
NeX: Real-time View Synthesis with Neural Basis Expansion

Suttisak Wizadwongsa* Pakkapon Phongthawee* Jiraphon Yenphraphai*

Supasorn Suwajanakorn

VISTEC, Thailand

{suttisak.w s19, pakkapon.p s19, jiraphony pro, supasorn.s}@vistec.ac.th

𝑘0 + 𝑘1 +𝑘2 +⋯+ 𝑘𝑁+𝑘3
(a) NeX MPI

𝛼 𝑘0 𝑘1 𝑘𝑁⋯

(b) Our synthesized view #1 (c) Our synthesized view #2

RGB Pixel
(view-dependent)

=

Neural basis functions

Reflectance coefficients

Figure 1: (a) Each pixel in NeX multiplane image consists of an alpha transparency value, base color k0, and view-dependent

reflectance coefficients k1...kn. A linear combination of these coefficients and basis functions learned from a neural network

produces the final color value. (b, c) show our synthesized images that can be rendered in real time with view-dependent

effects such as the reflection on the silver spoon.

Abstract

We present NeX, a new approach to novel view synthesis

based on enhancements of multiplane image (MPI) that can

reproduce next-level view-dependent effects—in real time.

Unlike traditional MPI that uses a set of simple RGBα

planes, our technique models view-dependent effects by in-

stead parameterizing each pixel as a linear combination of

basis functions learned from a neural network. Moreover,

we propose a hybrid implicit-explicit modeling strategy that

improves upon fine detail and produces state-of-the-art re-

sults. Our method is evaluated on benchmark forward-

facing datasets as well as our newly-introduced dataset de-

signed to test the limit of view-dependent modeling with

significantly more challenging effects such as the rainbow

reflections on a CD. Our method achieves the best overall

scores across all major metrics on these datasets with more

than 1000× faster rendering time than the state of the art.

For real-time demos, visit https://nex-mpi.github.io/

1. Introduction

Novel view synthesis is an exciting and long-standing

problem that draws much attention from both the computer

vision and graphics communities. The problem comprises

*Authors contributed equally to this work.

two intriguing challenges of how to construct a visual scene

representation from only a sparse set of images and how to

render such a representation from unseen perspectives. A

wide range of applications are possible from this area of

research ranging from virtually visiting tourist attractions

to viewing any online product all around in 3D; however,

such experiences would only become most compelling and

practical when the representation allows photo-realistic and

real-time synthesis.

One candidate that can serve this purpose is multiplane

image (MPI) [53] which approximates the scene’s light field

with a set of parallel semi-transparent planes placed along

a reference viewing frustum. This representation is shown

to be more effective than traditional 3D mesh reconstruc-

tion in reproducing complex scenes with challenging occlu-

sions, thin structures, or planar reflections. However, the

standard RGBα representation of MPI is limited to diffuse

surfaces whose appearance stays constant regardless of the

viewing angle. This greatly limits the types of objects and

scenes that MPI can capture. Recent research on implicit

scene representation has made significant progress in the

past months [21, 32, 18, 50, 42] and can be applied to view

synthesis problem. Unfortunately, its expensive network in-

ference still prohibits real-time rendering, and reproducing

complex surface reflectance with high fidelity still remains

a challenge. Our method breaks these limits on both fronts.

8534



We introduce NeX, a new scene representation based on

MPI that models view-dependent effects by performing ba-

sis expansion on the pixel representation in our MPI. In

particular, rather than storing static color values as in tra-

ditional MPI, we represent each color as a function of the

viewing angle and approximate this function using a lin-

ear combination of spherical basis functions learned from

a neural network. Furthermore, we propose a hybrid pa-

rameter modeling strategy that models high-frequency de-

tail in an explicit structure within an implicit MPI modeling

framework. This strategy helps improve fine detail that is

difficult to model by a neural network and produces sharper

results in fewer training iterations.

We evaluate our algorithm on benchmark forward-facing

datasets and compare against state-of-the-art approaches in-

cluding NeRF [22] and DeepView [6]. These datasets, how-

ever, contain mostly diffuse scenes and fairly simple view-

dependent effects and cannot be used to judge the new limit

of our algorithm. Thus, we collect a new dataset, Shiny,

with significantly more challenging view-dependent effects

such as the rainbow reflections on a CD, refraction through

non-planar glassware or a magnifying glass. Our method

achieves the best overall scores across all major metrics on

these datasets. We provide quantitative and qualitative re-

sults and ablation studies to justify our main technical con-

tributions. Compared to the recent state of the art, NeRF

[22], our method captures more accurate view-dependent

effects and produces sharper results—all in real time.

2. Related Work

Learning MPIs. Multiplane image by Zhou et al. [53]

is a scene representation that consists of parallel semi-

transparent planes placed along a reference viewing frus-

tum. Note that a similar representation has been proposed

earlier by the name of “stack of acetates” by Szeliski & Gol-

land [39]. Originally, MPI [53] is used to solve a small-

baseline stereo problem and is inferred with a convolutional

neural network (CNN) from an input stereo pair. Subse-

quent work extends MPI to support multiple input pho-

tos [6, 21, 17] or even infers an MPI from a single image

[43]. In [21], a CNN is used to predict multiple nearby

MPIs which are then blended together to produce the fi-

nal output. Srinivasan et al. [37] predicts an MPI using

a two-step process that combines 3D CNNs for MPI pre-

diction and a 2D flow field for warping RGB values from

an intermediate rendering. In contrast, DeepView [6] uses

a CNN to learn gradient updates to the MPI instead of pre-

dicting it directly. This learned gradient descent helps avoid

over-fitting and requires only a few iterations to generate an

MPI. Recently, DeepMPI [17] has been introduced to model

time-varying scene appearance and can manipulate colors

on their MPI using a CNN. However, these approaches do

not model view-dependent effects or only handle them in-

directly by blending multiple view-independent MPIs. This

greatly limits the types of applicable objects and scenes.

