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Abstract

In this paper, we propose MonoRec, a semi-supervised

monocular dense reconstruction architecture that predicts

depth maps from a single moving camera in dynamic en-

vironments. MonoRec is based on a multi-view stereo set-

ting which encodes the information of multiple consecutive

images in a cost volume. To deal with dynamic objects in

the scene, we introduce a MaskModule that predicts mov-

ing object masks by leveraging the photometric inconsisten-

cies encoded in the cost volumes. Unlike other multi-view

stereo methods, MonoRec is able to reconstruct both static

and moving objects by leveraging the predicted masks. Fur-

thermore, we present a novel multi-stage training scheme

with a semi-supervised loss formulation that does not re-

quire LiDAR depth values. We carefully evaluate MonoRec

on the KITTI dataset and show that it achieves state-of-the-

art performance compared to both multi-view and single-

view methods. With the model trained on KITTI, we further-

more demonstrate that MonoRec is able to generalize well

to both the Oxford RobotCar dataset and the more chal-

lenging TUM-Mono dataset recorded by a handheld cam-

era. Code and related materials are available at https:

//vision.in.tum.de/research/monorec.

1. Introduction

1.1. Real­world Scene Capture from Video

Obtaining a 3D understanding of the entire static and dy-

namic environment can be seen as one of the key-challenges

in robotics, AR/VR, and autonomous driving. State of to-

day, this is achieved based on the fusion of multiple sen-

sor sources (incl. cameras, LiDARs, RADARs and IMUs).

This guarantees dense coverage of the vehicle’s surround-

ings and accurate ego-motion estimation. However, driven

by the high cost as well as the challenge to maintain cross-

calibration of such a complex sensor suite, there is an in-

⋆ Indicates equal contribution.

Figure 1: MonoRec can deliver high-quality dense recon-

struction from a single moving camera. The figure shows

an example of a large-scale outdoor point cloud reconstruc-

tion (KITTI Odometry sequence 07) by simply accumulat-

ing predicted depth maps. Please refer to our project page

for the video of the entire reconstruction of the sequence.

creasing demand of reducing the total number of sensors.

Over the past years, researchers have therefore put a lot of

effort into solving the problem of perception with only a sin-

gle monocular camera. Considering recent achievements in

monocular visual odometry (VO) [8, 58, 51], with respect to

ego-motion estimation, this was certainly successful. Nev-

ertheless, reliable dense 3D mapping of the static environ-

ment and moving objects is still an open research topic.

To tackle the problem of dense 3D reconstruction based

on a single moving camera, there are basically two paral-
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lel lines of research. On one side, there are dense multi-

view stereo (MVS) methods, which evolved over the last

decade [39, 45, 2] and saw a great improvement through the

use of convolutional neural networks (CNNs) [23, 61, 57].

On the other side, there are monocular depth prediction

methods which purely rely on deep learning [7, 16, 58].

Though all these methods show impressive performance,

both types have also their respective shortcomings. For

MVS the overall assumption is a stationary environment to

be reconstructed, so the presence of dynamic objects deteri-

orate their performance. Monocular depth prediction meth-

ods, in contrast, perform very well in reconstructing mov-

ing objects, as predictions are made only based on individ-

ual images. At the same time, due to their use of a single

image only, they strongly rely on the perspective appear-

ance of objects as observed with specific camera intrinsics

and extrinsics and therefore do not generalize well to other

datasets.

1.2. Contribution

To combine the advantage of both deep MVS and

monocular depth prediction, we propose MonoRec, a novel

monocular dense reconstruction architecture that consists of

a MaskModule and a DepthModule. We encode the infor-

mation from multiple consecutive images using cost vol-

umes which are constructed based on structural similarity

index measure (SSIM) [54] instead of sum of absolute dif-

ferences (SAD) like prior works. The MaskModule is able

to identify moving pixels and downweights the correspond-

ing voxels in the cost volume. Thereby, in contrast to other

MVS methods, MonoRec does not suffer from artifacts on

moving objects and therefore delivers depth estimations on

both static and dynamic objects.

