3 0.3 0.3

1-Phase (RN18+ANM, IL) 4.8 5.2 3.2 12.8 11.1 8.9 1.05 1.05 1.04 1.3 1.0 1.0

2-Phase (RN18, PPO+IL) 1.6 0.5 0.2 4.2 1.2 0.7 1.10 1.15 1.12 0.6 0.4 0.4

2-Phase (RN18+ANM, PPO+IL) 2.3 0.6 0.3 7.3 1.6 1.4 1.09 1.15 1.10 0.9 0.5 0.4

Heur. Expert 85.1 88.0 83.4 91.2 93.1 91.2 0.09 0.07 0.09 2.2 2.2 2.3

Table 1: Results. For each experiment, (i) we evaluate model checkpoints, saved after approximately 0, 5, . . . , 75 million

steps, on the validation set, (ii) choose the best performing (lowest avg. %FIXEDSTRICT) checkpoint among these, and (iii)

evaluate this best validation checkpoint on the other dataset splits. " and # denote if larger or smaller metric values are to be

preferred, l denotes a metric that is meant to highlight behavior rather than a measure quality.

task has access to the RGB, AGENTPOSITION, and IN-

WALKTHROUGH sensors.

6.3. Training Pipeline

As our experimental results show, we found training

models to complete the RoomR task using purely reward-

based reinforcement learning methods to be extremely chal-

lenging. The difficulty remains even when using dense,

shaped rewards. Thus, we have chosen to adopt a hybrid

training strategy where we use the DD-PPO [47, 40] algo-

rithm, a reward-based RL method, to train our agent when

it is within the walkthrough stage, and an imitation learning

(IL) approach, where we minimize a cross-entropy loss be-

tween the agent’s policy and expert actions, is used when in

the unshuffle stage. As it has been successfully employed in

training agents in other embodied tasks (e.g. [20]), for our

IL training, we employ DAgger [37]. In DAgger, we begin

training by forcing our agent to always take an expert’s ac-

tion with probability 1 and anneal this probability to 0 over

the first 1Mn for the 1-Phase task and 5Mn steps for the

2-Phase task. Tacitly assumed in the above is that we have

access to an expert policy which can be efficiently evalu-

ated at every state reached by our agent. Even with access

to the full environment state, hand-designing an optimal,

efficiently computable, expert is extremely difficult: sim-

ple considerations show that planning the agent’s route is at

least as difficult as the traveling salesman problem. There-

fore, we do not attempt to design an optimal expert and,

instead, a greedy heuristic expert with some backtracking

and error detection capabilities. See Appendix B for more

details. This expert is not perfect but, as seen in Tab. 1, can

restore all but a small fraction of objects to their rightful

places. For additional training details, see Appendix A.

6.4. Results

Recall from Sec. 4 that our dataset contains a training set

of size 4000 and validation/testing sets of 1000 instances

each. We report results on each of these splits but, for effi-

ciency, include only the first 15 rearrangement instances per

room in the training set (leaving 1200 instances).

Baselines. We evaluate the following baseline models:

• 1-Phase (RN18, IL) – An agent trained using pure imita-

tion learning in the 1-Phase task. Recall that 1-Phase task

models use a simplification of the model from Sec. 5, see

our code for more details.

• 1-Phase (RN18, PPO) – As above but trained with PPO.

• 1-Phase (Simple, IL) – As 1-Phase (RN18, IL) but we re-

place the ResNet18 CNN backbone and attention module
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(a) Successful unshuffle of a knife and dish sponge.

(b) Unsuccessful unshuffle of a newspaper and laptop.

Figure 6: Qualitative results. Trajectories sampled from a

1-Phase model. The goal, predicted, and initial configura-

tions are green, pink, and blue, respectively.

with 3 CNN blocks, this CNN is commonly used in embod-

ied navigation baselines [38].

• 1-Phase (Simple, PPO) – As PointU (Simple, IL) but

trained with PPO rather than IL.