View synthesis and interpolation. One way to cate-

gorize view synthesis algorithms is by how dense the input

scene is sampled. When the capture is dense as in lumigraph

[9, 2] and light field rendering [16, 49, 15, 31], the chal-

lenge becomes how to store, interpolate, and compress the

light field samples. When there are only 1-2 input images,

the challenge becomes how to infer the ill-constrained 3D

geometry and disoccluded regions [38, 23, 43, 47, 3]. Our

work focuses on the case with a moderate number of cap-

tures facing forward. Besides MPI-based approaches, other

solutions include methods based on layered depth images

[29, 44, 4], Soft3D by Penner et al. [24], which combines

depth estimation with soft blending of an estimated geome-

try, and other 3D reconstruction based techniques [54, 10].

Neural approaches to view synthesis include DeepStereo

[7], which uses a CNN to predict pixels directly for individ-

ual viewing angles and Neural Textures [41], which com-

bines a reconstructed 3D mesh with neural textures that can

be rendered with a neural network. Similar ideas of using

neural latent code stored in some geometric structure such

as a voxel grid or volumes have been proposed [33, 5, 19].

Neural BTF [26] represents the bidirectional texture func-

tion with an encoder-decoder network that takes in the light

and viewing angles and outputs each pixel’s color. [14] uses

a generative adversarial network to model spatially varying

BRDFs of specular microstructures.

One recent notable work is Neural Radiance Fields

(NeRF) by Mildenhall et al. [22], which represents a 5D

radiance field with a multilayer perceptron (MLP) that di-

rectly regresses the volume density and RGB colors. This

method can handle view-dependent effects as the viewing

angle is part of the 5D radiance function. Subsequent work

improves upon NeRF by using explicit sparse voxel repre-

sentation to improve fine detail (NSVF) [18], parameteriz-

ing the space to better support unbounded scenes (NeRF++)

[50], incorporating learned 2D features that help enforce

multiview consistency (GRF) [42], or extending NeRF to

handle photometric variations and transient objects in inter-

net photo collections (NeRF-W) [20]. Another related line

of work involves implicitly modeling surface reflectance

properties in addition to the scene geometry [1] or the light

transport function [52]. Our work is inspired by these im-

plicit neural representations as well as deep image prior

[45], but our goal is directed toward a representation amend-

able to discretization and real-time rendering.

Light field factorization. Our reparameterization of

pixel into a combination of basis functions is closely re-

lated to light field factorization approaches in many areas,

such as surface light field [48], precomputed radiance trans-

fer [36, 35], BRDF estimations [11], light field and tensor

display [46]. In particular, our MPI pixel can be consid-

8535



𝑥, 𝑦, 𝑑 𝐹𝜃

𝑘0 +𝑛=1𝑁 𝑘𝑛𝐻𝑛 𝑣
RGB𝛼 MPI

Rendered image

Base RGB MPI

Reconstruction

loss

𝑘1𝑘2⋮𝑘𝑁

𝛼

⊕
View-dependent RGB MPI

Sampling

Ground truth

𝑘0

Figure 2: NeX overview: we construct each pixel in our

MPI by sampling a pixel coordinate (x, y) at plane depth

d and feed it to a multilayer perceptron (MLP) to output

alpha transparency and view-dependent basis coefficients

(k1, k2, ..., kn). These coefficients, together with an explicit

k0, are multiplied with basis functions predicted from an-

other MLP, to produce the RGB value. The output image is

the product of the composite operation over all planes (Eq.

1). We train the two MLPs and optimize for the explicit k0
by comparing the rendered image to the ground truth.

ered generally as a discretized sample of a radiance function

f(x̂, v̂) of position x̂ in space and viewing direction v̂. This

function has been approximated with a sum of products of

functions f(x̂, v̂) ≈
∑

kn(x̂)hn(v̂) with techniques such as

singular value decomposition (SVD) [11] or normalized de-

composition (ND) [12]. In precomputed radiance transfer,

part of the rendering equation can be similarly formulated as

a product of spherical harmonics coefficients of the lighting

and transfer function [36, 27]. Clustered PCA [35] further

divides the transfer function matrix into clusters, which are

then low-rank-approximated with PCA to reduce rendering

cost. A key difference between our method and others is

that we model hn and kn with neural networks and solve

the factorization through network training.

3. Approach

Given a set of multiview images of a scene, our goal is

to construct a 3D representation that can render novel views

with view-dependent effects in real time. To solve this,

we propose a novel representation based on multiplane im-

age [53] but with significant improvements which include

a novel view-dependent pixel representation that can han-

dle non-Lambertian surfaces and a hybrid implicit-explicit

parameter modeling to improve fine detail. Our approach

focuses on forward-facing captures with around 12 images

or more, such as those taken casually with a smartphone. In

the following sections, we first briefly review the original

MPI representation, then explain our novel representation

and a learning method for inferring it.

3.1. Original MPI Representation

Multiplane image [53] is a 3D scene representation that

consists of a collection of D planar images, each with di-

mension H × W × 4 where the last dimension contains

RGB values and alpha transparency values. These planes

are scaled and placed equidistantly either in the depth space

(for bounded close-up objects) or inverse depth space (for

scenes that extend out to infinity) along a reference viewing

frustum (see Figure 2).