With the proposed multi-stage training scheme,

MonoRec achieves state-of-the-art performance compared

to other MVS and monocular depth prediction methods

on the KITTI dataset [14]. Furthermore, we validate the

generalization capabilities of our network on the Oxford

RobotCar dataset [35] and the TUM-Mono dataset [9].

Figure 1 shows a dense point cloud reconstructed by our

method on one of our test sequences of KITTI.

2. Related Work

2.1. Multi­view Stereo

Multi-view stereo (MVS) methods estimate a dense rep-

resentation of the 3D environment based on a set of im-

ages with known poses. Over the past years, several

methods have been developed to solve the MVS problem

[46, 28, 30, 2, 47, 49, 39, 13, 45, 60] based on classical

optimization. Recently, due to the advance of deep neu-

ral networks (DNNs), different learning based approaches

were proposed. This representation can be volumetric

[26, 27, 36] or 3D point cloud based [3, 12]. Most popular

are still depth map representations predicted from a 3D cost

volume [23, 53, 61, 66, 22, 56, 41, 24, 33, 62, 19, 64, 57].

Huang et al. [23] proposed one of the first cost-volume

based approaches. They compute a set of image-pair-wise

plane-sweep volumes with respect to a reference image and

use a CNN to predict one single depth map based on this

set. Zhou et al. [66] also use the photometric cost volumes

as the inputs of the deep neural networks and employ a two

stage approach for dense depth prediction. Yao et al. [61]

instead calculate a single cost volume using deep features

of all input images.

2.2. Dense Depth Estimation in Dynamic Scenes

Reconstructing dynamic scenes is challenging since the

moving objects violate the static-world assumption for clas-

sical multi-view stereo methods. Russell et al. [43] and

Ranftl et al. [40] base on motion segmentation and perform

classical optimization. Li et al. [32] proposed to estimate

dense depth maps from the scenes with moving people. All

these methods need additional inputs, e.g., optical flow, ob-

ject masks, etc., for the inference, while MonoRec requires

only the posed images as the inputs. Another line of re-

search is monocular depth estimation [7, 6, 29, 31, 11, 59,

16, 48, 67, 63, 65, 52, 18, 17, 58]. These methods are not

affected by moving objects, but the depth estimation is not

necessarily accurate, especially in unseen scenarios. Luo

et al. [34] proposed a test-time optimization method which

is not real-time capable. In a concurrent work, Watson et

al. [55] address moving objects with the consistency be-

tween monocular depth estimation and multi-view stereo,

while MonoRec predicts the dynamic masks explicitly by

the proposed MaskModule.

2.3. Dense SLAM

Several of the methods cited above solve both the prob-

lem of dense 3D reconstruction and camera pose estima-

tion [48, 67, 63, 65, 66, 59, 58]. Nevertheless, these meth-

ods either solve both problems independently or only in-

tegrate one into the other (e.g. [66, 58]). Newcombe et

al. [37] instead jointly optimize the 6DoF camera pose and

the dense 3D scene structure. However, due to its volu-

metric map representation it is only applicable to small-

scale scenes. Recently, Bloesch et al. [1] proposed a

learned code representation which can be optimized jointly

with the 6DoF camera poses. This idea is pursued by

Czarnowski et al. [5] and integrated into a full SLAM sys-

tem. All the above-mentioned methods, however, do not

address the issue of moving objects. Instead, the proposed

MonoRec network explicitly deals with moving objects and

achieves superior accuracy both on moving and on static

structures. Furthermore, prior works show that the accuracy

of camera tracking does not necessarily improve with more
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Figure 2: MonoRec Architecture: It first constructs a photometric cost volume from multiple input frames. Unlike prior

works, we use the SSIM [54] metric instead of SAD to measure the photometric consistency. The MaskModule aims to detect

inconsistencies between the different input frames to determine moving objects. The multi-frame cost volume C is multiplied

with the predicted mask and then passed to the DepthModule which predicts a dense inverse depth map. In both the decoders

of MaskModule and DepthModule, the cost volume features are concatenated with pre-trained ResNet-18 features.

points [8, 10]. MonoRec therefore focuses solely on deliv-

ering dense reconstruction using poses from a sparse VO

system and shows state-of-the-art results on public bench-

marks. Note that, this way, MonoRec can be easily com-

bined with any VO systems with arbitrary sensor setups.