• 2-Phase (RN18, PPO+IL) – An agent trained in the 2-

Phase task using the model from Sec. 5. PPO and IL are

used in the walkthrough and unshuffle stages, respectively.

• 1-Phase (RN18+ANM, IL) – We pretrain a variant of the

“Active Neural SLAM” (ANM) [8] architecture to perform

semantic mapping within AI2-THOR using our set of 72

object categories. We then freeze this mapping network and

train our “1-Phase (RN18, IL)” model extended to allow for

comparing between the maps created in the unshuffle and

walkthrough stages. See Appendix D for more details.

• 2-Phase (RN18+ANM, PPO+IL) – Similarly as above

but with semantic mapping model integrated into “2-Phase

(RN18, PPO+IL)” baseline above.

Analysis. We record rolling metrics during training in

Fig. 5. After training, we evaluate our models on our three

dataset splits and record the average metric values in Tab. 1.

From the results, we see several clear trends.

Unshuffling objects is hard – Even when evaluated on the

seen training rearrangements in the easier 1-Phase task, the

success of our best model is only 8.2%.

• Reward-based RL struggles to train – Fig. 5 shows that

PPO-based models quickly appear to become trapped in lo-

cal optima. Tab. 1 shows that the PPO agents move rel-

atively few objects but, when they do move objects, they

generally place them correctly even in test scenes.

• Pretrained CNN backbones can improve performance –

We hypothesized that using a pretrained CNN backbone

would substantially improve generalization performance

given the relatively little object variety (compared with Im-

ageNet) in our dataset. We see compelling evidence of this

when comparing the performance of the “1-Phase (Simple,

IL)” and “1-Phase (RN18, IL)” baselines (SUCCESS and

%FIXEDSTRICT improvements across all splits). The re-

sults were more mixed for the PPO-trained baselines.

• The 2-Phase task is much more difficult than the 1-Phase

task – Comparing the performance of the “2-Phase (RN18,

PPO+IL)” and “1-Phase (RN18, IL)” baselines, it is clear

that the 2-Phase task is much more difficult than the 1-

Phase task. If the agent managed to explore exhaustively

during the walkthrough stage then the two tasks would be

effectively identical. This suggests that the observed gap is

primarily driven by learning dynamics and the walkthrough

agent’s failure to explore exhaustively. Note that, as we se-

lect the best val. set model, Tab. 1 may give the impression

that the 2-Phase baseline failed to train at all: this is not

the case as we can see, in Fig. 5, that the “2-Phase (RN18,

PPO+IL)” baseline trains to almost the same training-set

performance as the 1-Phase IL baselines.

• Semantic mapping appears to substantially improve per-

formance – Our preliminary results suggest that semantic

mapping can have a substantial impact on improving the

generalization performance of rearrangement models, note

that the “+ANM” baselines outperform their counterparts in

almost all metrics, especially so on the validation and test

sets. These results are preliminary as we have not carefully

balanced parameter counts to ensure fair comparisons.

See Fig. 6 for success and failure examples.

7. Discussion
Our proposed Room Rearrangement task poses a rich

set of challenges, including navigation, planning, and rea-

soning about object poses and states. To facilitate learning

for rearrangement, we propose the RoomR dataset that pro-

vides a challenging testbed in visually rich interactive en-

vironments. We show that modern deep RL methodologies

obtain (test-set) performance only marginally above chance.

Given the low performance of existing methods we suspect

that future high-performance models will require novel ar-

chitectures enabling comparative mapping (to record object

positions during the walkthrough stage and compare these

positions against those observed in the unshuffle stage), vi-

sual reasoning about object positions, and physics to be able

to manipulate objects to their goal locations. Moreover, we

require new reinforcement learning methodologies to allow

the walkthrough and unshuffle stages to be trained jointly

with minimum mutual interference. Given these challenges,

we hope the proposed task opens up new avenues of re-

search in the domain of Embodied AI.
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