Rendering an RGBα MPI in any target view can be

done by first warping all its planes to the target view via

a homography that relates the reference and target view

and apply the composite operator [25]. In particular, let

ci ∈ R
H×W×3 and αi ∈ R

H×W×1 be the RGB and alpha

“images” of the ith plane, ordered from back to front. And

denote A = {α1, α2, ..., αD}, C = {c1, c2, ..., cD} as the

sets of these images. This MPI can then be rendered in a

new view, Î , using the composite operator O:

Î = O(W (A),W (C)) (1)

where W is a homography warping function that warps each

image to the target view, and O has the form:

O(A,C) =

D
∑

d=1

cdTd(A), Td(A) = αd

D
∏

i=d+1

(1−αi) (2)

This rendering equation is completely differentiable, thus

allowing MPI to be inferred through image reconstruction

loss [53, 6].

3.2. ViewDependent Pixel Representation

One main limitation of MPI is that it can only model

diffuse or Lambertian surfaces, whose colors appear con-

stant regardless of the viewing angle.* In real-world scenes,

many objects are non-Lambertian, such as a ceramic plate

and a glass table. These objects exhibit view-dependent ef-

fects such as reflection and refraction. Reconstructing these

objects with an MPI can make the objects appear unreal-

istically dull without reflections or even break down com-

pletely (Figure 6) due to the violation of the brightness con-

stancy assumption used for matching invariant and 3D re-

construction. [21] attempts to solve this by combining mul-

tiple view-independent MPIs, but their results contain warp-

ing artifacts when blending between MPIs.

To allow for view-dependent modeling in our MPI, we

modify the pixel color representation, originally stored as

RGB values, by parameterizing each color value as a func-

tion of the viewing direction v = (vx, vy, vz). This re-

sults in a 3-dimensional mapping function C(v) : R3 → R
3

for every pixel. However, storing this mapping explicitly is

*A single MPI can simulate planar reflections to some extent by placing

the reflected content on one of its planes [6].

8536



prohibitive and not generalizable to unobserved angles. Re-

gressing the color directly from v (and the pixel location)

with a neural network, as is done in e.g. [22], is possible

though inefficient for real-time rendering. Our key idea is

to approximate this function with a linear combination of

learnable basis functions {Hn(v) : R
3 → R} over the

spherical domain described by vector v:

Cp(v) = k
p

0 +

N
∑

n=1

kpnHn(v) (3)

where kpn ∈ R
3 for pixel p are RGB coefficients, or re-

flectance parameters, of N global basis functions. In gen-

eral, there are several ways to define a suitable set of basis

functions. Spherical harmonics basis is one common choice

used heavily in computer graphics to model complex re-

flectance properties. Fourier’s basis or Taylor’s basis can

also be used. However, one shortcoming of these “fixed”

basis functions is that in order to capture high-frequency

changes within a narrow viewing angle, such as sharp spec-

ular highlights, the number of required basis functions can

be very high. This in turns requires more reflectance pa-

rameters which make both learning these parameters and

rendering more difficult. With learnable basis functions,

our modified MPI outperforms other versions with alterna-

tive basis functions that use the same number of coefficients

shown in our experiment in Section 4.3.1.

To summarize, our modified MPI contains the following

parameters per pixel: α, k0, k1, . . . , kN ; and global basis

functions H1, H2, . . . , HN shared across all pixels.

3.3. Modeling MPI with Neural Networks

Given our modified MPI and the differentiable render-

ing equation (Eq. 1), one can directly optimize for its pa-

rameters that best reproduce the training views. However,

as demonstrated in earlier work [6], doing so would lead

to a noisy MPI that overfits the training views and fails to

generalize. We can overcome this problem by leveraging

the idea of deep prior [45] and regressing these parameters

with multilayer perceptrons (MLPs) from spatial condition-

ing, i.e., pixel coordinates. In other words, instead of allow-

ing the estimated parameters to take arbitrary values which

are prone to overfitting, we regularize these parameters by

only allowing them to take on certain values that are in the

span of a deep neural network’s output. In our case, we

use two separate MLPs; one for predicting per-pixel param-

eters given the pixel location, and the other for predicting

all global basis functions given the viewing angle. The mo-

tivation for using the second network is to ensure that the

prediction of the basis functions, which are global, is not a

function of the pixel location.

Our first MLP is modeled as Fθ with parameter θ:

Fθ : (x) → (α, k1, k2, ..., kN ) (4)

where x = (x, y, d) contains the location information of

pixel (x, y) at plane d. Note that k0 is not predicted by Fθ

but will be stored explicitly in our implicit-explicit model-

ing strategy, explained in the upcoming section. The second

network is modeled as Gφ with parameter φ:

Gφ : (v) → (H1, H2, ..., HN ) (5)

where v is the normalized viewing direction.

It is interesting to note that in a study from [45], when

a CNN is used as a deep prior for synthesizing images,

the span of the CNN can capture the natural image mani-

fold surprisingly well. In our case, we found that deep pri-

ors based on multilayer perceptrons can regularize our MPI

and produce superior results compared to direct optimiza-

tion without deep priors or with standard regularizers, such

as total variation. In relation to NeRF [22], our MPI can

be thought of as a discretized sampling of an implicit radi-

ance field function that replaces the general view-dependent

modeling, predicted with an MLP in NeRF, with more effi-

cient basis functions.

3.4. ImplicitExplicit Modeling Strategy

One observation when using an MLP to model kn, or

“coefficient images” when kpn is evaluated on all pixels p,

is the absence of fine detail (similar reports in [32, 22, 40]).