3. The MonoRec Network

MonoRec uses a set of consecutive frames and the cor-

responding camera poses to predict a dense depth map for

the given keyframe. The MonoRec architecture combines

a MaskModule and a DepthModule. MaskModule predicts

moving object masks that improve depth accuracy and al-

lows us to eliminate noise in 3D reconstructions. Depth-

Module predicts a depth map from the masked cost volume.

In this section, we first describe the different modules of our

architecture, and then discuss the specialized multi-stage

semi-supervised training scheme.

3.1. Preliminaries

Our method aims to predict a dense inverse depth map

Dt of the selected keyframe from a set of consecutive

frames {I1, · · · , IN}. We denote the selected keyframe as

It and others as It′ (t′ ∈ {1, · · · , N}\ t). Given the camera

intrinsics, the inverse depth map Dt, and the relative cam-

era pose T
t
t′ ∈ SE(3) between It′ and It, we can perform

the reprojection from It′ to It as

Itt′ = It′
〈

proj
(

Dt,T
t
t′

)〉

, (1)

where proj () is the projection function and 〈〉 is the dif-

ferentiable sampler [25]. This reprojection formulation is

important for both the cost volume formation (Sec. 3.2) and

the self-supervised loss term (Sec. 3.4).

In the following, we refer to the consecutive frames as

temporal stereo (T) frames. During training, we use an ad-

ditional static stereo (S) frame ItS for each sample, which

was captured by a synchronized stereo camera at the same

time as the respective keyframe.

3.2. Cost Volume

A cost volume encodes geometric information from the

different frames in a tensor that is suited as input for neural

networks. For a number of discrete depth steps, the tem-

poral stereo frames are reprojected to the keyframe and a

pixel-wise photometric error is computed. Ideally, the lower

the photometric error, the better the depth step approximates

the real depth at a given pixel. Our cost volume follows the

general formulation of the prior works [37, 66]. Neverthe-

less, unlike the previous works that define the photometric

error pe() as a patch-wise SAD, we propose to use the SSIM

as follows:

pe(x, d) =
1− SSIM(Itt′(x, d), It(x))

2
(2)

with 3 × 3 patch size. Here Itt′(x, d) defines the intensity

at pixel x of the image It′ warped with constant depth d.

In practice, we clamp the error to [0, 1]. The cost volume

C stores at C(x, d) the aggregated photometric consistency

for pixel x and depth d

C(x, d) = 1− 2 ·
1

∑

t′ ωt′
·
∑

t′

pett′(x, d) · ωt′(x) (3)

where d ∈ {di|dmin+
i
M

· (dmin−dmax)}. The weighting

term wt′(x) weights the optimal depth step height based on

the photometric error while others are weighted lower:

wt′(x) =1−
1

M − 1

·
∑

d 6=d∗

exp
(

−α
(

pett′(x, d)− pett′(x, d
∗)
)2
) (4)

with d∗t′ = argmind pe
t
t′(x, d). Note that C(x, d) has the

range [−1, 1] where −1/1 indicates the lowest/highest pho-

tometric consistency.

In the following section, we denote cost volumes calcu-

lated based on the keyframe It and only one non-keyframe

It′ by Ct′(x, d) where applicable.
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3.3. Network Architecture

As shown in Figure 2, the proposed network architec-

ture contains two sub-modules, namely, MaskModule and

DepthModule.

MaskModule MaskModule aims to predict a mask Mt

where Mt(x) ∈ [0, 1] indicates the probability of a pixel

x in It belonging to a moving object. Determining mov-

ing objects from It alone is an ambiguous task and hard to

be generalizable. Therefore, we propose to use the set of

cost volumes {Ct′ |t
′ ∈ {1, · · · , N} \ t} which encode the

geometric priors between It and {It′ |t
′ ∈ {1, · · · , N} \ t}

respectively. We use Ct′ instead of C since the inconsis-

tent geometric information from different Ct′ is a strong

prior for moving object prediction – dynamic pixels yield

inconsistent optimal depth steps in different Ct′ . However,

geometric priors alone are not enough to predict moving

objects, since poorly-textured or non-Lambertian surfaces

can lead to inconsistencies as well. Furthermore, the cost

volumes tend to reach a consensus on wrong depths that

semantically don’t fit into the context of the scene for ob-

jects that move at constant speed . Therefore, we further

leverage pre-trained ResNet-18 [21] features of It to en-

code semantic priors in addition to the geometric ones. The

network adapts a U-Net architecture design [42] with skip

connections. All cost volumes are passed through the en-

coders with shared weights. The features from different cost

volumes are aggregated using max-pooling and then passed

through the decoder. In this way, MaskModule can be ap-

plied to different numbers of frames without retraining.