In our problem, fine detail or high-frequency content tends

to come from the surface texture itself and not necessarily

from a complex scene geometry. Thus, we use positional

encoding proposed in [22] to regress these images, which

helps to an extent but still produces blurry results. Interest-

ingly, we found that simply storing the first coefficient k0,

or “base color,” explicitly helps ease the network’s burden

of compressing and reproducing detail and leads to sharper

results, also in fewer iterations. With this implicit-explicit

modeling strategy, we predict every parameter with MLPs

except k0 which will be optimized explicitly as a learnable

parameter with a total variation regularizer.

Coefficient Sharing: In practice, computing and storing

all N + 1 coefficients for all pixels for all D planes can be

expensive for both training and rendering. In our experi-

ment, we use a coefficient sharing scheme where every M

planes will share the same coefficients, but not the alphas.

That is, there is a single set of {K0, ...,KN} for planes 1 to

M , and another set for planes M + 1 to 2M , and so forth.

With proper N and M > 1, we do not observe any signifi-

cant degradation in the visual quality, but a significant gain

in speed and model compactness.

Finally, to optimize our model, we evaluate the two

MLPs to obtain the implicit parameters, render an output

image Îi, and compare it to the ground-truth image Ii from

the same view. We use the following reconstruction loss:

Lrec(Îi, Ii) = ‖Îi − Ii‖
2 + ω‖∇Îi −∇Ii‖1, (6)

8537



where ∇ denotes the gradient operator and ω is a balancing

weight [30]. Our approach is summarized in Algorithm 1.

Algorithm 1: MPI training with NeX

initialize: θ, φ,K0;

pre-compute X pixel coordinate for each pixel;

for Iteration=0 to maxIter do

sampling image Ii;

compute (A, ~K) = Fθ(X ) where
~K = [K1,K2, ...,KN ];

compute viewing direction Vi by

Vi = X − center of projection of Ii; Vi = Vi/‖Vi‖ ;

compute view-dependent color

C = K0 + ~K · ~Hφ(Vi);
compute rendered image

Îi = O(Wi(A),Wi(C)) ;

compute loss function by

L = Lrec(Îi, Ii) + γTV(K0) ;

update θ, φ,K0 with ADAM(∇θ,φ,K0
L) ;

end

Result: A,K0,K1, ...,KN

3.5. Realtime Rendering

Every model parameter in our MPI can be converted to

an image. This is done by evaluating Fθ on all pixel coor-

dinates and Gφ on some pre-defined viewing span. Given

these pre-computed images, we can implement Equation 1

in a fragment shader in OpenGL/WebGL and achieve real-

time view-dependent rendering of our captured scenes.

4. Experiments

We perform quantitative and qualitative evaluations

against state-of-the-art methods for novel view synthesis

which include MPI-based methods and others. We also pro-

vide an extensive study on the choice of the basis functions

and evaluate different variations of implicit-explicit model-

ing of the MPI parameters, ranging from fully implicit to

fully explicit.

4.1. Implementation Details

Our model is optimized independently for each scene.

The input photos are first calibrated and undistorted with a

structure-from-motion algorithm from COLMAP [28]. In

most of our experiments unless stated otherwise, we use an

MPI with 192 layers with M = 12 consecutive planes shar-

ing one set of texture coefficients.

MLP architectures: For Fθ that predicts per-pixel

parameters given the pixel location (x, y, d), we fol-

low NeRF’s [22] positional encoding and project in-

put x, y to 20 dimensions each and plane depth d to

16 dimensions with the following projection p(u) =
[

sin(20 π
2
u), cos(20 π

2
u), ..., sin(2k π

2
u), cos(2k π

2
u)
]

where

input u is first normalized to [−1, 1]. The total input dimen-

sion is 56. This network uses 6 fully-connected LeakyReLU

layers, each with 384 hidden nodes. The output α uses a

sigmoid activation, and the others use tanh activations. For

Gφ that predicts the basis functions, we use positional en-

coding of the input viewing direction with 12 dimensions

including 6 dimensions for vx and vy . This network uses 3

fully-connected LeakyReLU layers with 64 hidden nodes to

output 8 dimensions of ~Hφ(v).

Training details: To compute the loss, we randomly

sample and render 8,000 pixels in the training view and

compare them to the corresponding pixels in the ground-

truth image. We set ω = 0.05, γ = 0.03 and train our

networks for 4,000 epochs using Adam optimizer [13] with

a learning rate of 0.01 for base color and 0.001 for both

networks and a decay factor of 0.1 every 1,333 epochs.

Runtime: For a scene with 17 input photos of resolu-

tion 1008 × 756, the training took around 18 hours using a

single NVIDIA V100 with a batch size of 1. Our WebGL

viewer can render this scene at 300 frames per second us-

ing an NVIDIA RTX 2080Ti. For comparison, NeRF took

about 55 seconds to generate one frame on the same ma-

chine. In terms of FLOPs for rendering one pixel, we use

0.16 MFLOPs, whereas NeRF uses 226 MFLOPs.

4.2. Comparison to the State of the Art

We compare our algorithm to state-of-the-art MPI-based

methods, DeepView [6] and LLFF [21], as well as non-

MPI-based NeRF [22] and neural scene representations

(SRN) [34]. We also compare to recent work, NSVF [18] in

our supplementary material; however, their method focuses

on object captures and is not designed to handle scenes

with background due to the use of a bounded voxel grid.

For evaluations, we use Spaces dataset from DeepView and

Real Forward-Facing dataset from NeRF. Moreover, we in-

troduce a significantly more challenging dataset, Shiny, to

test the limit of view-dependent modeling.