DepthModule DepthModule predicts a dense pixel-wise

inverse depth map Dt of It. To this end, the module re-

ceives the complete cost volume C concatenated with the

keyframe It. Unlike MaskModule, here we use C instead

of Ct′ since multi-frame cost volumes in general lead to

higher depth accuracy and robustness against photometric

noise [37]. To eliminate wrong depth predictions for mov-

ing objects, we perform pixel-wise multiplication between

Mt and the cost volume C for every depth step d. This way,

there won’t be any maxima (i.e. strong priors) in regions

of moving objects left, such that DepthModule has to rely

on information from the image features and the surround-

ings to infer the depth of moving objects. We employ a

U-Net architecture with multi-scale depth outputs from the

decoder [17]. Finally, DepthModule outputs an interpola-

tion factor between dmin and dmax. In practice, we use

s = 4 scales of depth prediction.

3.4. Multi­stage Training

In this section, we propose a multi-stage training scheme

for the networks. Specifically, the bootstrapping stage, the

Figure 3: Auxiliary Training Masks: Examples of aux-

iliary training masks from the training set that are used as

reference.

MaskModule refinement stage and the DepthModule refine-

ment stage are executed successively.

Bootstrapping In the bootstrapping stage, MaskModule

and DepthModule are trained separately. DepthModule

takes the non-masked C as the input and predicts Dt. The

training objective of DepthModule is defined as a multi-

scale (s ∈ [0, 3]) semi-supervised loss. It combines a self-

supervised photometric loss and an edge-aware smoothness

term, as proposed in [17], with a supervised sparse depth

loss.

Ldepth =

3
∑

s=0

Lself,s + αLsparse,s + βLsmooth,s. (5)

The self-supervised loss is computed from the photometric

errors between the keyframe and the reprojected temporal

stereo and static stereo frames:

Lself,s = min
t⋆∈t′∪{tS}

(

λ
1− SSIM(Itt⋆ , It)

2

+ (1− λ)||Itt⋆ − It||1

)

,

(6)

where λ = 0.85. Note that Lself,s takes the per-pixel min-

imum which has be shown to be superior compared to the

per-pixel average [17]. The sparse supervised depth loss is

defined as

Lsparse,s = ||Dt −DV O||1, (7)

where the ground-truth sparse depth maps (DV O) are ob-

tained by a visual odometry system [59]. Note that all the

supervision signals of DepthModule are generated from ei-

ther images themselves or the visual odometry system with-

out any manual labeling or LiDAR depth.

MaskModule is trained with the mask loss Lmask which

is the weighted binary cross entropy between the predicted

mask Mt and the auxiliary ground-truth moving object

mask Maux. We generate Maux by leveraging a pre-trained

Mask-RCNN and the trained DepthModule as explained

above. We firstly define the movable object classes, e.g.,

cars, cyclists, etc, and then obtain the instance segmenta-

tions of these object classes for the training images. A

movable instance is classified as a moving instance if it
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has a high ratio of photometrically inconsistent pixels be-

tween temporal stereo and static stereo. Specifically, for

each image, we predict its depth maps Dt and DS
t using

the cost volumes formed by temporal stereo images C and

static stereo images CS , respectively. Then a pixel x is re-

garded as a moving pixel if two of the following three met-

rics are above predefined thresholds: (1) The static stereo

photometric error using Dt, i.e., pet
tS
(x, Dt(x)). (2) The

average temporal stereo photometric error using DS
t , i.e.,

pett′(x, D
S
t (x)). (3) The difference between Dt(x) and

DS
t (x). Please refer to our supplementary materials for

more details. Figure 3 shows some examples of the gen-

erated auxiliary ground-truth moving object masks.