4.2.1 Results on Real Forward-Facing Dataset

This dataset contains 8 scenes captured in real-world envi-

ronments using a smartphone. The number of input images

for each scene ranges from 20 to 62 images, each with a

resolution of 1008× 756 pixels. We use the same train/test

split as NeRF and evaluate our test results using 3 met-

rics: PSNR (Peak Signal-to-Noise Ratio, higher is better),

SSIM (Structural Similarity Index Measure, higher is bet-

ter) and LPIPS[51] (Learned Perceptual Image Patch Simi-

larity, lower is better).

As shown in Table 1, our method produces the highest

average scores across all 3 metrics. We show scores for in-

dividual scenes in our supplementary. Note that we need

to undistort the results from NeRF in order to match our

8538



Table 1: Average scores across 8 scenes in Real Forward-

Facing dataset.

Method PSNR ↑ SSIM ↑ LPIPS ↓

SRN [34] 21.82 0.744 0.464

LLFF [21] 24.41 0.863 0.211

NeRF [22] 26.76 0.883 0.246

NeX (Ours) 27.26 0.904 0.178

Table 2: Average scores across 8 scenes in Shiny dataset.

Method PSNR ↑ SSIM ↑ LPIPS ↓

NeRF [22] 25.60 0.851 0.259

NeX (Ours) 26.45 0.890 0.165

calibrated testing views. By doing so, their average scores

increase, and we provide both the new and original scores

for reference in the supplementary material. NeRF has a

higher PSNR than ours on one scene, “Orchids,” and upon

inspection we found that our result looks distorted near the

image boundary. Compared to NeRF, our results have much

sharper detail and less noise in regions with uniform colors

as seen in Figure 3. The detail from LLFF is on a par with

ours; however, LLFF produces jumping and warping arti-

facts when results are rendered as a video. SRN produces

blurry results that do not look realistic for this dataset. Note

that our algorithm renders state-of-the-art results more than

1000× faster than NeRF, and is the first to achieve real-time

over 200 FPS rendering at this quality.

4.2.2 Results on Shiny Dataset

Our Shiny dataset also contains 8 scenes captured with a

smartphone in a similar manner as Real Forward-Facing

dataset. However, the scenes contain much more challeng-

ing view-dependent effects, such as the rainbow reflections

on a CD, refraction through a liquid bottle or a magnifying

glass, metallic and ceramic reflections, and sharp specular

highlights on silverware, as well as detailed thin structures.

Table 2 shows that our method also outperforms NeRF

on all 3 metrics on this dataset. In scene CD, our method

can reproduce the rainbow reflections and the reflected im-

age of a plastic cup on the CD, while NeRF fails to capture

the reflected image, as seen in Figure 4. In scene Tools, our

method produces a sharper image of the solder coil stand

through the magnifying glass. In scene Food, our method

captures the specular microgeometry of the textured ce-

ramic plate with high fidelity. Our failure cases include the

lack of sharp sparkles in the crystal candle holder in scene

Food and the reflection of the tube rack in scene Lab shown

in Figure 7. Currently, no other methods are able to handle

extremely sharp highlights that only appear in one distinct

location in each input view.

Table 3: Average scores on Spaces dataset (12 input views).

Method PSNR↑ SSIM ↑ LPIPS ↓

Soft3D [24] 31.57 0.964 0.126

Deepview[6] 31.60 0.978 0.085

NeX (Ours) 35.84 0.985 0.083

4.2.3 Results on DeepView’s Spaces Dataset

Spaces dataset contains indoor and outdoor captures using

16 forward-facing cameras on a fixed rig. Each image has a

resolution of 800×480. We evaluate on the same 10 scenes

in Spaces dataset as in DeepView. We train our model on

12 input views, then evaluate on 4 held-out views. Table 3

shows a comparison between Soft3D [24], DeepView [6],

and our work. Note that DeepView only estimates an MPI

with 80 planes, and these scores are computed from the

test images released by those papers. Our method produces

higher average scores than DeepView on all metrics for the

12-view setup. Figure 4 shows close-up results on one of the

scenes from Spaces dataset. Note that DeepView focuses on

sparser input setups than ours and can produce reasonable

results with 4 input views by learning from a large dataset

of scenes. However, it uses the original MPI representation

which handles limited view-dependent effects.

4.3. Ablation Studies

We evaluate the effectiveness of our main contributions

which are learned basis functions for view-dependent pixel

representation and the implicit-explicit modeling strategy.

For ablation studies, we train a 72-layer MPI with M = 6
sharing scheme and test on two scenes: “Tools,” which con-

tains multiple types of view-dependent effects, and “Crest,”

which contains high-detail patterns and thin structures from

Shiny dataset. All images are in 1008× 756 resolution.

4.3.1 View-dependent Modeling & Basis Functions

Number of basis coefficients: We vary the number

of basis coefficients from zero, which represents no view-

dependent modeling, to 20 and show quantitative results in

Figure 5. The scores of our learned basis functions peak

around 6-9 coefficients and show signs of overfiting after-

ward. Adding view-dependent modeling to MPI helps in-

crease PSNR scores on all test scenes and significantly im-

proves the visual quality for scenes with challenging light-

ing effects shown in Figure 6.

Types of basis functions: We compare our learned ba-

sis functions to other types of basis for modeling view-

dependent effects by only changing Hn in Equation 3. We

test the following basis options: Taylor Series (TS), Spheri-

cal Harmonics (SH), Hemispherical Harmonics (HSH) [8],

Jacobi Spherical Harmonics (JH), and Fourier Series (FS).

8539



Orchids

Leaves
Ground truth Ours NeRF[22] LLFF[21] SRN[34]

Figure 3: Qualitative results on test views from NeRF’s real forward-facing dataset. Our method captures more complete

geometry than LLFF and SRN in Orchids scene and recovers the most detail in Leaves scene.