MaskModule Refinement The bootstrapping stage for

MaskModule is limited in two ways: (1) Heavy augmen-

tation is needed since mostly only a very small percent-

age of pixels on the image belongs to moving objects. (2)

The auxiliary masks are not necessarily related to the ge-

ometric prior in the cost volume, which slows down the

convergence. Therefore, to improve the mask prediction,

we utilize the trained DepthModule from the bootstrapping

stage. We leverage the fact that the depth prediction for

moving objects, and consequently the photometric consis-

tency, should be better with a static stereo prediction than

with a temporal stereo one. Therefore, similar to the classi-

fication of moving pixels as explained in the previous sec-

tion, we obtain DS
t and Dt from two forward passes using

CS and C as inputs, respectively. Then we compute the

static stereo photometric error L′S
self,s using DS

t as depth

and the temporal stereo photometric error L′T
self,s using Dt

as depth. To train Mt, we interpret it as pixel-wise inter-

polation factors between L′S
self,s and L′T

self,s, and minimize

the summation:

Lm ref =
3

∑

s=0

(

MtL
′S
depth,s + (1−Mt)L

′T
depth,s

)

+ Lmask.

(8)

Figure 4(a) shows the diagram illustrating different loss

terms. Note that we still add the supervised mask loss

Lmask as a regularizer to stabilize the training. This way,

the new gradients are directly related to the geometric struc-

ture in the cost volume and help to improve the mask pre-

diction accuracy and alleviate the danger of overfitting.

DepthModule Refinement The bootstrapping stage does

not distinguish between the moving pixels and static pixels

when training DepthModule. Therefore, we aim to refine

DepthModule such that it is able to predict proper depths

also for moving objects. The key idea is that, by utilizing

Mt, only the static stereo loss is backpropagated for mov-

ing pixels, while for static pixels the temporal stereo, static

Depth
Module

Depth
Module

Mask
Module

b)

a)

Mask
Module

Depth
Module

Depth
Module

Figure 4: Refinement Losses: a) MaskModule refinement

and b) DepthModule refinement loss functions. Dashed out-

lines denote that no gradient is being computed for the re-

spective forward pass in the module.

stereo and sparse depth losses are backpropagated. Because

moving objects make up only a small percentage of all pix-

els in a keyframe, the gradients from the photometric error

are rather weak. To solve this, we perform a further static

stereo forward pass and use the resulting depth map DS
t

as prior for moving objects. Therefore, as shown in Fig-

ure 4(b), the loss for refining DepthModule is defined as

Ld ref,s =(1−Mt) (Lself,s + αLsparse,s)

+Mt

(

LS
self,s + γ

∣

∣

∣

∣Dt −DS
t

∣

∣

∣

∣

1

)

+ βLsmooth,s.

(9)

3.4.1 Implementation Details

The networks are implemented in PyTorch [38] with image

size 512×256. For the bootstrapping stage, we train Depth-

Module for 70 epochs with learning rate lr = 1e−4 for

the first 65 epochs and lr = 1e−5 for the remaining ones.

MaskModule is trained for 60 epochs with lr = 1e−4. Dur-

ing MaskModule refinement, we train for 32 epochs with

lr = 1e−4, and during DepthModule refinement we train

for 15 epochs with lr = 1e−4 and another 4 epochs at

lr = 1e−5. The hyperparameters α, β and γ are set to

4, 10−3 × 2−s and 4, respectively. For inference, MonoRec

can achieve 10 fps with batch size 1 using 2GB memory.

4. Experiments

To evaluate the proposed method, we first compare

against state-of-the-art monocular depth prediction and

MVS methods with our train/test split of the KITTI

dataset [15]. Then, we perform extensive ablation studies

to show the efficacy of our design choices. In the end,

we demonstrate the generalization capabilities of different

methods on Oxford RobotCar [35] and TUM-Mono [9] us-

ing the model trained on KITTI.
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Figure 5: Qualitative Results on KITTI: The upper part of the figure shows the results for a selected number of frames

from the KITTI test set. The compared PackNet model was trained in a semi-supervised fashion using LiDAR as the ground

truth. Besides the depth maps, we also show the 3D point clouds by reprojecting the depth and viewing from two different

perspectives. For comparison we show the LiDAR ground truth from the corresponding perspectives. Our method clearly

shows the best prediction quality. The lower part of the figure shows large scale reconstructions as point clouds accumulated

from multiple frames. The red insets depict the reconstructed artifacts from moving objects. With the proposed MaskModule,

we can effectively filter out the moving objects to avoid those artifacts in the final reconstruction.
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Method Training Dataset Input Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Colmap [44] (geometric) - - KF + 2 0.099 3.451 5.632 0.184 0.952 0.979 0.986