Ground truth Ours DeepView[6] Ground truth Ours NeRF[22] Ground truth Ours NeRF[22]

(a) Spaces dataset: Scene 056 (b) Shiny dataset: CD (c) Shiny dataset: Tools

Figure 4: The top row shows our rendered results. (a) Our method captures more accurate reflections on the table top. (b)

Our method captures the reflected image of a plastic cup as well as the rainbow reflections, while NeRF produces a blurry

and noisy result. (c) Our method produces a sharper image of the coil through the magnifying glass.

Spherical harmonics are commonly used for representing

complex illumination and are derived from Legendre poly-

nomials. However, since our captures are mostly forward-

facing, the viewing directions from which a point on a sur-

face can be observed will only span a hemisphere. Thus,

we also evaluate alternative basis functions that are more

suitable for this viewing span, namely Hemi-spherical har-

monics [8], which are derived from shifted Legendre poly-

nomials. Generalizing this further, one can derive modified

spherical harmonics that target an even tighter viewing span

than a hemisphere through shifted Jacobi polynomials (JH).

The exact forms are shown in our supplementary material.

Figure 5 shows that our learned basis outperforms these

fixed basis functions, even the ones whose viewing domains

have been narrowed down, when the same number of coef-

ficients is used. In principle, given a sufficiently expressive

network, our learned basis can approximate other kinds of

basis functions, if required, or reproduce higher frequencies

using the same rank order, which is the number that dictates

the highest frequency in those fixed basis functions.

4.3.2 Implicit Function and Explicit Structure

In this experiment, we validate our design decision that

stores base color K0 explicitly while modeling other pa-

8540



0 3 6 9 12 15 18 21
Coefficients

23.65

23.70

23.75

23.80

23.85

23.90

23.95

24.00

PS
NR

Ours
FS
JH
HSH
SH
TS

Figure 5: PSNR scores vs. the number of basis coefficients

for ours (learned basis functions), FS (Fourier’s series), JH

(Jacobi spherical harmonics), HSH (hemispherical harmon-

ics), SH (spherical harmonics), and TS (Taylor’s series).

Ground truth Ours Standard MPI

Figure 6: Our MPI with view-dependent modeling can

replicate the rainbow reflections on the CD, while the stan-

dard MPI breaks down completely.

rameters with implicit functions. Additionally, in Table 4

we explore all 8 alternatives for representing alpha (A), base

color (K0), and view-dependent coefficients (K1, ...,KN ),

ranging from fully implicit (Im-Im-Im) to fully explicit (Ex-

Ex-Ex). Note that the fully explicit model corresponds to

optimizing the rendering equation directly without any deep

priors on the parameters. The result shows that our Im-Ex-

Im outperforms other alternatives, and storing base color

K0 explicitly is beneficial also to other configurations re-

gardless of the modeling choices for the alpha and coeffi-

cients. Qualitatively, our method produces significantly bet-

ter detail compared to the fully implicit model and cleaner

results that generalize better than the fully explicit model.

5. Limitations & Failure Cases

Our model is based on MPI and thus inherits similar

limitations. When viewing our MPI from an angle too far

away from the center, there will be “stack of cards” arti-

facts which can reveal individual MPI planes. Our model

still cannot fully reproduce the hardest scenes in our Shiny

dataset, which include effects such as light sparkles, ex-

tremely sharp highlights, or refraction through test tubes

(Figure 7). Exposure differences in the training images that

are not properly compensated may lead to flickering in the

rendered output. Training our MPI still takes a long time

and may require a higher number of input views to repli-

Table 4: Quantitative evaluation on different modeling

strategies for the alpha transparency (A), base color (K0),

and view-dependent coefficients (K1, ...,KN ). Modeling

with an explicit structure is denoted by (Ex) and with an

implicit representation is denoted by (Im).

Method Metric

A K0 K1, ...,Kn PSNR ↑ SSIM ↑ LPIPS ↓

Ex Ex Ex 24.57 0.857 0.292

Ex Ex Im 24.47 0.854 0.300

Ex Im Ex 24.55 0.857 0.296

Ex Im Im 24.44 0.854 0.302

Im Ex Ex 26.30 0.901 0.204

Im Ex Im 26.32 0.904 0.202

Im Im Ex 25.82 0.883 0.279

Im Im Im 25.63 0.878 0.301

Ground truth Ours Ground truth Ours

Figure 7: Our failure cases on a crystal candle holder in

scene Food (Left) and test tubes in scene Lab (Right).

cate view-dependent effects. Learning how to do this with

fewer input images using a dataset of scenes or with learned

optimizers [6] could be an interesting direction.

6. Conclusion

We have investigated a new approach to novel view syn-

thesis using multiplane image (MPI) with neural basis ex-

pansion. Our representation is effective in capturing and

reproducing complex view-dependent effects and efficient

to compute on standard graphics hardware, thus allowing

real-time rendering. Extensive studies on public datasets

and our more challenging dataset demonstrate state-of-the-

art quality of our approach. We believe neural basis ex-

pansion can be applied to the general problem of light field

factorization and enable efficient rendering for other scene

representations not limited to MPI. Our insight that some

reflectance parameters and high-frequency texture can be

optimized explicitly can also help recovering fine detail, a

challenge faced by existing implicit neural representations.

Acknowledgement

This research was supported by PTT public company
limited, SCB public company limited, the Program Man-
agement Unit for Human Resources & Institutional De-
velopment, Research and Innovation Thailand (NXPO
1426293), and VISTEC. The authors also would like to
thank Jeong Joon Park for useful discussions.