Colmap [44] (photometric) - - KF + 2 0.190 6.826 7.781 0.531 0.893 0.932 0.947

Monodepth2 [17] MS Eigen Split KF 0.082 0.405 3.129 0.127 0.931 0.985 0.996

PackNet [20] MS CS+Eigen Split KF 0.080 0.331 2.914 0.124 0.929 0.987 0.997

PackNet [20] MS, D CS+Eigen Split KF 0.077 0.290 2.688 0.118 0.935 0.988 0.997

DORN [11] D Eigen Split KF 0.077 0.290 2.723 0.113 0.949 0.988 0.996

DeepMVS [23] D Odom. Split KF+2 0.103 1.160 3.968 0.166 0.896 0.947 0.978

DeepMVS [23] (pretr.) D Odom. Split KF+2 0.088 0.644 3.191 0.146 0.914 0.955 0.982

DeepTAM [66] (only FB) MS, D* Odom. Split KF+2 0.059 0.474 2.769 0.096 0.964 0.987 0.994

DeepTAM [66] (1x Ref.) MS, D* Odom. Split KF+2 0.053 0.351 2.480 0.089 0.971 0.990 0.995

MonoRec MS, D* Odom. Split KF+2 0.050 0.295 2.266 0.082 0.973 0.991 0.996

Table 1: Quantitative Results on KITTI: Comparison between MonoRec and other methods on our KITTI test set. The

Dataset column shows the training dataset used by the corresponding method and please note that Eigen split is a superset

of our odometry split. Best / Second best results are marked bold / underlined. The evaluation result shows that our method

achieves overall the best performance. Legend: M: Monocular images, S: Stereo images, D: GT depth, D*: Depths from

DVSO, KF: Keyframe, KF + 2: Keyframe + 2 mono frames, CS: Cityscapes [4], pretr.: Pretrained network, FB: Fixed band

module of DeepTAM, Ref.: Narrow band refinement module of DeepTAM

(a) Keyframe (b) W/o MaskModule

(c) MaskModule (d) MaskModule+D.Ref.

Figure 6: Qualitative Improvement: Effects of cost vol-

ume masking and depth refinement.

4.1. The KITTI Dataset

The Eigen split [6] is the most popular training/test split

for evaluating depth estimation on KITTI. We cannot make

use of it directly since MonoRec requires temporally con-

tinuous images with estimated poses. Hence, we select our

training/testing splits as the intersection between the KITTI

Odometry benchmark and the Eigen split, which results in

13714/8634 samples for training/testing. We obtain the rel-

ative poses between the images from the monocular VO sys-

tem DVSO [59]. During training, we also leverage the point

clouds generated by DVSO as the sparse depth supervision

signals. For training MaskModule we only use images that

contain moving objects in the generated auxiliary masks,

2412 in total. For all the following evaluation results we

use the improved ground truth [50] and cap depths at 80m.

We first compare our method against the recent state of

the art including an optimization based method (Colmap),

self-supervised monocular methods (MonoDepth2 and

PackNet), a semi-supervised monocular method using

sparse LiDAR data (PackNet), a supervised monocular

method (DORN) and MVS methods (DeepMVS and Deep-

TAM), shown in Table 1. Note that the training code of

DeepTAM was not published, we therefore implemented it

ourselves for training and testing using our split to deliver

a fair comparison. Our method outperforms all the other

methods with a notable margin despite relying on images

only without using LiDAR ground truth for training.

This is also clearly reflected in the qualitative results

shown in Figure 5. Compared with monocular depth esti-

mation methods, our method delivers very sharp edges in

the depth maps and can recover finer details. In comparison

to the other MVS methods, it can better deal with moving

objects, which is further illustrated in Figure 7.