8541



References

[1] Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall,

Kalyan Sunkavalli, Miloš Hašan, Yannick Hold-Geoffroy,

David Kriegman, and Ravi Ramamoorthi. Neural re-

flectance fields for appearance acquisition. arXiv preprint

arXiv:2008.03824, 2020. 2

[2] Chris Buehler, Michael Bosse, Leonard McMillan, Steven

Gortler, and Michael Cohen. Unstructured lumigraph ren-

dering. In Proceedings of the 28th annual conference on

Computer graphics and interactive techniques, pages 425–

432, 2001. 2

[3] Inchang Choi, Orazio Gallo, Alejandro Troccoli, Min H

Kim, and Jan Kautz. Extreme view synthesis. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 7781–7790, 2019. 2

[4] Helisa Dhamo, Keisuke Tateno, Iro Laina, Nassir Navab, and

Federico Tombari. Peeking behind objects: Layered depth

prediction from a single image. Pattern Recognition Letters,

125:333–340, 2019. 2

[5] SM Ali Eslami, Danilo Jimenez Rezende, Frederic Besse,

Fabio Viola, Ari S Morcos, Marta Garnelo, Avraham Ru-

derman, Andrei A Rusu, Ivo Danihelka, Karol Gregor,

et al. Neural scene representation and rendering. Science,

360(6394):1204–1210, 2018. 2

[6] John Flynn, Michael Broxton, Paul Debevec, Matthew Du-

Vall, Graham Fyffe, Ryan Overbeck, Noah Snavely, and

Richard Tucker. Deepview: View synthesis with learned

gradient descent. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2367–

2376, 2019. 2, 3, 4, 5, 6, 7, 8

[7] John Flynn, Ivan Neulander, James Philbin, and Noah

Snavely. Deepstereo: Learning to predict new views from

the world’s imagery. pages 5515–5524, 2016. 2

[8] Pascal Gautron, Jaroslav Krivanek, Sumanta Pattanaik, and

Kadi Bouatouch. A Novel Hemispherical Basis for Accurate

and Efficient Rendering. 2004. 6, 7

[9] Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and

Michael F Cohen. The lumigraph. In Proceedings of the

23rd annual conference on Computer graphics and interac-

tive techniques, pages 43–54, 1996. 2

[10] Peter Hedman, Suhib Alsisan, Richard Szeliski, and Jo-

hannes Kopf. Casual 3d photography. ACM Transactions

on Graphics (TOG), 36(6):1–15, 2017. 2

[11] Jan Kautz et al. Hardware rendering with bidirectional re-

flectances. 1999. 2, 3

[12] Jan Kautz and Michael D McCool. Interactive rendering

with arbitrary brdfs using separable approximations. In Eu-

rographics Workshop on Rendering Techniques, pages 247–

260. Springer, 1999. 3

[13] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. CoRR, abs/1412.6980, 2015. 5

[14] Alexandr Kuznetsov, Milos Hasan, Zexiang Xu, Ling-

Qi Yan, Bruce Walter, Nima Khademi Kalantari, Steve

Marschner, and Ravi Ramamoorthi. Learning generative

models for rendering specular microgeometry. ACM Trans.

Graph., 38(6):225–1, 2019. 2

[15] Anat Levin and Fredo Durand. Linear view synthesis using a

dimensionality gap light field prior. In 2010 IEEE Computer

Society Conference on Computer Vision and Pattern Recog-

nition, pages 1831–1838. IEEE, 2010. 2

[16] Marc Levoy and Pat Hanrahan. Light field rendering. In Pro-

ceedings of the 23rd annual conference on Computer graph-

ics and interactive techniques, pages 31–42, 1996. 2

[17] Zhengqi Li, Wenqi Xian, Abe Davis, and Noah Snavely.

Crowdsampling the plenoptic function. arXiv preprint

arXiv:2007.15194, 2020. 2

[18] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua,

and Christian Theobalt. Neural sparse voxel fields. arXiv

preprint arXiv:2007.11571, 2020. 1, 2, 5

[19] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel

Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-

umes: Learning dynamic renderable volumes from images.

ACM Transactions on Graphics (TOG), 38(4):65, 2019. 2

[20] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,

Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-

worth. Nerf in the wild: Neural radiance fields for uncon-

strained photo collections. arXiv preprint arXiv:2008.02268,

2020. 2

[21] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,

Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and

Abhishek Kar. Local light field fusion: Practical view syn-

thesis with prescriptive sampling guidelines. ACM Transac-

tions on Graphics (TOG), 38(4):1–14, 2019. 1, 2, 3, 5, 6,

7

[22] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. arXiv preprint arXiv:2003.08934, 2020. 2, 4, 5, 6,

7

[23] Simon Niklaus, Long Mai, Jimei Yang, and Feng Liu. 3d

ken burns effect from a single image. ACM Transactions on

Graphics (TOG), 38(6):1–15, 2019. 2

[24] Eric Penner and Li Zhang. Soft 3d reconstruction for view

synthesis. ACM Transactions on Graphics (TOG), 36(6):1–

11, 2017. 2, 6

[25] Thomas Porter and Tom Duff. Compositing digital images.

SIGGRAPH Comput. Graph., 18(3):253–259, Jan. 1984. 3

[26] Gilles Rainer, Wenzel Jakob, Abhijeet Ghosh, and Tim

Weyrich. Neural btf compression and interpolation. Com-

puter Graphics Forum (Proceedings of Eurographics), 38(2),

Mar. 2019. 2

[27] Ravi Ramamoorthi and Pat Hanrahan. An efficient represen-

tation for irradiance environment maps. In Proceedings of

the 28th annual conference on Computer graphics and inter-

active techniques, pages 497–500, 2001. 3

[28] Johannes Lutz Schönberger and Jan-Michael Frahm.