A single depth map usually cannot really reflect the qual-

ity for large scale reconstruction. We therefore also visual-

ize the accumulated points using the depth maps from mul-

tiple frames in lower part of Figure 5. We can see that our

method can deliver very high quality reconstruction and,

due to our MaskModule, is able to remove artifacts caused

by moving objects. We urge readers to watch the supple-

mentary video for more convincing comparisons.

Ablation Studies. We also investigated the contribution

of the different components towards the method’s perfor-

mance. Table 2 shows quantitative results of our ablation

studies, which confirm that all our proposed contributions

improve the depth prediction over the baseline method. Fur-

thermore, Figure 6 demonstrates the qualitative improve-

ment achieved by MaskModule and refinement training.

4.2. Oxford RobotCar and TUM­Mono

To demonstrate the generalization capabilities of

MonoRec, we test our KITTI model on the Oxford Robot-

Car dataset and the TUM-Mono dataset. Oxford RobotCar

is a street view dataset and shows a similar motion pattern

and view perspective to KITTI. TUM-Mono, however, is

recorded by a handheld monochrome camera, so it demon-
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Model SSIM MaskModule D. Ref. M. Ref. Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.056 0.342 2.624 0.092 0.965 0.990 0.994

Baseline X 0.054 0.346 2.444 0.088 0.970 0.989 0.995

MonoRec X X X 0.054 0.306 2.372 0.087 0.970 0.990 0.995

MonoRec X X 0.051 0.346 2.361 0.085 0.972 0.990 0.995

MonoRec X X X 0.052 0.302 2.303 0.087 0.969 0.990 0.995

MonoRec X X X X 0.050 0.295 2.266 0.082 0.973 0.991 0.996

Table 2: Ablation Study: Baseline consists of only DepthModule using the unmasked cost volume (CV). Baseline without

SSIM uses a 5x5 patch that has same receptive field as SSIM. Using SSIM to form CV gives a significant improvement. For

MonoRec, only the addition of MaskModule without refinement does not yield significant improvements. The DepthModule

refinement gives a major improvement. The best performance is achieved by combining all the proposed components.

Keyframe MonoRec Mask Prediction DeepTAM DeepMVS

Figure 7: Comparison on Moving Objects Depth Estimation: In comparison to other MVS methods, MonoRec is able to

predict plausible depths. Furthermore, the depth prediction has less noise and artifacts in static regions of the scene.

strates very different motion and image quality compared

to KITTI. The results are shown in Figure 8. The monoc-

ular methods struggle to generalize to a new context. The

compared MVS methods show more artifacts and cannot

predict plausible depths for the moving objects. In contrast

our method is able to generalize well to the new scenes for

both depth and moving object predictions. Since Oxford

RobotCar also provides LiDAR depth data, we further show

a quantitative evaluation in the supplementary material.

5. Conclusion

We have presented MonoRec, a deep architecture that

estimates accurate dense 3D reconstructions from only a

single moving camera. We first propose to use SSIM as

the photometric measurement to construct the cost vol-

umes. To deal with dynamic objects, we propose a novel

MaskModule which predicts moving object masks from the

input cost volumes. With the predicted masks, the pro-

posed DepthModule is able to estimate accurate depths for

both static and dynamic objects. Additionally, we propose

a novel multi-stage training scheme together with a semi-

supervised loss formulation for training the depth predic-

tion. All combined, MonoRec is able to outperform the

state-of-the-art MVS and monocular depth prediction meth-

ods both qualitatively and quantitatively on KITTI and also

shows strong generalization capability on Oxford RobotCar

and TUM-Mono. We believe that this capacity to recover

accurate dense 3D reconstructions from a single moving

camera will help to establish the camera as the lead sensor

for autonomous systems.
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Figure 8: Oxford RobotCar and TUM-Mono: All results

are obtained by the respective best-performing variant in

Table 1. MonoRec shows stronger generalization capabil-

ity than the monocular methods. Compared to DeepMVS

and DeepTAM, MonoRec delivers depth maps with less ar-

tifacts and predicts the moving object masks in addition.
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