Structure-from-motion revisited. In Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2016. 5

[29] Jonathan Shade, Steven Gortler, Li-wei He, and Richard

Szeliski. Layered depth images. In Proceedings of the

25th annual conference on Computer graphics and interac-

tive techniques, pages 231–242, 1998. 2

8542



[30] Qi Shan, Jiaya Jia, and Aseem Agarwala. High-quality mo-

tion deblurring from a single image. ACM Transactions on

Graphics (SIGGRAPH), 2008. 5

[31] Lixin Shi, Haitham Hassanieh, Abe Davis, Dina Katabi, and

Fredo Durand. Light field reconstruction using sparsity in

the continuous fourier domain. ACM Trans. Graph., 34(1),

Dec. 2015. 2

[32] Vincent Sitzmann, Julien NP Martel, Alexander W Bergman,

David B Lindell, and Gordon Wetzstein. Implicit neural

representations with periodic activation functions. arXiv

preprint arXiv:2006.09661, 2020. 1, 4

[33] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias

Nießner, Gordon Wetzstein, and Michael Zollhofer. Deep-

voxels: Learning persistent 3d feature embeddings. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2437–2446, 2019. 2

[34] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-

zstein. Scene representation networks: Continuous 3d-

structure-aware neural scene representations. In Advances

in Neural Information Processing Systems, 2019. 5, 6, 7

[35] Peter-Pike Sloan, Jesse Hall, John Hart, and John Snyder.

Clustered principal components for precomputed radiance

transfer. ACM Transactions on Graphics (TOG), 22(3):382–

391, 2003. 2, 3

[36] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precom-

puted radiance transfer for real-time rendering in dynamic,

low-frequency lighting environments. In Proceedings of the

29th annual conference on Computer graphics and interac-

tive techniques, pages 527–536, 2002. 2, 3

[37] Pratul P Srinivasan, Richard Tucker, Jonathan T Barron,

Ravi Ramamoorthi, Ren Ng, and Noah Snavely. Pushing

the boundaries of view extrapolation with multiplane images.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 175–184, 2019. 2

[38] Pratul P Srinivasan, Tongzhou Wang, Ashwin Sreelal, Ravi

Ramamoorthi, and Ren Ng. Learning to synthesize a 4d rgbd

light field from a single image. In Proceedings of the IEEE

International Conference on Computer Vision, pages 2243–

2251, 2017. 2

[39] Richard Szeliski and Polina Golland. Stereo matching with

transparency and matting. In Sixth International Conference

on Computer Vision (IEEE Cat. No. 98CH36271), pages

517–524. IEEE, 1998. 2

[40] Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara

Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-

mamoorthi, Jonathan T Barron, and Ren Ng. Fourier features

let networks learn high frequency functions in low dimen-

sional domains. arXiv preprint arXiv:2006.10739, 2020. 4

[41] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-

ferred neural rendering: Image synthesis using neural tex-

tures. ACM Transactions on Graphics (TOG), 38(4):1–12,

2019. 2

[42] Alex Trevithick and Bo Yang. Grf: Learning a general radi-

ance field for 3d scene representation and rendering. arXiv

e-prints, pages arXiv–2010, 2020. 1, 2

[43] Richard Tucker and Noah Snavely. Single-view view

synthesis with multiplane images. arXiv preprint

arXiv:2004.11364, 2020. 2

[44] Shubham Tulsiani, Richard Tucker, and Noah Snavely.

Layer-structured 3d scene inference via view synthesis. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 302–317, 2018. 2

[45] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.

Deep image prior. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 9446–

9454, 2018. 2, 4

[46] Gordon Wetzstein, Douglas R Lanman, Matthew Waggener

Hirsch, and Ramesh Raskar. Tensor displays: compressive

light field synthesis using multilayer displays with direc-

tional backlighting. 2012. 2

[47] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin

Johnson. Synsin: End-to-end view synthesis from a single

image. arXiv preprint arXiv:1912.08804, 2019. 2

[48] Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Cur-

less, Tom Duchamp, David H. Salesin, and Werner Stuetzle.

Surface light fields for 3d photography. Proceedings of the

27th annual conference on Computer graphics and interac-

tive techniques - SIGGRAPH ’00, 2000. 2

[49] Cha Zhang and Tsuhan Chen. Spectral analysis for sampling

image-based rendering data. IEEE Transactions on Circuits

and Systems for Video Technology, 13(11):1038–1050, 2003.

2

[50] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen

Koltun. Nerf++: Analyzing and improving neural radiance

fields. arXiv preprint arXiv:2010.07492, 2020. 1, 2

[51] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-

man, and Oliver Wang. The unreasonable effectiveness of

deep features as a perceptual metric. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 586–595, 2018. 5

[52] Xiuming Zhang, Sean Fanello, Yun-Ta Tsai, Tiancheng Sun,

Tianfan Xue, Rohit Pandey, Sergio Orts-Escolano, Philip

Davidson, Christoph Rhemann, Paul Debevec, Jonathan T.

Barron, Ravi Ramamoorthi, and William T. Freeman. Neu-

ral light transport for relighting and view synthesis. arXiv

preprint arXiv:2008.03806, 2020. 2

[53] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,

and Noah Snavely. Stereo magnification: Learning view syn-

thesis using multiplane images. In SIGGRAPH, 2018. 1, 2,

3

[54] C Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele,

Simon Winder, and Richard Szeliski. High-quality video

view interpolation using a layered representation. ACM

transactions on graphics (TOG), 23(3):600–608, 2004. 2

8543


